Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking


Index Link

Index Tree

  • RootNode

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "6bf8bbf8-8a2f-46b1-9e7a-4c3d66b308ea"}, "_deposit": {"id": "3262", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3262"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3262", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Constructing with River Flood Prediction Models", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "With the incidence of severe weather andflooding on the increase around the world, there is aneed to improve flood forecasting and warning. Floodscause physical damage, loss of basic sanitation thatleads to disease, economic hardship due to rebuildingcosts and food shortages. By improving flood forecastsit becomes possible to take mitigating actions inadvance of the flood and hence avoid millions ofpounds worth of damage and even human fatalities.In this paper, a time series and Markov modelsfor river flood prediction are constructed. Thesemodels focus on the prediction of events and cancapture the fact that time flows forward. The outputwill be approximate and show that there is a closeagreement between the predicted and actual riverflooding amount. The system compares the results oftime series model and Markov model with the actualweather station results and also shows the best modelfor river flood prediction over Ayeyarwady River inMyanmar."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "flood"}, {"interim": "prediction"}, {"interim": "time series"}, {"interim": "Markov Chain"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-03"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "2.Constructing with River Flood Prediction Models.pdf", "filesize": [{"value": "256 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 256000.0, "url": {"url": "https://meral.edu.mm/record/3262/files/2.Constructing with River Flood Prediction Models.pdf"}, "version_id": "c8c8ee8b-315f-41e3-ad7f-737665d9f44b"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Thirteenth International Conferences on Computer Applications(ICCA 2015)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "San, Thinn Htet Htet"}, {"subitem_authors_fullname": "Khin, Mie Mie"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2015-02-05"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/103"}, "item_title": "Constructing with River Flood Prediction Models", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003262", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-03"}, "publish_date": "2019-07-03", "publish_status": "0", "recid": "3262", "relation": {}, "relation_version_is_last": true, "title": ["Constructing with River Flood Prediction Models"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Constructing with River Flood Prediction Models

http://hdl.handle.net/20.500.12678/0000003262
http://hdl.handle.net/20.500.12678/0000003262
d3f6268e-625a-4b81-8966-dee5df121dae
6bf8bbf8-8a2f-46b1-9e7a-4c3d66b308ea
None
Preview
Name / File License Actions
2.Constructing 2.Constructing with River Flood Prediction Models.pdf (256 Kb)
Publication type
Article
Upload type
Publication
Title
Title Constructing with River Flood Prediction Models
Language en
Publication date 2015-02-05
Authors
San, Thinn Htet Htet
Khin, Mie Mie
Description
With the incidence of severe weather andflooding on the increase around the world, there is aneed to improve flood forecasting and warning. Floodscause physical damage, loss of basic sanitation thatleads to disease, economic hardship due to rebuildingcosts and food shortages. By improving flood forecastsit becomes possible to take mitigating actions inadvance of the flood and hence avoid millions ofpounds worth of damage and even human fatalities.In this paper, a time series and Markov modelsfor river flood prediction are constructed. Thesemodels focus on the prediction of events and cancapture the fact that time flows forward. The outputwill be approximate and show that there is a closeagreement between the predicted and actual riverflooding amount. The system compares the results oftime series model and Markov model with the actualweather station results and also shows the best modelfor river flood prediction over Ayeyarwady River inMyanmar.
Keywords
flood, prediction, time series, Markov Chain
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/103
Journal articles
Thirteenth International Conferences on Computer Applications(ICCA 2015)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 09:51:31.275989
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL