Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "42fa5cce-7741-4778-ad10-fca295037602"}, "_deposit": {"id": "3273", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3273"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3273", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Hybrid Intrusion Detection SystemBased on Bayesian Network", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Now day’s security is the primary concerned inthe field of computer science.With quickly growingunauthorized activities in network Intrusion Detectionas a part of defense is extremely necessary becausetraditional firewall techniques cannot providecomplete protection against intrusion.The primarygoal of an Intrusion Detection System (IDS) is toidentify intruders and differentiate anomalousnetwork activity from normal one. Intrusion detectionhas become a significant component of networksecurity administration due to the enormous numberof attacks persistently threaten our computer networksand systems.This paper illustrates the benefit ofhybrid intrusion detection system that can detect bothknown and unknown attacks. The system includes twophases: (1) If the attack is known attack then signatureintrusion detection handles and performs appropriateaction. (2)If the attack is unknown attack thenanomaly intrusion detection use frequent patternmatching process and generate the signature that canhandle the next attack. Our proposed system may bemore accurate and better performance than traditionalintrusion detection system."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Detection System(IDS)"}, {"interim": "Bayesian Network"}, {"interim": "Naïve Bayes"}, {"interim": "Frequent pattern mining"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-03"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "12028.pdf", "filesize": [{"value": "89 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 89000.0, "url": {"url": "https://meral.edu.mm/record/3273/files/12028.pdf"}, "version_id": "c5f9378c-3730-44f9-9ffa-b9a6c6168310"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Twelfth International Conference On Computer Applications (ICCA 2014)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Myint, Khin Khattar"}, {"subitem_authors_fullname": "Kham, Nang Saing Moon"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2014-02-17"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/104"}, "item_title": "Hybrid Intrusion Detection SystemBased on Bayesian Network", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003273", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-03"}, "publish_date": "2019-07-03", "publish_status": "0", "recid": "3273", "relation": {}, "relation_version_is_last": true, "title": ["Hybrid Intrusion Detection SystemBased on Bayesian Network"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Hybrid Intrusion Detection SystemBased on Bayesian Network

http://hdl.handle.net/20.500.12678/0000003273
http://hdl.handle.net/20.500.12678/0000003273
fbff1492-daa5-466d-9d31-425bf4176e32
42fa5cce-7741-4778-ad10-fca295037602
None
Preview
Name / File License Actions
12028.pdf 12028.pdf (89 Kb)
Publication type
Article
Upload type
Publication
Title
Title Hybrid Intrusion Detection SystemBased on Bayesian Network
Language en
Publication date 2014-02-17
Authors
Myint, Khin Khattar
Kham, Nang Saing Moon
Description
Now day’s security is the primary concerned inthe field of computer science.With quickly growingunauthorized activities in network Intrusion Detectionas a part of defense is extremely necessary becausetraditional firewall techniques cannot providecomplete protection against intrusion.The primarygoal of an Intrusion Detection System (IDS) is toidentify intruders and differentiate anomalousnetwork activity from normal one. Intrusion detectionhas become a significant component of networksecurity administration due to the enormous numberof attacks persistently threaten our computer networksand systems.This paper illustrates the benefit ofhybrid intrusion detection system that can detect bothknown and unknown attacks. The system includes twophases: (1) If the attack is known attack then signatureintrusion detection handles and performs appropriateaction. (2)If the attack is unknown attack thenanomaly intrusion detection use frequent patternmatching process and generate the signature that canhandle the next attack. Our proposed system may bemore accurate and better performance than traditionalintrusion detection system.
Keywords
Detection System(IDS), Bayesian Network, Naïve Bayes, Frequent pattern mining
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/104
Journal articles
Twelfth International Conference On Computer Applications (ICCA 2014)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 09:52:16.456077
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL