MERAL Myanmar Education Research and Learning Portal
-
RootNode
Item
{"_buckets": {"deposit": "21b73641-d2ae-40eb-adad-1e88ab55a27b"}, "_deposit": {"id": "3267", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3267"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3267", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Comparison of Normal Neural Network Ensemble and Clustering Based Neural Network Ensemble", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Artificial neural networks (ANNs) arecomputing models for information processingand pattern identification. An ANN is a networkof many simple computing units called neuronsor cells, which are highly interconnected andorganized in layers. Ensemble neural network isa learning paradigm where several neuralnetworks are jointly used to solve a problem.Generalization ability of a neural network can besignificantly improved through ensemblingneural networks, i.e. training several neuralnetworks and combining their results in someway. Ensemble neural network is a collection of a(finite) number of neural networks that aretrained for the same task. Since it behavesremarkably well and is easy to use, ensembleneural network is regarded as a promisingmethodology that can profit not only experts inneural computing but also ordinary engineers inreal world applications. This paper presents theensemble neural network method trained withclustering can improve the accuracy of theclassifier than single neural network. The systemis test with three datasets from UCI machinelearning repository and results are presented."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-19"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "165_PDFsam_PSC_final proof.pdf", "filesize": [{"value": "137 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 137000.0, "url": {"url": "https://meral.edu.mm/record/3267/files/165_PDFsam_PSC_final proof.pdf"}, "version_id": "c47c6b80-d40b-45f8-81e4-bf06a9bd0305"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Eighth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Naing, Hnin Hnin"}, {"subitem_authors_fullname": "Nyunt, Thi Thi Soe"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2017-12-27"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1034"}, "item_title": "Comparison of Normal Neural Network Ensemble and Clustering Based Neural Network Ensemble", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003267", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-19"}, "publish_date": "2019-07-19", "publish_status": "0", "recid": "3267", "relation": {}, "relation_version_is_last": true, "title": ["Comparison of Normal Neural Network Ensemble and Clustering Based Neural Network Ensemble"], "weko_shared_id": -1}
Comparison of Normal Neural Network Ensemble and Clustering Based Neural Network Ensemble
http://hdl.handle.net/20.500.12678/0000003267
http://hdl.handle.net/20.500.12678/0000003267afac0cfc-2e8b-4a1d-86f9-81d2a22398e5
21b73641-d2ae-40eb-adad-1e88ab55a27b
Name / File | License | Actions |
---|---|---|
165_PDFsam_PSC_final proof.pdf (137 Kb)
|
|