{"created":"2020-09-01T14:31:26.895296+00:00","id":4338,"links":{},"metadata":{"_buckets":{"deposit":"f6a523e3-d854-484e-9055-b72efaf81452"},"_deposit":{"id":"4338","owners":[],"pid":{"revision_id":0,"type":"recid","value":"4338"},"status":"published"},"_oai":{"id":"oai:meral.edu.mm:recid/4338","sets":["1582963302567:1597824273898"]},"communities":["ucsy"],"item_1583103067471":{"attribute_name":"Title","attribute_value_mlt":[{"subitem_1551255647225":"A Comparison of Naïve Bayesian and Nearest Neighbor Cosine Classifiers for Myanmar Word Sense Disambiguation","subitem_1551255648112":"en_US"}]},"item_1583103085720":{"attribute_name":"Description","attribute_value_mlt":[{"interim":"This paper presents Word SenseDisambiguation for Myanmar Language.Word Sense Disambiguation (WSD) is anintermediate but an important step in NaturalLanguage processing. WSD is defined as thetask of finding the correct sense of a word ina specific context.WSD systems can help toimprove the performance of statisticalmachine translation (MT) system. In the mostused classifiers, Nearest Neighbor Cosine(NNC) model has excellent performance, andNaïve Bayesian (NB) is preferred byresearchers for it is simple and useful. In thispaper, we choose NNC and NB as classifiersto disambiguate ambiguous Myanmar wordswith part-of-speech ‘noun’, ‘verb’ and‘adjective’. The WSD module developed herewill be used as a complement to improveMyanmar-English machine translationsystem. As an advantage, the system canimprove the accuracy of Myanmar to Englishlanguage translation. We present acomparison of two methods in ourexperiments."}]},"item_1583103108160":{"attribute_name":"Keywords","attribute_value":[]},"item_1583103120197":{"attribute_name":"Files","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2019-09-25"}],"displaytype":"preview","filename":"10062.pdf","filesize":[{"value":"755 Kb"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"url":"https://meral.edu.mm/record/4338/files/10062.pdf"},"version_id":"b5378e6d-cf4f-4794-92b8-160565f9f883"}]},"item_1583103131163":{"attribute_name":"Journal articles","attribute_value_mlt":[{"subitem_issue":"","subitem_journal_title":"Tenth International Conference On Computer Applications (ICCA 2012)","subitem_pages":"","subitem_volume":""}]},"item_1583103147082":{"attribute_name":"Conference papers","attribute_value_mlt":[{"subitem_acronym":"","subitem_c_date":"","subitem_conference_title":"","subitem_part":"","subitem_place":"","subitem_session":"","subitem_website":""}]},"item_1583103211336":{"attribute_name":"Books/reports/chapters","attribute_value_mlt":[{"subitem_book_title":"","subitem_isbn":"","subitem_pages":"","subitem_place":"","subitem_publisher":""}]},"item_1583103233624":{"attribute_name":"Thesis/dissertations","attribute_value_mlt":[{"subitem_awarding_university":"","subitem_supervisor(s)":[{"subitem_supervisor":""}]}]},"item_1583105942107":{"attribute_name":"Authors","attribute_value_mlt":[{"subitem_authors":[{"subitem_authors_fullname":"Aung, Nyein Thwet Thwet"},{"subitem_authors_fullname":"Soe, Khin Mar"},{"subitem_authors_fullname":"Thein, Ni Lar"}]}]},"item_1583108359239":{"attribute_name":"Upload type","attribute_value_mlt":[{"interim":"Publication"}]},"item_1583108428133":{"attribute_name":"Publication type","attribute_value_mlt":[{"interim":"Article"}]},"item_1583159729339":{"attribute_name":"Publication date","attribute_value":"2012-02-28"},"item_1583159847033":{"attribute_name":"Identifier","attribute_value":"http://onlineresource.ucsy.edu.mm/handle/123456789/2275"},"item_title":"A Comparison of Naïve Bayesian and Nearest Neighbor Cosine Classifiers for Myanmar Word Sense Disambiguation","item_type_id":"21","owner":"1","path":["1597824273898"],"publish_date":"2019-09-25","publish_status":"0","recid":"4338","relation_version_is_last":true,"title":["A Comparison of Naïve Bayesian and Nearest Neighbor Cosine Classifiers for Myanmar Word Sense Disambiguation"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2021-12-13T03:28:15.831560+00:00"}