{"created":"2020-08-30T13:56:28.136341+00:00","id":3117,"links":{},"metadata":{"_buckets":{"deposit":"8e653531-25ce-4ec3-944f-28a3de73ffd3"},"_deposit":{"id":"3117","owners":[],"pid":{"revision_id":0,"type":"recid","value":"3117"},"status":"published"},"_oai":{"id":"oai:meral.edu.mm:recid/3117","sets":["1582963413512:1596119372420"]},"communities":["ytu"],"item_1583103067471":{"attribute_name":"Title","attribute_value_mlt":[{"subitem_1551255647225":"Systematic Selection of Initial Centroid for K-Means Document Clustering System","subitem_1551255648112":"en"}]},"item_1583103085720":{"attribute_name":"Description","attribute_value_mlt":[{"interim":"<p>As the number of electronic documents generated<br>\nfrom worldwide source increases, it is hard to manually<br>\norganize, analyze and present these documents efficiently.<br>\nDocument clustering is one of the traditionally data mining<br>\ntechniques and an unsupervised learning paradigm. Fast and<br>\nhigh quality document clustering algorithms play an<br>\nimportant role in helping users to effectively navigate,<br>\nsummarize and organize the information. K-Means algorithm<br>\nis the most commonly used partitioned clustering algorithm<br>\nbecause it can be easily implemented and is the most efficient<br>\none in terms of execution times. However, the major problem<br>\nwith this algorithm is that it is sensitive to the selection of<br>\ninitial centroid and may converge to local optima. The<br>\nalgorithm takes the initial cluster centre arbitrarily so it does<br>\nnot always guarantee good clustering results. Different initial<br>\ncluster centres often lead to different clustering and thus<br>\nprovide unstable clustering results. To overcome this problem, <br>\nSystematic Selection of Initial Centroid for K-Means (SSIC K-<br>\nMeans) approach is proposed to improve the quality of<br>\nclustering in this paper. Unlike the traditional K-Means<br>\nclustering, the proposed SSIC K-Means method can generate<br>\nthe most compact and stable clustering results based on<br>\nmaximum distance initial centroids points instead of random<br>\ninitial centroid points. In this paper, experimental results are<br>\npresented in F-measures using 20 Newsgroup standard<br>\ndatasets. The evaluations demonstrate that the proposed<br>\nsolution outperforms the other initialization methods and can<br>\nbe applied for other various standard datasets.</p>"}]},"item_1583103108160":{"attribute_name":"Keywords","attribute_value_mlt":[{"interim":"Document clustering"},{"interim":"Data mining"},{"interim":"K-Means"},{"interim":"Initial centroid"},{"interim":"SSIC K-Means"}]},"item_1583103120197":{"attribute_name":"Files","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2019-07-04"}],"displaytype":"preview","filename":"Systematic Selection of Initial Centroid for K-Means Document Clustering System.pdf","filesize":[{"value":"251 Kb"}],"format":"application/pdf","mimetype":"application/pdf","url":{"url":"https://meral.edu.mm/record/3117/files/Systematic Selection of Initial Centroid for K-Means Document Clustering System.pdf"},"version_id":"aa0b4c3e-0c8d-4e66-925c-d5edd590e0ad"}]},"item_1583103131163":{"attribute_name":"Journal articles","attribute_value_mlt":[{"subitem_issue":"","subitem_journal_title":"","subitem_pages":"","subitem_volume":""}]},"item_1583103147082":{"attribute_name":"Conference papers","attribute_value_mlt":[{"subitem_acronym":"","subitem_c_date":"","subitem_conference_title":"","subitem_part":"","subitem_place":"","subitem_session":"","subitem_website":""}]},"item_1583103211336":{"attribute_name":"Books/reports/chapters","attribute_value_mlt":[{"subitem_book_title":"","subitem_isbn":"","subitem_pages":"","subitem_place":"","subitem_publisher":""}]},"item_1583103233624":{"attribute_name":"Thesis/dissertations","attribute_value_mlt":[{"subitem_awarding_university":"","subitem_supervisor(s)":[{"subitem_supervisor":""}]}]},"item_1583105942107":{"attribute_name":"Authors","attribute_value_mlt":[{"subitem_authors":[{"subitem_authors_fullname":"Tin Thu Zar Win"},{"subitem_authors_fullname":"Moe Moe Aye"}]}]},"item_1583108359239":{"attribute_name":"Upload type","attribute_value_mlt":[{"interim":"Publication"}]},"item_1583108428133":{"attribute_name":"Publication type","attribute_value_mlt":[{"interim":"Conference paper"}]},"item_1583159729339":{"attribute_name":"Publication date","attribute_value":"2016-12-29"},"item_1583159847033":{"attribute_name":"Identifier","attribute_value":"10.5281/zenodo.3268434"},"item_title":"Systematic Selection of Initial Centroid for K-Means Document Clustering System","item_type_id":"21","owner":"1","path":["1596119372420"],"publish_date":"2019-07-04","publish_status":"0","recid":"3117","relation_version_is_last":true,"title":["Systematic Selection of Initial Centroid for K-Means Document Clustering System"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2021-12-13T05:47:14.691127+00:00"}