{"created":"2020-09-01T15:41:14.717661+00:00","id":5053,"links":{},"metadata":{"_buckets":{"deposit":"ba46fca4-f65c-420a-8c5d-70dda47d9204"},"_deposit":{"id":"5053","owners":[],"pid":{"revision_id":0,"type":"recid","value":"5053"},"status":"published"},"_oai":{"id":"oai:meral.edu.mm:recid/5053","sets":["1582963302567:1597824273898"]},"communities":["ucsy"],"item_1583103067471":{"attribute_name":"Title","attribute_value_mlt":[{"subitem_1551255647225":"Prediction for Production Rate of Paddy Using Bagged Classifier Based on NBC","subitem_1551255648112":"en"}]},"item_1583103085720":{"attribute_name":"Description","attribute_value_mlt":[{"interim":"A popular method for creating an accurateclassifier from a set of training data is to trainseveral classifiers, and then to combine theirpredictions. One way to generate an ensemble ofsimple Bayesian classifiers is Bagging whichlearns a set of independent models bybootstrapping the data to get a separate trainingset and then inducing a new Naive BayesianClassifier (NBC) on this data set. This is thenrepeated a number of times. The models are thencombined by using majority voting of thepredicted classes. In this system, simple Bayesianclassifier and Bagging ensemble of Bayesianclassifiers are used to classify the class label of anunknown sample. The implemented systemevaluates the production rate of paddy on thepaddy training data set that are surveyed from theDepartment of Agriculture, Bago region (west),Pyay."}]},"item_1583103108160":{"attribute_name":"Keywords","attribute_value":[]},"item_1583103120197":{"attribute_name":"Files","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2019-07-18"}],"displaytype":"preview","filename":"49_PDFsam_PSC_final proof.pdf","filesize":[{"value":"136 Kb"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"url":"https://meral.edu.mm/record/5053/files/49_PDFsam_PSC_final proof.pdf"},"version_id":"d89fe5aa-54c0-4174-85f1-8f2a5c7e54b6"}]},"item_1583103131163":{"attribute_name":"Journal articles","attribute_value_mlt":[{"subitem_issue":"","subitem_journal_title":"Eighth Local Conference on Parallel and Soft Computing","subitem_pages":"","subitem_volume":""}]},"item_1583103147082":{"attribute_name":"Conference papers","attribute_value_mlt":[{"subitem_acronym":"","subitem_c_date":"","subitem_conference_title":"","subitem_part":"","subitem_place":"","subitem_session":"","subitem_website":""}]},"item_1583103211336":{"attribute_name":"Books/reports/chapters","attribute_value_mlt":[{"subitem_book_title":"","subitem_isbn":"","subitem_pages":"","subitem_place":"","subitem_publisher":""}]},"item_1583103233624":{"attribute_name":"Thesis/dissertations","attribute_value_mlt":[{"subitem_awarding_university":"","subitem_supervisor(s)":[{"subitem_supervisor":""}]}]},"item_1583105942107":{"attribute_name":"Authors","attribute_value_mlt":[{"subitem_authors":[{"subitem_authors_fullname":"Htaik, Ei Yamin"},{"subitem_authors_fullname":"Aye, Aye"}]}]},"item_1583108359239":{"attribute_name":"Upload type","attribute_value_mlt":[{"interim":"Publication"}]},"item_1583108428133":{"attribute_name":"Publication type","attribute_value_mlt":[{"interim":"Article"}]},"item_1583159729339":{"attribute_name":"Publication date","attribute_value":"2017-12-27"},"item_1583159847033":{"attribute_name":"Identifier","attribute_value":"http://onlineresource.ucsy.edu.mm/handle/123456789/946"},"item_title":"Prediction for Production Rate of Paddy Using Bagged Classifier Based on NBC","item_type_id":"21","owner":"1","path":["1597824273898"],"publish_date":"2019-07-18","publish_status":"0","recid":"5053","relation_version_is_last":true,"title":["Prediction for Production Rate of Paddy Using Bagged Classifier Based on NBC"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2021-12-13T04:10:01.924652+00:00"}