MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "3528241c-8b79-4561-ae66-727374566bd6"}, "_deposit": {"id": "3340", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3340"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3340", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Implementation of Job Classification for Accounting Field using Decision Tree Algorithm", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Data mining is seen as an increasinglyimportant tool by modern business to transformdata into an informational advantage. Data miningcould also be described as trying to create asimplified model of the complex world described inthe database. Data mining is a way of dealing withlarge amounts of information, and it is helpful forfinding useful information faster than any human.Decision tree is mainly used for classificationpurposes. Decision tree is a classifier in the form ofa tree structure. Rules can be easily extracted fromthe decision tree. The main task performed in thissystem is using inductive methods to the givenvalues of attributes of an unknown object todetermine appropriate classification according todecision tree rules. This paper examines thedecision tree learning algorithm for classifying jobrelated accounting field. This paper implements thedecision tree using ID3 and gives advice to usersabout the types of job in accounting field. Thissystem uses 900 training data set and 300 testingdata set. This paper calculates the system accuracyby using Hold_Out Method and provides 84.75%after reviewing 300 testing data set."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Job Classification"}, {"interim": "Decision Tree Induction"}, {"interim": "ID3 algorithm"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-22"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (164).pdf", "filesize": [{"value": "55 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 55000.0, "url": {"url": "https://meral.edu.mm/record/3340/files/psc2010paper (164).pdf"}, "version_id": "ebbce09d-3196-45d1-b582-a6ca854dd84e"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Oo, Khin Lay Nwe"}, {"subitem_authors_fullname": "Yuzana"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1100"}, "item_title": "Implementation of Job Classification for Accounting Field using Decision Tree Algorithm", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003340", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-22"}, "publish_date": "2019-07-22", "publish_status": "0", "recid": "3340", "relation": {}, "relation_version_is_last": true, "title": ["Implementation of Job Classification for Accounting Field using Decision Tree Algorithm"], "weko_shared_id": -1}
Implementation of Job Classification for Accounting Field using Decision Tree Algorithm
http://hdl.handle.net/20.500.12678/0000003340
http://hdl.handle.net/20.500.12678/0000003340cf385d09-4b29-46dc-9199-fae270abe8b2
3528241c-8b79-4561-ae66-727374566bd6
Name / File | License | Actions |
---|---|---|
psc2010paper (164).pdf (55 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Implementation of Job Classification for Accounting Field using Decision Tree Algorithm | |||||
Language | en | |||||
Publication date | 2010-12-16 | |||||
Authors | ||||||
Oo, Khin Lay Nwe | ||||||
Yuzana | ||||||
Description | ||||||
Data mining is seen as an increasinglyimportant tool by modern business to transformdata into an informational advantage. Data miningcould also be described as trying to create asimplified model of the complex world described inthe database. Data mining is a way of dealing withlarge amounts of information, and it is helpful forfinding useful information faster than any human.Decision tree is mainly used for classificationpurposes. Decision tree is a classifier in the form ofa tree structure. Rules can be easily extracted fromthe decision tree. The main task performed in thissystem is using inductive methods to the givenvalues of attributes of an unknown object todetermine appropriate classification according todecision tree rules. This paper examines thedecision tree learning algorithm for classifying jobrelated accounting field. This paper implements thedecision tree using ID3 and gives advice to usersabout the types of job in accounting field. Thissystem uses 900 training data set and 300 testingdata set. This paper calculates the system accuracyby using Hold_Out Method and provides 84.75%after reviewing 300 testing data set. | ||||||
Keywords | ||||||
Job Classification, Decision Tree Induction, ID3 algorithm | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/1100 | |||||
Journal articles | ||||||
Fifth Local Conference on Parallel and Soft Computing | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |