Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "dbb7a1f5-b026-49ef-b5b8-9499b3d9def8"}, "_deposit": {"id": "3113", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3113"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3113", "sets": ["user-ytu"]}, "communities": ["ytu"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Intrusion Detection System Based on Frequent Pattern Mining", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "\u003cp\u003e\u0026nbsp;Due\u0026nbsp; to\u0026nbsp; the\u0026nbsp; dramatically\u0026nbsp; increment\u0026nbsp; of\u0026nbsp; internet\u003cbr\u003e\nusage,\u0026nbsp; users\u0026nbsp; are\u0026nbsp; facing\u0026nbsp; various\u0026nbsp; attacks\u0026nbsp; day\u0026nbsp; by\u0026nbsp; day.\u003cbr\u003e\nConsequently, the research area for intrusion detection must\u003cbr\u003e\nbe\u0026nbsp; fresh\u0026nbsp; with\u0026nbsp; new\u0026nbsp; challenges.\u0026nbsp; Intrusion\u0026nbsp; detection\u0026nbsp; system\u003cbr\u003e\nincludes identifying a set of malicious actions that compromise\u003cbr\u003e\nthe\u0026nbsp; integrity,\u0026nbsp; confidentiality,\u0026nbsp; and\u0026nbsp; availability\u0026nbsp; of\u0026nbsp; information\u003cbr\u003e\nresources.\u0026nbsp; The\u0026nbsp; major\u0026nbsp; contribution\u0026nbsp; is\u0026nbsp; to\u0026nbsp; apply\u0026nbsp; data\u0026nbsp; mining\u003cbr\u003e\napproach for network intrusion detection system. Among the\u003cbr\u003e\nseveral features of data\u0026nbsp; mining, association rules\u0026nbsp; mining,FP-\u003cbr\u003e\ngrowth algorithm, is used to find out the frequent itemsets of\u003cbr\u003e\nincoming packets database. Based on these itemsets, anomaly\u003cbr\u003e\ndetection\u0026nbsp; is\u0026nbsp; added.\u0026nbsp; The\u0026nbsp; system\u0026nbsp; will\u0026nbsp; predict\u0026nbsp; whether\u0026nbsp; the\u003cbr\u003e\nincoming data packet is normal or attack. The performance of\u003cbr\u003e\nproposed system is tested by using KDD-99 datasets.\u003c/p\u003e"}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "intrusion detection"}, {"interim": "data mining"}, {"interim": "anomaly"}, {"interim": "algorithm"}, {"interim": "KDD-99 datasets"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-04"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Intrusion Detection System Baed on Frequent Pattern Mining.pdf", "filesize": [{"value": "386 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "application/pdf", "size": 386000.0, "url": {"url": "https://meral.edu.mm/record/3113/files/Intrusion Detection System Baed on Frequent Pattern Mining.pdf"}, "version_id": "a0aaf596-503a-46b7-9bb4-37ee9cce7064"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "ICSE", "subitem_c_date": "29-30 December, 2014", "subitem_conference_title": "International Conference on Science and Engineering", "subitem_part": "", "subitem_place": "Myanmar", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Myo Min Than"}, {"subitem_authors_fullname": "Nyein Nyein Oo"}, {"subitem_authors_fullname": "Myo Min Than"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Conference paper"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2014-12-29"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "10.5281/zenodo.3268384"}, "item_title": "Intrusion Detection System Based on Frequent Pattern Mining", "item_type_id": "21", "owner": "1", "path": ["1596119372420"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003113", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-04"}, "publish_date": "2019-07-04", "publish_status": "0", "recid": "3113", "relation": {}, "relation_version_is_last": true, "title": ["Intrusion Detection System Based on Frequent Pattern Mining"], "weko_shared_id": -1}
  1. Yangon Technological University
  2. Department of Computer Engineering and Information Technology

Intrusion Detection System Based on Frequent Pattern Mining

http://hdl.handle.net/20.500.12678/0000003113
http://hdl.handle.net/20.500.12678/0000003113
590200c7-46bb-4287-a7a5-b65b2abd83d2
dbb7a1f5-b026-49ef-b5b8-9499b3d9def8
None
Preview
Name / File License Actions
Intrusion Intrusion Detection System Baed on Frequent Pattern Mining.pdf (386 Kb)
Publication type
Conference paper
Upload type
Publication
Title
Title Intrusion Detection System Based on Frequent Pattern Mining
Language en
Publication date 2014-12-29
Authors
Myo Min Than
Nyein Nyein Oo
Myo Min Than
Description
<p>&nbsp;Due&nbsp; to&nbsp; the&nbsp; dramatically&nbsp; increment&nbsp; of&nbsp; internet<br>
usage,&nbsp; users&nbsp; are&nbsp; facing&nbsp; various&nbsp; attacks&nbsp; day&nbsp; by&nbsp; day.<br>
Consequently, the research area for intrusion detection must<br>
be&nbsp; fresh&nbsp; with&nbsp; new&nbsp; challenges.&nbsp; Intrusion&nbsp; detection&nbsp; system<br>
includes identifying a set of malicious actions that compromise<br>
the&nbsp; integrity,&nbsp; confidentiality,&nbsp; and&nbsp; availability&nbsp; of&nbsp; information<br>
resources.&nbsp; The&nbsp; major&nbsp; contribution&nbsp; is&nbsp; to&nbsp; apply&nbsp; data&nbsp; mining<br>
approach for network intrusion detection system. Among the<br>
several features of data&nbsp; mining, association rules&nbsp; mining,FP-<br>
growth algorithm, is used to find out the frequent itemsets of<br>
incoming packets database. Based on these itemsets, anomaly<br>
detection&nbsp; is&nbsp; added.&nbsp; The&nbsp; system&nbsp; will&nbsp; predict&nbsp; whether&nbsp; the<br>
incoming data packet is normal or attack. The performance of<br>
proposed system is tested by using KDD-99 datasets.</p>
Keywords
intrusion detection, data mining, anomaly, algorithm, KDD-99 datasets
Identifier 10.5281/zenodo.3268384
Journal articles
Conference papers
ICSE
29-30 December, 2014
International Conference on Science and Engineering
Myanmar
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-08-30 13:56:02.960455
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL