{"created":"2020-08-30T13:55:54.078138+00:00","id":3112,"links":{},"metadata":{"_buckets":{"deposit":"d00d9f87-46e1-4c4b-b7e3-6a2374a5ed63"},"_deposit":{"id":"3112","owners":[],"pid":{"revision_id":0,"type":"recid","value":"3112"},"status":"published"},"_oai":{"id":"oai:meral.edu.mm:recid/3112","sets":["1582963413512:1596119372420"]},"communities":["ytu"],"item_1583103067471":{"attribute_name":"Title","attribute_value_mlt":[{"subitem_1551255647225":"Association Rule Pattern Mining Approaches Network Anomaly Detection","subitem_1551255648112":"en"}]},"item_1583103085720":{"attribute_name":"Description","attribute_value_mlt":[{"interim":"

The research area for intrusion detection is becoming growth with new challenges of attack day by
\nday.  Intrusion  detection  system  includes  identifying  a  set  of  malicious  actions  that  compromise  the  integrity,
\nconfidentiality,  and  availability  of  information  resources.  The  major  objective  of  this  paper  is  to  apply
\nassociation rule pattern mining approaches for network intrusion detection system. In this paper, traditional FP-
\ngrowth algorithm, one of the association algorithms is modified and used to mine itemsets from large database.
\nThe required statistics from large databases are gathered into a smaller data structure (FP-tree). The itemsets
\ngenerated from FP-tree are used as profiles to check anomaly detection in the proposed system.

"}]},"item_1583103108160":{"attribute_name":"Keywords","attribute_value_mlt":[{"interim":"data mining"},{"interim":"intrusion"},{"interim":"anomaly"},{"interim":"frequent itemset"},{"interim":"algorithm"}]},"item_1583103120197":{"attribute_name":"Files","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2019-07-04"}],"displaytype":"preview","filename":"Association Rule Pattern Mining Approaches Network Anomaly Detection.pdf","filesize":[{"value":"219 Kb"}],"format":"application/pdf","mimetype":"application/pdf","url":{"url":"https://meral.edu.mm/record/3112/files/Association Rule Pattern Mining Approaches Network Anomaly Detection.pdf"},"version_id":"3cde69b6-4d93-42ae-8f99-3f9e1a1f8326"}]},"item_1583103131163":{"attribute_name":"Journal articles","attribute_value_mlt":[{"subitem_issue":"","subitem_journal_title":"","subitem_pages":"","subitem_volume":""}]},"item_1583103147082":{"attribute_name":"Conference papers","attribute_value_mlt":[{"subitem_acronym":"ICFCT'2015","subitem_c_date":"29-30 March, 2015","subitem_conference_title":"Proceedings of 2015 International Conference on Future Computational Technologies (ICFCT'2015)","subitem_part":"","subitem_place":"Singapore","subitem_session":"","subitem_website":""}]},"item_1583103211336":{"attribute_name":"Books/reports/chapters","attribute_value_mlt":[{"subitem_book_title":"","subitem_isbn":"","subitem_pages":"","subitem_place":"","subitem_publisher":""}]},"item_1583103233624":{"attribute_name":"Thesis/dissertations","attribute_value_mlt":[{"subitem_awarding_university":"","subitem_supervisor(s)":[{"subitem_supervisor":""}]}]},"item_1583105942107":{"attribute_name":"Authors","attribute_value_mlt":[{"subitem_authors":[{"subitem_authors_fullname":"Khin Moh Moh Aung"},{"subitem_authors_fullname":"Nyein Nyein Oo"}]}]},"item_1583108359239":{"attribute_name":"Upload type","attribute_value_mlt":[{"interim":"Publication"}]},"item_1583108428133":{"attribute_name":"Publication type","attribute_value_mlt":[{"interim":"Conference paper"}]},"item_1583159729339":{"attribute_name":"Publication date","attribute_value":"2015-03-30"},"item_1583159847033":{"attribute_name":"Identifier","attribute_value":"10.5281/zenodo.3268373"},"item_title":"Association Rule Pattern Mining Approaches Network Anomaly Detection","item_type_id":"21","owner":"1","path":["1596119372420"],"publish_date":"2019-07-04","publish_status":"0","recid":"3112","relation_version_is_last":true,"title":["Association Rule Pattern Mining Approaches Network Anomaly Detection"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2021-12-13T00:37:39.415307+00:00"}