{"created":"2020-08-30T13:56:20.888250+00:00","id":3116,"links":{},"metadata":{"_buckets":{"deposit":"033d64ba-46ea-44db-a6f9-1ecffc6ed024"},"_deposit":{"id":"3116","owners":[],"pid":{"revision_id":0,"type":"recid","value":"3116"},"status":"published"},"_oai":{"id":"oai:meral.edu.mm:recid/3116","sets":["1582963413512:1596119372420"]},"communities":["ytu"],"item_1583103067471":{"attribute_name":"Title","attribute_value_mlt":[{"subitem_1551255647225":"Modified K-Means for Document Clustering System","subitem_1551255648112":"en"}]},"item_1583103085720":{"attribute_name":"Description","attribute_value_mlt":[{"interim":"<p>In today’s era of World Wide Web, there is a<br>\ntremendous proliferation in the amount of digitized text<br>\ndocuments. As there is huge collection of documents on the web,<br>\nthere is a need of grouping the set of documents into clusters.<br>\nDocument clustering plays an important role in effectively<br>\nnavigating and organizing the documents. K-Means clustering<br>\nalgorithm is the most commonly document clustering algorithm<br>\nbecause it can be easily implemented and is the most efficient one<br>\nin terms of execution times. The major problem with this<br>\nalgorithm is that it is quite sensitive to selection of initial cluster<br>\ncentroids. The algorithm takes the initial cluster center arbitrarily<br>\nso it does not always promise good clustering results. If the initial<br>\ncentroids are incorrectly determined, the remaining data points<br>\nwith the same similarity scores may fall into the different clusters<br>\ninstead of the same cluster. To overcome this problem, modified<br>\nK-Means approach is proposed to improve the quality of<br>\nclustering in this paper. Unlike the traditional K-Means<br>\nclustering, the proposed K-Means method can generate the most<br>\ncompact and stable clustering results based on maximum distance<br>\ninitial centroids points instead of random initial centroid points.<br>\nMoreover, the similar data points are clustered based on<br>\nmaximum probability distribution of data points. Therefore, the<br>\nproposed method is more effective and converges to more accurate<br>\nclusters than original K-Means clustering method. In this paper,<br>\nexperimental results are presented in F-measure using 20-News<br>\nGroup standard dataset.</p>"}]},"item_1583103108160":{"attribute_name":"Keywords","attribute_value_mlt":[{"interim":"Document clustering"},{"interim":"F-measure"},{"interim":"Initial centroid"},{"interim":"K-Means"}]},"item_1583103120197":{"attribute_name":"Files","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2019-07-04"}],"displaytype":"preview","filename":"Modified K-Means for Document Clustering System-2016.pdf","filesize":[{"value":"311 Kb"}],"format":"application/pdf","mimetype":"application/pdf","url":{"url":"https://meral.edu.mm/record/3116/files/Modified K-Means for Document Clustering System-2016.pdf"},"version_id":"6026e71d-9240-4bb0-99cb-d5f012f59eab"}]},"item_1583103131163":{"attribute_name":"Journal articles","attribute_value_mlt":[{"subitem_issue":"","subitem_journal_title":"","subitem_pages":"","subitem_volume":""}]},"item_1583103147082":{"attribute_name":"Conference papers","attribute_value_mlt":[{"subitem_acronym":"","subitem_c_date":"","subitem_conference_title":"","subitem_part":"","subitem_place":"","subitem_session":"","subitem_website":""}]},"item_1583103211336":{"attribute_name":"Books/reports/chapters","attribute_value_mlt":[{"subitem_book_title":"","subitem_isbn":"","subitem_pages":"","subitem_place":"","subitem_publisher":""}]},"item_1583103233624":{"attribute_name":"Thesis/dissertations","attribute_value_mlt":[{"subitem_awarding_university":"","subitem_supervisor(s)":[{"subitem_supervisor":""}]}]},"item_1583105942107":{"attribute_name":"Authors","attribute_value_mlt":[{"subitem_authors":[{"subitem_authors_fullname":"Tin Thu Zar Win"},{"subitem_authors_fullname":"Moe Moe Aye"}]}]},"item_1583108359239":{"attribute_name":"Upload type","attribute_value_mlt":[{"interim":"Publication"}]},"item_1583108428133":{"attribute_name":"Publication type","attribute_value_mlt":[{"interim":"Conference paper"}]},"item_1583159729339":{"attribute_name":"Publication date","attribute_value":"2016-10-01"},"item_1583159847033":{"attribute_name":"Identifier","attribute_value":"10.5281/zenodo.3268423"},"item_title":"Modified K-Means for Document Clustering System","item_type_id":"21","owner":"1","path":["1596119372420"],"publish_date":"2019-07-04","publish_status":"0","recid":"3116","relation_version_is_last":true,"title":["Modified K-Means for Document Clustering System"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2021-12-13T05:47:05.798017+00:00"}