Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking


Index Link

Index Tree

  • RootNode

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "f34c09ff-a6b1-4c7a-a672-12ae46bf9022"}, "_deposit": {"id": "3266", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3266"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3266", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Forecasting for Myanmar Currency Exchange Rates By using Back Propagation Neural Network", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Nowadays, forecasting of exchange ratesplays an important role in internationaleconomics. Additional to basic economic andfinancial news, investors and traders employ intheir decision process technical tools to analyzethe transaction data.In this paper, the system based on neuralnetworks implemented for forecasting MyanmarCurrency exchange ratesusing artificial neuralnetwork. The system uses back-propagationalgorithm to train the exchange rates. Feedforward neural network is used to improve theefficiency of the back-propagation. MultilayerPerceptron (MLP) network is the mainarchitecture. Network architecture parametersespecially number of input and number of hiddenlayers are analyzed.System performance isevaluated in terms of Mean Absolute Error(MAE). Daily historical price data for currencypairs for the last three years are inputted to thesystem. The system is implemented usingprogramming language C#."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-19"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "164_PDFsam_PSC_final proof.pdf", "filesize": [{"value": "137 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 137000.0, "url": {"url": "https://meral.edu.mm/record/3266/files/164_PDFsam_PSC_final proof.pdf"}, "version_id": "4f23c396-4be7-460a-a018-ddda2df08801"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Eighth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Myint, Aye Nandar"}, {"subitem_authors_fullname": "Khine, May Aye"}, {"subitem_authors_fullname": "Khaing, Myo Kay"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2017-12-27"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1033"}, "item_title": "Forecasting for Myanmar Currency Exchange Rates By using Back Propagation Neural Network", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003266", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-19"}, "publish_date": "2019-07-19", "publish_status": "0", "recid": "3266", "relation": {}, "relation_version_is_last": true, "title": ["Forecasting for Myanmar Currency Exchange Rates By using Back Propagation Neural Network"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Forecasting for Myanmar Currency Exchange Rates By using Back Propagation Neural Network

http://hdl.handle.net/20.500.12678/0000003266
http://hdl.handle.net/20.500.12678/0000003266
f59545b1-1869-480e-86c1-ca7096942174
f34c09ff-a6b1-4c7a-a672-12ae46bf9022
None
Preview
Name / File License Actions
164_PDFsam_PSC_final 164_PDFsam_PSC_final proof.pdf (137 Kb)
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 09:51:48.929919
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL