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ABSTRACT

This study aims to develop a relatively new bootstrap method in which a
dataset applied to regression analysis is contaminated with outliers and to apply
it in the construction of prediction intervals for Spirulina productivity; the
productivity is measured in terms of the optical density of Spirulina. The
importance of this study lies not only in the simplicity of the proposed method
but also in the accuracy of prediction intervals for the optical density of
Spirulina in culturing ponds at Myanmar Spirulina Factory.

In analyzing a dataset contaminated with outliers in linear regression
model, a relatively new bootstrap method was proposed to find reliable
distributions of the regression estimates. Simulation results have shown that
the proposed bootstrap method outperforms the residual resampling
bootstrapping.

The residual resampling bootstrapping and proposed bootstrap method
were applied to the construction of prediction intervals for the optical density
of Spirulina. At first, 95% one-day-ahead bootétrap prediction intervals were
computed on the basis of 364 daily recorded cases on the optical density of
Spirulina and related variables of 2007 using regression model with dynamic
behavior (dynamic régression model) and the residual resampling
bootstrapping. It was found that 94.0% of actual readings of the optical density
of Spirulina fell within the computed prediction intervals. Next, using linear
regression model and the proposed bootstrap method, 95% prediction intervals
were computed based on only 226 cases left after removing the cases in which
the optical density of Spirulina in a day was less than that in the previous day.
96.4% of actual readings of the optical density of Spirulina were found to fall
within the computed prediction intervals. According to the comparative results
between the widths of respective prediction intervals obtained from both
regression models, it was concluded that prediction intervals obtained from the
linear regression model were more precise than those obtained from the

dynamic regression model and desirable to be applied in making forecasts.
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CHAPTER I
INTRODUCTION

1.1  Rationale of the Study

In Myanmar, several Spirulina based drugs and consumer goods are
manufactured by MSF which is situated in Sagaing Township, Sagaing Region
under the Ministry of Industry (1). Raw Spirulina is obtained from four natural
lakes in Sagaing Region, namely, Lake Twyn Taung in Budalin Township,
Lake Ye Kharr in Sagaing Township, Lake Taung Pyauk in Kani Township
and Lake Twyn Ma in Kani Township." Moreover, it is also obtained from 20
culturing ponds of Spirulina constructed within the compound of MSF.

A good quality of Spirulina can be produced by artificial culture
method. Spirulina strain from Lake Twyn Taung is chosen for artificial
culture. MSF media is prepared with Ayeyarwady river water and some
nutrients. The selected Spirulina strain is added to MSF media with aeration at
one over night. Then, it is transferred to a 400 liter volume photobioreactor
(Plate A1, Appendix A). When initial optical density of Spirulina of 0.3 (in
680 nanometer) reaches 1.2 (in 680 nanometer) in the photobioreactor, it is
transferred to an inoculation pond (Plate A2) with 30,000 gallons of MSF
media. After one week, 30 percent of media with Spirulina from the
inoculation pond is put in a culturing pond (Plate A3) with 120,000 gallons of
MSF media. This culturing pond is initiated at the optical density of 0.3 (in
680 nanometer), pH value of 8.5 and salinity of 3 to 4 (in part per thousand).
Spirulina in the culturing pond is harvested approximately every four to five
days, depending on the rate of Spirulina growth. About 75 percent is
harvested, and 25 percent is transferred back to the culturing pond. Harvesting
is done through the cascade filter (Plate A4) (May Yu Khaing, 2007).

The officials of MSF want to understand some explanatory variables
which have significant effect on the Spirulina productivity in culturing ponds
and to obtain forecasts of Spirulina productivity at different levels of these

explanatory variables. Therefore, an attempt has been made in this study to
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construct forecasting models and prediction intervals for Spirulina productivity
in culturing ponds at MSF.

It is interesting to note that, at MSF, measurement of the optical density
on a particular day (1) is taken to be Spirulina productivity of that day.
Therefore, in what follows, it is to be understood that Spirulina productivity on
a day is expressed in terms of the optical density of Spirulina, but not in terms
of weight or volume of Spirulina harvested, if any, on that day.

Some studies on the optical density of Spirulina have shown, as a
hypothesis, that the optical density of Spirulina on a particular day might
mainly depend on the previous day's (i) optical density of Spirulina, (ii) salinity
of water, (iii) pH value of water, (iv) air temperature, (v) light, (vi) season, and
(vii) condition that Spirulina was harvested or not. Therefore, a culturing pond
is randomly chosen out of 20 culturing ponds to take data on the above said
variables at ten o’clock everyday in 2007. In the dataset collected by MSF at
the chosen pond, the optical density of Spirulina is measured in 680 nanometer,
salinity of the water is measured in part per thousand, air temperature is
measured in centigrade and light is measured in watt per (meter)”.

Based on the dataset over a peﬁod of 365 days for the year 2007, a
dynamic regression model of the optical density of Spirulina that is supposed to
be consistent with the above said hypothesis is fitted by the method of Ordinary
Least Square (OLS). In this case, the disturbances are found to be
autocorrelated. Therefore, the model is fitted again by the method of Feasible
Generalized Least Squares (FGLS). In the model, since the disturbances are
not normally distributed, the residual resampling bootstrapping is used to
generate the distributions of the FGLS estimates and then to construct the
bootstrap prediction intervals for the optical density of Spirulina.

When the original dataset does not contain any outliers, bootstrap
distribution of the FGLS estimate is desirable. However, when the dataset is
contaminated with outliers, bootstrap distribution is a very poor estimator of
the distribution of the FGLS estimate. In such a situation, in order to obtain

reliable distribution of the regression estimate an alternative bootstrap method



[ RS e
.

which is not only computationally simple but also resistant to the effects of
outliers is proposed.

In some cases of the dataset used for fitting the dynamic regression
model, the optical density of Spirulina on day (¢+1) is lower than that on day (1)
because Spirulina was harvested on day (7). These cases are removed from the
dataset in undertaking the analysis and a linear regression model of the optical
density of Spirulina is fitted based on the rest of the original dataset. In this
case, the disturbances do not follow the normal distribution. Therefore, the
proposed bootstrap method is applied to construct the bootstrap prediction

intervals for the optical density of Spirulina.

1.2  Objectives of the Study
The objectives of the study are as follows:

(i) To develop an alternative bootstrap method, that provides reliable
bootstrap distributions of the regression estimates in linear regression
model, whenever the dataset is contaminated with outliers

(i) To illustrate an empirical computation of bootstrap confidence intervals
for the regression parameters and bootstrap prediction intervals for
Spirulina productivity in culturing ponds at MSF using (i) the residual
resampling bootétrapping in dynamic regression model, and (ii) the

proposed bootstrap method in linear regression model.

1.3  Scope and Limitation of the Study

In the dataset collected by the MSF from a randomly chosen culturing
pond, data were recorded daily only on such variables as (i) optical density of
Spirulina, (ii) salinity of water, (iii) pH value of water, (iv) air temperature, (v)
light, and (vi) season. Upon inspection of all available datasets recorded by
MSF for some years, the year 2007 was found to be the only year in which all
365 data points on the above said variables had been recorded on a daily basis.

Therefore, the recorded dataset for 2007 was chosen and collected from MSF.
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In the dataset recorded and compiled on a daily basis, it was found that
the amount of Spirulina harvested was not reported nor recorded on the day on
which other variables were observed. Therefore, the dataset lacked the amount
of Spirulina harvested on each day. Instead, the state of Spirulina harvest by a

day was available, if Spirulina had been harvested on that day.

1.4 Method of the Study

The method of the study is an analytical one, in which an alternative
bootstrap method in linear regression model is proposed. Based on daily data
on Spirulina productivity and related variables in a randomly chosen culturing
pond at MSF, an illustration of fitting a dynamic regression model and a linear
regression model for Spirulina productivity is carried out. To construct
bootstrap confidence intervals for the regression parameters and prediction
intervals for Spirulina productivity, the residual resampling bootstrapping is
used in dynamic regression model, and the proposed bootstrap method is

applied in linear regression model.

1.5 Organization of the Study
This study is divided into six chapters. Chapter I is concerned with

introduction. It presenfs rationale, objectives, scope and limitation, method,
and organization of the study. Chapter II deals with a literature review on
bootstrap methods. Chapter III presents methods concerning with linear
regression model and dynamic regression model. In the same chapter the
basics of bootstrap and some bootstrap methods involving regression models
including specific algorithms for bootstrapping in regression models are also

presented.
Chapter IV provides an alternative bootstrap method that provides

reliable bootstrap distributions of the regression estimates in linear regression
model whenever the dataset is contaminated with outliers.
Chapter V presents an algorithm for the residual resampling

bootstrapping in dynamic regression model with First-Order Autoregressive
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(AR(1)) scheme of disturbances. In the same chapter an illustration of practical
application of bootstrap methods is provided to Spirulina productivity in
culturing ponds at MSF. Based on collected data on Spirulina productivity and
related variables for the year 2007, a dynamic regression model and a linear
regression model for Spirulina productivity are fitted. Using the residual
resampling bootstrapping in dynamic regression model and the proposed
bootstrap method in linear regression model, the prediction intervals for
Spirulina productivity are computed.

Based on the results and findings in Chapter IV and Chapter V,
conclusion on performance of the proposed bootstrap method and suggestions
on prediction intervals for Spirulina productivity, together with

recommendations, are presented in Chapter VI.



CHAPTER 11
LITERATURE REVIEW ON BOOTSTRAP METHODS

In this Chapter II, a literature review on basic notions about bootstrap
methods, specifically on robust bootstrap methods in regression analysis is
presented. The purpose of this review is to present the process of development
of bootstrap methods, especially in the field of robust bootstrap methods in

regression analysis.

2.1 Basic Bootstrap Methods

Monte Carlo methods of statistical inference had already been used for
many years when Efron (1979) made the connection to standard methods of
parametric inference, drew the attention of statisticians to their potential for
nonparametric inference, and introduced the term ‘bootstrap’ This work made
strong connections with the jackknife, which had been introduced by
Quenouille and Tukey. The jackknife is an interesting nonparametric method
for estimating the bias and variance of a statistic of interest, and also for testing
the null hypothesis that the distribution of a statistic is centered at some
prespecified point. Efron reported that bootstrap method generally works more
satisfactorily than jackknife on a variety of estimation problems. The jackknife
was shown to be a particular linear approximation method for the bootstrap.
Efron proceeded the exposition by a series of examples: variance of the sample
median, error rate in a linear discriminant analysis, ratio estimation and
estimating regression parameters, among many other examples.

Bickel and Freedman (1981) were among the first to discuss the
conditions under which the bootstrap is consistent. In a latter paper by Efron
and Gong (1983), they could provide a general review of the bootstrap method.
The essential idea for bootstrap method is to offer a computer-intensive method
of generating reasonable and reliable probability distributions in circumstances

in which precise mathematical reasoning is intractable. Athreya (1987) showed
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that the bootstrap can fail for long-tailed distributions. Shao and Tu (1995)
gave an extensive theoretical overview of the bootstrap.

Bootstrap confidence intervals were introduced in the original bootstrap
paper by Efron (1979); bias adjustment and studentizing were discussed by
Efron (1981). Hall (1986) analyzed the effect of discreteness on confidence
intervals. The adjusted percentile method was developed by Efron (1987).
Efron (1987) investigated construction of better bootstrap confidence intervals
for a single parameter in a multiparameter family. According to Efron, the
standard approximate intervals based on maximum likelihood theory can be
quite misleading. In practice, tricks based on transformation, bias correction
and so forth, are often used to improve their accuracy. The bootstrap
confidence intervals proposed by Efron automatically incorporate such tricks
without requiring the situations to think them through for each new application,
at the price of a considerable increase in computational effort. The new
intervals by Efron were found to incorporate an improvement over previously
suggested classical methods. In addition to parameteric families, Efron
developed better bootstrap intervals for nonparametric situations. Hall (1988)
strongly advocated the use of studentized bootstrap statistics for confidence
intervals and significance tests. An earlier review of bootstrap confidence
intervals, with discﬁssion, was given by DiCiccio and Romano (1988). Geisser

(1993) surveyed several approaches to calculating prediction intervals.

2.2  Bootstrap Methods in Regression Analysis

The use of bootstrap methods in regression was initiated by Efron
(1979). Important early work on the theory of resampling for linear regression
was due to Freedman (1981). Freedman (1981) showed that with independent
and identically distributed disturbances, the bootstrap approximation to the
distribution of the OLS estimator is valid. That is, as both the sample size n
and the number of bootstrap samples B increase, the bootstrap distribution

converges to the true distribution of the OLS estimator.
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Freedman and Peters (1984) applied the bootstrap method to a
seemingly unrelated regression model of the demand for energy by industry.
The model was estimated by the method of Generalized Least Squares (GLS).
The two altermative ways to obtain standard errors for the GLS parameter
estimates were the conventional asymptotic formulas and the bootstrap method.
Monte Carlo simulations were also used by Freedman and Peters to compare
the performance, in a finite-size sample of these two alternatives. The
conventional asymptotic estimates were found to be far too optimistic, though
the bootstrapped standard errors were only slightly optimistic. Based on their
findings, Freeman and Peters concluded that the bootstrap method provides
much more realistic standard errors than the conventional asymptotic theory.

In fact, the bootstrap relies on resampling from an independent and
identical distribution. Time series data, therefore, present obvious problems as
the result of dependence error terms in the model. The bootstrap is
straightforward in the linear model with an Autoregressive Moving Average
(ARMA) error structure and resampling the underlying white noise error.
Freedman (1984) first introduced bootstrap method for a dynamic linear
simultaneous equations regression model estimated by the method of two-stage
least squares in the context of linear models. This method assumes the
underlying error is independently and identically distributed. For general
dependent data without ARMA specification, for example, nonstationary data,
the moving blocks bootstrap method can be used satisfactorily.

Use of the bootstrap for calculating prediction intervals for regression
model -was discussed by Stine (1985).

Bemard and Veall (1987) employed the bootstrapping technique to
estimate the probability distribution of future electricity demand for Hydro
Quebec of Canada. Their application followed the regression approach of
Freedman and Peters (1984) but also allowed for serially correlated
disturbances and uncertainty in the independent variable forecasts. The article
of Bernard and Veall (1987) illustrated the case of bootstrapping to estimate the
probability distribution of future peak demand for Hydro Quebec, conditional
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on current information. The results illustrated that reasonable estimates of
demand uncertainty are typically very large and hence such measures should
likely play an important role in the planning process. If anything, these large
uncertainty estimates from the nonparametric bootstrap are likely to be
conservative because parametric bootstrap estimates are even larger.
Moreover, they employed deterministic time trends as opposed to more volatile
autoregressive integrated moving average processes, and it has been assumed
throughout that there will be no structural shifts before the target period of the
forecast.

Prescott and Stengos (1987) made an effort to demonstrate how the
distribution-free method of bootstrapping can be applied to the construction of
confidence intervals for forecasts generated by a dynamic econometric model.
In their paper, because the exogenous variables must be forecast, the forecast of
the dependent variable were taken to be the functions of stochastic forecast-
period exogenous variables. Using a simple autoregressive model of U.S. pork
supply, they illustrated how the bootstrap method can account for the sources
of randomness in forecast errors, including the errors due to the use of
estimated structural parameters, the lack of independence of forecasts produced
by an autoregressive model, and the stochastic nature of forecast-period
exogenous variables. Aécording to Prescott and Stengos, the flexibility of the
bootstrapping approach to constructing forecast intervals and the lack of robust
alternatives were strong motivations for further research and software
development in the research area of bootstrap methods.

Hall (1989) showed that bootstrap methods can provide unusually
accurate confidence intervals in regression problems. Olshen er al. (1989)
described an interesting application to a complicated prediction problem in the
context of regression analysis.

Kim (2005) proposed an improved bootstrap procedure when statistical
inference is conducted for the regression model with AR(1) disturbances. It is
distinct from the past studies on the following points. First, bias-correction is

conducted in two stages of the bootstrap. That is, pseudo-datasets of the
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bootstrap are generated using a bias-corrected estimator for the AR(l)
coefficient, and then bias-correction is again given to the AR(1) coefficient
estimate obtained from the pseudo-datasets. For this purpose, the bias-
corrected estimators based on the bootstrap and jackknife methods are used.
Secondly, the FGLS estimates for regression coefficients are re-calculated
using the bias-corrected estimate for the AR(1) coefficient, again in two stages
of the bootstrap. As a result, bias-correction is implemented to estimation of
the regression coefficients as well as to the AR(1) coefficient. The third point
is related to the way in which bootstrap inference is carried out.

In his article, Kim (2005) reported that the bias-corrected bootstrap
substantially improves size distortions of the statistical test in the regression
model with autocorrelated errors. The bias-corrected bootstrap based on the
test statistic approach was found to pfovide superior size properties to that
based on the confidence region approach, especially when the sample size is
small. Both the bootstrap and jackknife were found to be effective for bias-
correction, but the results suggested that bootstrap be preferred as a means of

bias-correction when the sample size is more than moderately large.

2.3 Robust Bootstrap Methods in Regression Analysis

De Angclis,‘ Hall and Young (1993) gave a detailed theoretical analysis
of residual resampling bootstrapping in L, estimation.

Salibian-Barrera and Zamar (2002) proposed an alternative bootstrap
method, which is called fast bootstrap, to estimate the distribution and standard
error of robust regression MM-estimates calculated with an initial S-estimate.
Their method is to bootstrap a re-weighted representation of the estimate. For
each bootstrap sample, only a weighted average to recalculate the scale
estimate as well as a weighted least squares estimate have to be calculated to
obtain the bootstrap regression estimate.

Willems and Aelst (2004) proposed a simple approximating bootstrap
method for Least Trimmed Squares (LTS), which is called fast and robust

bootstrap for LTS. Their method is to draw bootstrap samples, but instead of
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recalculating the LTS estimates in each bootstrap sample; an approximation is
computed using information gathered from the LTS solution of the original
dataset.

Midi et al. (2009) proposed a bootstrap algorithm based on LTS
estimator. This method used the residual bootstrap with LTS estimator, instead
of OLS estimator, for the original sample as well as bootstrap samples. In the
bootstrap algorithm of Midi et al. (2009), any bootstrap sample, which has
percentage of outlying residuals larger than the breakdown point which is equal

to [{(n-p)/2+1}/n], is omitted and is replaced with a new sample.
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CHAPTER III
STATISTICAL METHODS USED IN BOOTSTRAPPING

In the preceding Chapter I, a review of literature on bootstrap methods
was presented. In this Chapter III, statistical methods applied as the major
tools of bootstrapping in this study are presented. In the earlier sections, a brief
description of the linear regression model, Jarque-Bera test for testing the
normality of disturbances and White test for testing heteroscedasticity of
disturbances, robust regression, statistical methods for dynamic regression
model with AR(1) scheme of disturbances, and one-step-ahead forecasting are
provided. In the later sections, the basics of bootstrap and some bootstrap
methods involving regression models are presented. Moreover, two algorithms
for bootstrapping in dynamic regression model and linear regression model

with AR(1) disturbances are also presented.

3.1 Linear Regression Model

One of the most important, frequent and widely used types of statistical
analysis in practice is regression analysis, in which one studies the effects of
explanatory variables or covariates on a response variable of interest. The
major objective of traditional regression analysis is to estimate and/or predict
the mean or average value of the response variable on the basis of the known or
fixed values of the explanatory variables.

The most commonly used regression model is a linear regression model
that is considered as

YY=p+BX,+..* B, X +u, fori=l,...,n, (3.1)

where £, 4,,..., B, are the unknown parameters of interest, Y, stands for the
response variable, and X,.., X are the explanatory variables. Classical

theory assumes the disturbance term u, to have a normal distribution with

mean O and constant variance o .
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The OLS regression method minimizes the sum of squares of the
residuals e, where e, =Y,—(ﬁo+ﬁ,X,,+...+ﬂ.pX,p). Formally, this can be

written as
Minimize i 5
- - e .
f - -l

The basic idea is to make the sum of all the squared residuals as small as

(32}

possible.
In a more convenient vector form, the model in Equation (3.1) can be
expressed as
Y=x; B8 +u,, (3.3)
with x; =(1,X,,,...,X,). The combined matrix representation for all response
y'=(,...1,) is
y=XB+u, (3.4)
with X' =(x,y..,X,) and &' = (u;,...,u,).
The OLS estimates of g for Equation (3.4) based on observed response
vector y are
B =(XX)"XYy,
and corresponding fitted values are
Y = Hy,
where H = X(X'X)' X' is the matrix, whose diagonal elements h, —
denoted by 4, for simplicity. The residuals are
e=(I-H)y. - (3.5)
Under homoscedasticity of disturbances the standard formula for the
estimated variance of 3 is-
V(B)~s (XX)",

’

with s? equal to the residual mean square ——— e'e.
(n—p-1)
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3.2 Testing for Normality and Heteroscedasticity of Disturbances

If Equation (3.1) holds with homoscedastic random disturbances u, and

if those random disturbances are normally distributed, or if the dataset is large,
then standard distributional results will be adequate for drawing inferences with
the least squares estimates. If non-normality or heteroscedasticity appears to be
present, then robust regression estimates may be considered in place of the
least squares estimates. In this section, Jarque-Bera test for testing the
normality of disturbances and White test for testing heteroscedasticity of

disturbances are briefly explained.

3.2.1 Jarque-Bera Test of Normality

Several tests of normality are discussed in the literature. One of the
widely used tests of normality is the Jarque-Bera (JB) test. It is a large-sample
test. It is based on the OLS residuals. This test first computes the skewness

and kurtosis measures of the OLS residuals and uses the following test statistic;

2 2
JB=n|:S g =0 ] (3.6)

6 24

where S represents skewness and X represents kurtosis.

Under the null hypothesis that the disturbances are normally distributed,
Jarque and Bera (1987) showed that asymptotically the JB statistic given in
Equation (3.6) follows the chi-square distribution with 2 degrees of freedom.

If the p-value of the computed chi-square statistic in an application is
sufficiently low, one can reject the null hypothesis that the disturbances are
normally distributed. But if the p-value is reasonably high, one does not reject

the null hypothesis of normality assumption.

3.2.2 White’s General Heteroscedasticity Test
The general test of heteroscedasticity proposed by White (1980) is easy
to apply. As an illustration of the basic idea, consider the linear regression

model in Equation (3.1) with p = 2:
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Y =0, +BX,+B,X,+u,. (3.7)

The White test proceeds as follows:

Step 1.

Step 2.

Step 3.

Given the data, fit Equation (3.7) by OLS method and obtain the

residuals, #,.

Run the following (auxiliary) regression:
B =a,+a X, +a,X,+a X +a X, +a X, X, +V,.

That is, the squared residuals from the original regression are
regressed on the original X variables or regressors, their squared
values, and the cross product(s) of the regressors. Obtain the R*
from this (auxiliary) regression.

Under the null hypothesis that there is no heteroscedasticity, it can be
shown that sample size (1) times the R? obtained from the auxiliary
regression asymptotically follows the chi-square distribution with

degrees of freedom equal to the number of regressors (excluding the

constant term) in the auxiliary regression. That is,
nRZ . 2 ,
myz‘# |
where df stands for degrees of freedom. In this example, there are 5

degrees of freedom since there are 5 regressors in the auxiliary

regression. If, in an application, the p-value of the computed test
statistic nR? is sufficiently low, the conclusion is that there is

heteroscedasticity.

The test uses many degrees of freedom for models with just a moderate

number of regressors. It is possible to obtain a test that is easier to apply than

the White test and more conserving on degrees of freedom. The fitted values

are defined, for each observation i, by

y, = ,Bo -rﬁ,)(,l +...+ﬁqu,.

These y,s are just linear functions of the regressors. If the fited values are

squared, a particular function of all the squares and cross products of the
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regressors is obtained. This suggests testing for heteroscedasticity by fitting

the equation
ul =6y +8,9, + 8,9 +v,. (3.8)

The nR*? statistic for the null hypothesis that there is no heteroscedasticity can
be used. The test from Equation (3.8) can be viewed as a special case of the

White test.

A Special Case of the White Test for Heteroscedasticity
Step 1.  Fit the Equation (3.1) by OLS method. Obtain OLS residuals #, and

the fitted values ,. Compute the squared OLS residuals 4’ and the

squared fitted values »?.

Step 2. Run the regression in Equation (3.8). Keep the value of R*® from

this regression.
Step 3. From the test statistic nR*, compute the p-value using the /3

distribution.

3.3 Robust Regression

Use of least squares regression estimates is preferred when errors are
near-normal in distribution and homoscedastic. However, the estimates are
very sensitive to outliers; those are cases which deviate strongly from the
general relationship. Any regression analysis should, therefore, include
appropriate inspection of diagnostics based on residuals to detect outliers.
Depending on the general pattern of residuals, one may feel confident in fitting
by least squares, or a more robust regression method, that can resist several
outliers, may be chosen to be safe.

A number of robust regression methods that provide stable results in the
presence of outliers have been investigated by many researchers in the
regression literature. In the case of statistical application of robust regression,
the methods most commonly used are found to be M estimation, high

breakdown value estimation, and combinations of these two methods.



« 17 «

Specifically, four such methods are M estimation, LTS estimation, S
estimation, and MM estimation.

In this section, the breakdown value, which is a rough but useful
measure of robustness of an estimator, and the LTS estimation, which is the

one of the preferred robust regression methods, are briefly explained.

3.3.1 The Breakdown Value

Consider a dataset Z ={(x,,...,x,,»,);i=1..,n} and a regression
estimator 7. Applying T to Z yields a vector (ﬁo,...,ﬁp) of regression
coefficients. Now consider all possible contaminated data sets Z' obtained by
replacing any m of the original observations by arbitrary values of X,,...,X .Y .

This yields the maximum bias
: Max,
Maxbias(m;T,Z) = - ITz"-1(2)|, (3.9)

where |..]is the Euclidean norm. If m outliers can have an arbitrarily large

effect on 7, it follows that Maxbias(m;T,Z)=c0; hence T(Z') becomes
useless. Therefore the breakdown value of the estimator 7 at the dataset Z is
defined as |

£.(T,Z) = Min{m/ n: Maxbias(m;T,Z) = «}. (3.10)
In other words, it is the smallest fraction of contamination that can cause the
regression estimator 7 to run away arbitrarily far from 7(Z). For many

estimators &, (T,Z) varies only slightly with Z and n, so that its limiting value

(for n— «) is denoted by & (7).

For OLS, one outlier may be sufficient to destroy 7. Its breakdown

value is thus 8;(T,Z)=l, hence £ (T) = 0. The following concerns
n

estimators 7 with & (7)>0, which will be called positive-breakdown

estimators. Estimator T with £ (T) = 50% will be called high-breakdown

estimators (Rousseeuw, 2006).
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3.3.2 Least Trimmed Squares

A number of robust regression methods that provide resistant results in
the presence of outliers have been investigated by many researchers in the
regression literature. For datasets with possibly multiple outliers, diagnosis is
aided by initial use of fitted method that is highly resistant to the effects of

outliers. One preferred resistant method is the LTS estimation, given by

s,

where (e?), <...<(e’), are the ordered squared residuals and 4 is defined in the

3n+ p+1

range §+1 <h< Equation. (3.11) resembles method of OLS but

does not count the largest squared residuals, thereby allowing the LTS fit to
steer clear of outliers.
The LTS method is a high breakdown method. For the default setting

h = g , & =50%, whereas for larger h, £ = ), :
n

Residuals from LTS fit should clearly identify outliers. The fit itself is
not very efficient, and should best be thought of as an initial step in a more

efficient analysis (Davison and Hinkley, 1997).

3.4 Statistical Methods Used in Dynamic Regression Model with AR(1)

Disturbances

In this section, some salient statistical methods used in dynamic
regression model with AR(1) scheme of disturbances are presented. In
Subsection 3.4.1, dynamic regression model with AR(l) disturbances is
presented for the purpose of familiarity with the notations to be used
throughout the study. Detection of autocorrelation in the dynamic regression
model, as a test of first-order autocorrelation (Durbin h-test) and a general test
of autocorrelation (Breusch-Godfrey test) are briefly explained in Subsection

3.4.2. In Subsection 3.4.3, a remedial measure for autocorrelation (method of
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GLS) 1is presented. In Subsection 3.4.4, estimation of (first-order
autocorrelation in the model is dealt with, following the Cochrane-Orcutt

iterative method which has become quite popular in practice.

3.4.1 Dynamic Regression Model with AR(1) Disturbances

In regression analysis involving time series data, if the model includes
one or more lagged values of the dependent variable among its explanatory
variables, it is called a dynamic model (Gujarati and Sangeetha, 2007). The
common form of a dynamic regression model is described as

Y =8,+8X,+B3Y_ +u, (3.12)
where f,,5,..... f, are the unknown parameters of interest, ¥, stands for the
dependent variable at time t, X, is the explanatory variables at time t, Y, is the

one lagged dependent variable, and u, is the disturbance term at time t. The

OLS method may not be directly applicable to such models. The reason is
probably the existence of autocorrelation in the disturbances. Since u, are

unobservable, the nature of autocorrelation is often a matter of speculation. In

practice, it is usually assumed that the u, follows the AR(1) scheme, namely,

u, =pu,, +1,, (3.13)
where |p| <1 and where the 7, follows the classical OLS assumptions of zero
expected value, constant variance, and nonautocorrelation (Gujarati, 1995).

If an explanatory variable in a regression model is correlated with the
stochastic disturbance term, OLS estimators of such model are not only biased

but also inconsistent; that is, even if the sample size is increased indefinitely,

the estimators do not approximate their true population values satisfactorily.

3.4.2 Detection of Autocorrelation

In this Subsection 3.4.2, two tests for autocorrelation in the dynamic

regression model: (i) Durbin 4 test and (ii) Breusch-Godfrey test are briefly

explained.
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Durbin h Test of First-Order Autocorrelation
Durbin (1970) has proposed a large sample test of first-order
autocorrelation when some of the regressors are lagged dependent variables.

This statistic, called the A-statistic, is as follows:

(3.14)

h=ﬁJ =,
1 - nvar(f,)]
where n = sample size, var(ﬁz) = estimated variance of the coefficient of the
lagged Y _, and p = estimate of the first-order autocorrelation p.

For large sample sizes, Durbin has shown that if o = 0, the A-statistic
follows the standardized normal distribution. p can also be approximated

from the estimated Durbin-Watson d statistic as follows:

where d = =2 . Therefore, Equation (3.14) can be written as

n
2
uf

=2

1 n
h=(-—=d — {3.15
( 2 ,)Jl—n[var(ﬂz)] )

The steps involved in the application of the A-statistic are as follows:

Step 1. Fit Equation (3.12) by OLS method and note w.tr(ﬁ"2 i B
Step 2. Compute A-statistic.
Step 3. Assuming n is large, A is asymptotically normally distributed with
zero mean and unit variance. Therefore, the decision rule is
(a) if h > 1.96, reject the null hypothesis that there is no positive
first-order autocorrelation, and
(b) if h < -1.96, reject the null hypothesis that there is no negative
first-order autocorrelation, but
(c) if h lies between -1.96 and 1.96, do not reject the null hypothesis

that there is no first-order autocorrelation.
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Breusch - Godfrey Test of Higher-Order Autocorrelation

Breusch (1978) and Godfrey (1978) have developed a test of
autocorrelation that is general in the sense that it allows for (i) nonstochastic
regressors, such as the lagged values of the regressand; (ii) higher-order
autoregressive scheme and (iii) simple or higher-order moving averages of

white noise error terms. Assume that the disturbance term u, is generated by
the p“-order autoregressive, AR(p), scheme as follows:

U = PU_+ Pyl Fet PU_, +V,, (3.16)
where v, is a random disturbance term with zero mean and constant variance.
The null hypothesis H, to be tested is that H,:p, = p, =...= p, =0, that is,

there is no autocorrelation of any order. The Breusch - Godfrey (BG) test
involves the following steps:
Step 1.  Fit Equation (3.12) by OLS method and obtain the residuals, #,.

Step 2. Run the following regression:

U =0+ 0%+ 0+ O, + Pl Fout Pl +W,, (3.17)
where w, is the error term at time t. Obtain the R* value from this

auxiliary regression.

Step 3.  If the sample size n is large, Breusch and Godfrey have shown that
(n-p)R* ~ x,. (3.18)
asy

That is, asymptotically, (n-p) times the R* value obtained from the
auxiliary regression of Equation (3.17) follows the chi-square
distribution with p degrees of freedom. If in an application, the p-
value of the computed test statistic (n— p)R® happens to be
sufficiently low, the null hypothesis is rejected, in which case at least
one p in Equation (3.16) is significantly different from zero.

If in Equation (3.16) p = 1, meaning first-order autoregression, then the

BG test is known as Durbin’s M test.
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3.4.3 Remedial Measure for Autocorrelation

Since the OLS estimators are inefficient in the  presence of
autocorrelation, it is essential to seek a remedial measure. If the validity of
Equation (3.13) is assumed and if the first-order autocorrelation is known, the
problem of autocorrelation can be easily solved by transforming the data into a
generalized difference equation. From Equations (3.12) and (3.13), the original
variables in Equation (3.12) are transformed as

04 —-le_l) - ﬂo(l"'P)'f'ﬂ,(X, —pXr-l)+182(Yr-l -pYr,)+n, (3.19)

where p is the first-order autocorrelation. Equation (3.19) can be expressed as

Y =p + X +BY +n,, (3.20)
where YT =(Y,-pY.,), X' =(X,-pX_), Y,=(,-pY, and
Bs = B,(1-p).

If p is known, since 7, satisfies all OLS assumptions, one can proceed

to apply OLS to the transformed variables Y™ and X', and obtain estimators
with all the optimum properties, namely, best linear unbiased estimator of the
respective parameters. In effect, running Equation (3.20) is tantamount to
using GLS. Regression in Equation (3.19) is known as the generalized, or
quasi, difference equation. In this differencing procedure one observation is
lost because the first observation has no antecedent. To avoid this loss of one

observation, the first observation on Y and X is transformed as follows:

yJ(1-p*) and xn/(l—pz). This transformation is known as the Prais-

Winsten transformation.

3.4.4 Estimation of First-Order Autocorrelation

In practice, first-order autocorrelation, p, is rarely known. Therefore,

an alternative method needs to be devised. Among several methods of

estimating p, the Cochrane-Orcutt iterative method has become quite popular

in practice (Gujarati and Sangeetha, 2007). It uses the estimated disturbances
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4, to obtain information about the unknown p. Cochrane and Orcutt (1949)

recommended the following steps to estimate p:

Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Fit Equation (3.12) by OLS method and obtain the residuals, z,.
Using these residuals, run the following regression to obtain p.

u =pu,_ +v,, (3.21)
where v, is the error term at time t.

Using p obtained from Equation (3.21), run the following

generalized difference equation

(Y, -i)x-l)zﬂo(l_[’)'*'ﬂl(Xc -ﬁXr-l)'i-ﬁZ(K-l _ﬁ}’:-z)'*'(u: —ﬁu,_,_).
or

Y, =P +Bx + Byl &, (3.22)
where y/ =(Y-pY)), x =(X,-pX.), y.=0.,-p¥..).
Bi =pB,(1-p) and € =(u, — pu,_,).
Substitute the values of BOT = ﬁo( 1-5), ﬁl, and ,5‘2 obtained from
Equation (3.22) into the original regression Equation (3.12) and
obtain the new residuals, #, , as

i =Y, - B,-BX,- B (3.23)
Now fit this regression

4 =pi, +w,,

where w, is the error term at time t. The above equation is similar to

Equation (3.21). Thus, ;:7 is the second-round estimate of p.

Then, continue with the third-round estimate, and so on. This procedure

is to stop carrying out iterations when the successive estimates of o differ by a

very small amount by less than 0.01 or 0.005.

If an estimate of the unknown p is obtained in the first step and that

estimate is used to transform the variables for estimating the generalized

difference equation in the second step, all these methods of estimation

culminating in two steps are known in the literature as FGLS.
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3.5 One-Step-Ahead Forecasting
Suppose that at time ¢ one wants to forecast the outcome of Y at time

t+1,or y,,. The time period in practice could correspond to a year, a quarter,
a month, a week, or even a day. Let /, denote information that can be
observed at time t. This information set includes y,, earlier values of Y, and

often other variables dated at time ¢ or earlier. This information can be
combined in innumerable ways in order to make one-step-ahead forecast of

Y

t+l *

There is one best way, provided the loss associated with forecast error is

specified. Let f, denote the forecast of ¥, , made at time t. The f, is called a

one-step-ahead forecast. The forecast erroris e, , =Y, — f,, which is observed

I

once the outcome on Y, is observed. The most common measure of loss is the

same one that leads to OLS estimation of a linear regression model: the squared

2
t+1 "

error, e But e, , is unknown at time ¢. Therefore, any useful criterion for

choosing f, must be based on what is known at time 7. It is natural to choose

the forecast to minimize the expected squared forecast error, given information

set 1:

(|1 = E[x., - £ (3.24)
A basic fact from probability is that E(Y,_|/,) minimizes

Equation(3.24). In other words, if the expected squared forecast error given
information at time ¢ desires to be minimized, the forecast should be the

expected value of ¥, | given the variables that are known at time ¢ (Wooldridge,

2009).

Types of Regression Models Used for Forecasting

There are many regression models that can be used to forecast future
values of a time series. One of the regression models for time series data is the
static model. The static model, which contains a single explanatory variable, is

given by
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Y =4+BX +u, (3.25)
where [, and g, are the parameters, Y, is the dependent variable at time t, X,

4

is the explanatory variables at time t, and u, is the disturbance term at time t.
Suppose that the parameters S, and g, are known. If X,  is known at time ¢,
then the forecast of ¥, at time ¢

E(YMII:) =B+ B X,
where /, comtains x,_,,y,,x,,¥,,-»¥,X, .- The kind of forecast is usually called

a conditional forecast because it is conditional on knowing the value of X at
time 7+ /.
Unfortunately, at any time, the values of the explanatory variables in

future time periods are rarely known. If X, is not known at time ¢, then

EQX[) =B+ BEX, ).
This means that in order to forecast Y, , X, , must be forecast first, based on
the same information set. This is usually called an unconditional forecast
because knowledge of X,  at time ¢ is not assumed.

For forecasting, besides the static-model in Equation (3.25) a model that
depends only on lagged values of Y and X can also be used. This saves the

extra step of having a forecast for a right-hand side variable before forecasting

Y. The kind of model is

Y=6+a)f_ +yX, +u, (3.26)
where J,,a, and y, are the parameters, Y, is the dependent variable at time t,
Y, is the one lagged dependent variable, X, is the explanatory variables at
time t-1, and u, is the disturbance term at time t. /, contains Y and X dated at
time ¢-/ and earlier. Now, the forecast of Y, , at time 7 is

f=6+aY +yX,,
if the parameters are known, one can just plug in the values of Y, and X, .

4

Especially, for forecasting one step ahead, such model can be very useful.
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One-Step-Ahead Prediction Interval

Obtaining a forecast one period after the sample ends is relatively
straightforward using models such as Equation (3.26). As usual, let n be the
sample size. Assuming that the parameters have been estimated by OLS, the

forecast of ¥, ,, denoted by y, ,, is

i+]?

5’;.1 =5o +C}1Y: +?1X:' (3'27)
The forecast error which we will not know until time ¢+/ is
elvl = },:vl —ylvl "

The forecast p,, of Y, is usually called a point forecast. A forecast

interval can also be obtained. A forecast interval is essentially the same as a
prediction interval. Though the model in Equation (3.27) contains lagged

dependent variables, if the disturbance term wu, given [, is normally

distributed with zero mean and constant variance, the (1-2«a) prediction
interval is given by
)“}“‘ —Ia,n-p-l Sl-l’ 5’,.| +[a.n-p-l s;.]: (328)

where s, ,, the standard error of forecast error, is given as

s = +sGF]”. (3.29)

In Equation (3.29), s’ is the residual mean square error for the linear

regression and s(y,.,) is the standard error of the forecast which equals to the
(s? x"(XX)"x,)"? where x, =(L,y,,x,).

However, if the disturbance term «,, given information set /,_;, is not

normally distributed, the prediction interval can be constructed using the

method of bootstrap.

3.6 The Basics of Bootstrap

If the disturbance term u,, which is entering the linear regression model

of Equation (3.1), is normally distributed, the OLS estimators are not only the
best unbiased estimators but also follow normal probability distributions.

Furthermore, forecasts, based on the OLS fit and which are conditional on
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fixed explanatory variables, are also normally distributed, even in small
samples.

If the disturbances are not normally distributed but can only be assumed
to be independent and identically distributed random disturbances, then the
finite sample distributions of the OLS estimators and forecasts cannot be
explicitly determined, and consequently the application of the methods and
procedures developed under normality assumption for statistical inference
would not be valid. In such cases, the empirical distributions of the OLS
estimators and forecasts can be generated by one of the resampling methods,
which is called bootstrap method.

The method of the bootstrap was first developed by Efron (1979). The
key point made by Efron is that the observed data set is a random sample of
size n drawn from the actual probability distribution which is generating the
data. In a sense, the empirical distribution based on the data is the best
estimate of the actual distribution from which the data have come. As such, the
Empirical Distribution Function (EDF) is defined to be the discrete distribution
that places a probability of //n on each of the observed values. A random
sample of same size n is drawn with replacement from the empirical
distribution. The sample so obtained is called the bootstrap sample and the
statistic of interest is calculated from the simulated bootstrap sample. From
replications of the bootstrap sample simulation, the empirical distribﬁtion of the
statistic of interest is obtained (Enders, 2004). Based on this distribution, the
properties of the statistic are then estimated.

A classic illustration of the power of the bootstrap is the computation of
the standard error of the sample median. A sample of n independent
observations is drawn from the unknown distribution. A consistent estimate of
standard error of the sample median could be calculated if the probability
distribution generating the samples was known. Usually, it is not known.
Efron’s suggestion was to use the sample data to generate an estimate of the
distribution. The bootstrap method for calculating the standard error of the

sample median would be (i) to create a bootstrap sample of size n by drawing
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randomly and with replacement from the original sample, (ii) to calculate the
median (8°*) for this bootstrap sample, and (iii) to repeat (i) and (ii) a large
number of times, say, B. The probability distribution of the estimated median
can then be approximated using the empirical distribution of the simulated
medians of B bootstrap samples. The bootstrap standard error of the sample
median can be calculated as

se'(8" )= ﬁi(é’b -9—)2 ,

b=1

8 ~e
where 8’ =—l-26 b
B
In this section the basic bootstrap methods which are applicable to a
single, homogeneous sample of data are presented. The sample values, denoted

by »y,...y,, are thought of as the outcomes of independent and identically
distributed random variables Y,,...,Y, whose Probability Density Function

(PDF) and Cumulative Distribution Function (CDF) are denoted by f and F,

respectively. The sample is to be used to make inferences about a population

~

characteristic, generically denoted by &, using a statistic . It is assumed that
the choice of @ has been made, that is, an estimate for 8. The major attention

is focused on quesiions concerning the probability distribution of 9 such as its
bias, its standard error, its quantiles or confidence limits for 6.

There are two situations to distinguish, the parametric and the
nonparametric. When there is a particular probability model, with adjustable
constants or parameters { that fully determine the PDF, such a model is called
parametric model, and statistical methods based on this model are parametric
methods. In this case the parameter of interest € is a component of or function

of . When no such probability model is used, the statistical analysis is

nonparametric, and it uses only the fact that the random variables Y,s are

independent and identically distributed.
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Parametric Simulation

-~

When theoretical properties of & might be hard to determine with
sufficient accuracy, the alternative of repeated simulation of datasets from a
fitted parametric model is more practical.

Suppose that a particular parametric model for the distribution of the

data y,,...,y, is known. The CDF is denoted by F,(y). When parametric

function  is estimated by i, its substitution in the model gives the fitted

model, with CDF F( y)=F;(y). The F can be used to calculate properties of

-~

8. The symbol Y is used to denote the random variable which is distributed

according to the fitted model F, and the superscript ) will be used with
expectation (£), variance (var) and so forth when these moments are calculated

according to the fitted distribution.

Moment Estimates

Suppose that theoretical calculation with the fitted model is too
complex, approximations may not be satisfactorily available, or they may be
untrustworthy, perhaps because the sample size is small (Davison and Hinkley,

1997). The alternative is to estimate the properties required, from simulated

datasets. Such a dataset is denoted by Y ,...,Y, where ¥, are independently

sampled from the fitted distribution F. When the statistic of interest & is
calculated from a simulated dataset, it is denoted by 8°. From B replications of
the data, simulation estimates 8"',...,6"% are obtained. Properties of 6 -6 are
then estimated from 8,...,6°%. For example, the estimator of the bias of 9 in
estimating parameter & is defined as

bias'(6')=E'(8")-6,
and this in turn is estimated by

-~

=0'-4.

D)

L] Ne 1 g Ae
bias"(8")==>.60" -
Bb-l
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The corresponding estimator of the variance of & is given by

var (9 )——Z(Ob

b-l

with similar estimators for other moments.

Distribution and Quantile Estimates
If, as is often the case, one is approximating the distribution of 6-6 by
that of 8" — @, then cumulative probabilities are estimated by the EDF of the
simulated values 6° — 6. More formally, if CDFof 6 -6, denoted by G(w), is
G(u)=Pr(6-0<u),
then the simulation estimate of G(u) is

&y = O ;9511}

where # represents the number.

) (3.30)

Quantiles of the distribution of §-6 are often estimated. These are

approximated using ordered values of 6" -6. The p quantile of 8-6 is

-~

estimated by the (B+1)p" ordered value of @' -6, that is é{wmp) -8. Itis
assumed that B is chosen so that (B+/)p is an integer.

The simulation approximation estimates G* and the corresponding
quantiles therefrom are in principle better than results obtained by normal

approximation, provided that B is large enough, because they avoid the

supposition that the distribution of 6' -8 has a particular form (Davison and
Hinkley, 1997).

Nonparametric Simulation

Suppose that one is not considering a particular parametric model but

that it is sensible to assume that Y,...Y, are independent and identically

distributed according to an unknown distribution function F. The
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corresponding estimate of the unknown CDF F is the EDF F, which is defined

as the sample proportion

) iy <
F(y)= ) Y, (3.31)

Simulation is applied with EDF which puts equal probabilities //n at each

sample value y,, each Y  is independently sampled at random from the

original sample values. Therefore, the simulated sample Y, ,...,Y, is a random

sample taken with replacement from the original sample. This sampling

procedure is called the nonparametric bootstrap (Davison and Hinkley, 1997).

Simple Bootstrap Confidence Intervals

The major application for distributions and quantiles of an estimator &
lies in the calculation of confidence limits. There are several ways of using
bootstrap simulation results in this context; two basic methods are described

below:

If the bootstrap estimates of quantiles for 6 -6 are used, an equitailed
(1-2 &) confidence interval will have limits given by

Se

20 - é(?ﬂ-m_-a»’ 20 - Os-nar - (3.32)
This is based on the probability implication that

Pla<f-0<b)=1-2a = Prf-b<f<b-a)=1-2a.
The limits in Equation (3.32) are referred as the basic bootstrap confidence
limits. Their accuracy depends upon B and one would typically take B 2 1000
to be safe (Davison and Hinkley, 1997).

The studentized bootstrap estimates of quantiles for 0 -0 is defined as

- -

. 6-6
. C[var'(6°)]'

where 8" and var (8" ) are based on a simulated random sample, Y',....Y, . If

(3.33)

the model is parametric, the Y, are generated from the fitted parametric

distribution, and if the model is nonparametric, they are generated from the
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EDF F. In either case, the (B+1)a” order statistic of the simulated values

Z,...,25, namely z,, ., to estimate z,, is used. Then the studentized

bootstrap confidence interval for 8 has limits
6—[var(6)]' 25 e, O=[var(8)]' >z, . . (3.34)

This studentized bootstrap method is most likely to be of wide use in

nonparametric problems (Davison and Hinkley, 1997).

3.7 Bootstrap Methods Involving Regression Models

In this section, the bootstrap methods, which are usually employed in
linear regression model and dynamic regression model, are presented. In
Subsection 3.7.1 and 3.7.2, an explanation of residual resampling bootstrapping
for the least squares fit and weighted least squares fit is presented. In
Subsections 3.7.3 and 3.7.4, bootstrap confidence intervals for regression

parameters and bootstrap prediction intervals are provided.

3.7.1 Bootstrapping the Least Squares Fit

The residuals e, s obtained from Equation (3.5) are modified as

e "
T =m- (3.35)

These r, are referred as modified residuals. The conditional distribution of ¥,

given x, specified by the estimated version of Equation (3.3) is given by
Y'=xB+¢ fori=1,..,n, (3.36)
with & randomly sampled with replacement from the r, -7, where 7 is the

average of the r,. The residual resampling bootstrapping for the least squares

fit is also called the method of Bootstrap Based on OLS Estimators (BOLS).

The algorithm to generate simulated datasets and corresponding estimates is as

follows:
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Algorithm for BOLS Method in Linear Regression

In the algorithm for BOLS method, a total of four steps needs to be

followed. They are:

Step 1.

Step 2.

Step 3.

Step 4.

Fit OLS regression to the on'g'inal sample of observations to obtain
OLS estimates ,éou, compute the estimated values y, = f(X,, ﬂow)

for i=1,...,n, and the residuals e =Y —p for i=/,...,n, and obtain the

modified residuals r, = _e,_”z for i=1,...,n, where A, is a diagonal
l1-h

I

element of the hat matrix H .

Draw a random sample &, of size n, with replacement, from the
r—F,.,r,—F, where 7 is the average of the r,, and obtain new
bootstrap values Y~ of ¥; where ¥' = f(X,, B,,s) +¢& fori=1I,..,n.

Fit OLS regression again to the new bootstrap values ¥ obtained in
Step2 against the independent variables of X’s to obtain bootstrap
estimates 8" =(X'X)"' XY™ and s (8").

Repeat Step2 and Step3 for B replications to obtain bootstrap estimates

B and s*(B8°) (b= 1,...,B).

The advantége of resampling is to obtain an improved quantile

estimation when normal-theory distributions of the estimators ( #) and residual

mean square error for the linear regression (s ) are not accurate and valid.

3.7.2 Bootstrapping the Weighted Least Squares Fit

The method of Weighted Least Squares (WLS) is just a special case of

GLS. Suppose that variance-covariance matrix var(u)=k W ™' where W is

the diagonal matrix of known case weights w,. Then WLS estimates are

B=(X'WX)"' X'Wy, (3.37)

the fitted values are

~

Y = X8,
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and the residual vector is

e =(I-H)y,
where the matrix H is defined by

H=XXWX)"X'Ww, (3.38)
whose diagonal elements are 4,. The residual vector e has variance
var(e)=k (I - H)W ™, whose i® diagonal element is k(1-4)w™'. So the

modified residual is given by

) Rnd

Ry = W:liz(l-’h‘)l” E (3'39)
Residual resampling is defined by
Y =xg+w', (3.40)

where ¢, is randomly sampled from the 7 —F,...,r, =7 . It is not necessary to

n

estimate k in applying this algorithm; but if an estimate is required, it would be

k=(n-p-1)"y'WI-H)y.

3.7.3 Bootstrap Confidence Intervals for Regression Parameters

The (1-2a) basic bootstrap confidence limits for parameter [, are
given by
28, = Bisoxi-ans 28, = Bigsna (3.41)

where the £ ,1)2) and Bj(s.ix1-a) are the a and (1-a) empirical quantiles

-

of the ﬁj s, whose ordered values are denoted by £, <...< 8, .

A modification of this is to use the form of the normal approximation

confidence limits, but it would be required to replace the standard normal

-~

ﬁj—

.ﬂj by a bootstrap approximation. Each simulated

s(B;)

approximation for Z =

sample is used to calculate S;, the standard error estimate s'(4;), and hence

. )B;_Iéj

the bootstrap version z = of Z. The B simulated values of z° are

e

s (B,)
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ordered and the p quantile of Z is estimated by the (B+1)p"” of these. Then the

studentized bootstrap confidence limits would become

B =B,z x1-anr B =5(B,) 2500 (3.42)

In principle, this method is superior to the previous basic method. For

the applying of both equations; Equation (3.41) and Equation (3.42),1t is
necessary that (B +1)a should be an integer (Davison and Hinkley, 1997).

3.7.4 Bootstrap Prediction Intervals

A fitted linear regression is often used for prediction of a new individual

response Y, when the explanatory variable vector is equal to x .. Confidence
limits for the response Y, itself — usually called prediction limits — require
additional resampling to simulate the variation of ¥, about the mean response
x'; B . The quantity to be predicted is

Y,=x,B +¢,,
and the point predictor is

Yy = x}ﬁ-
The random disturbance &, is assumed to be independent of the random
disturbances &,,...,£, in the observed responses, and for the sake of simplicity

it is assumed that they all come from the same distribution: in particular, the

disturbances have equal variances.

To assess the accuracy of the point predictor, the distribution of the
prediction error
s§=p,-Y, = x,p-(x,B +¢,)
can be estimated by the distribution of
5 =x, B -(xyB+ep), (3.43)
where a} is sampled from r -F,..,r,—F and B’ is a simulated vector of

estimates from the residual resampling algorithm. This assumes

homoscedasticity of random disturbance. Unconditional properties of the
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prediction error correspond to averaging over the distributions of both £, and

the estimate ﬁ , which are done in the simulation by repeating Equation (3.43)

for each set of values of B ". Having obtained the modified residuals r, from

the data fit, the algorithm to generate B sets; each with only one step prediction

is as follows:

Algorithm for Prediction in Linear Regression
In the algorithm for prediction in linear regression, a total of five steps
needs to be followed. They are:

Step 1. Fit OLS regression to the original sample of observations to obtain
OLS estimates ﬁm_,, compute the estimated values y, = f(X,, ﬂo,_s)

for i=1,...,n, and the residuals e, =Y -y, for i=/,...,n, and obtain the

modified residuals r, = ——eh'—ﬁ for i=1,...,n, where h, is a diagonal

element of the hat matrix H .
Step 2. Draw a random sample g, of size n, with replacement, from the

n—F,.,r,—F, where 7 is the average of the r,, and obtain new

bootstrap values ¥" of ¥;where ¥" = f(X,, Bois ) +&, fori=1,...n.

Step 3. Fit OLS regression again to the new bootstrap values ¥, obtained in
Step2 against the independent variables of X°s to obtain bootstrap
estimates A =(XX)" XY™ and s”.

Step 4. Draw a} randomly from r, —F,...,,r, =7 , and compute prediction error
5 = x'jﬁ" — (X" Bos +€))-

Step 5. Repeat Step2 to Step4 for B replications to obtain 6 (b = ,...,B).

If predictions at several values of x, are required, then only Step4 of

the algorithm needs to be repeated for each x .



- 57 =

The (1-2a) basic bootstrap prediction limits for Y, are

j’/ _5(.(34)(!-«:))’ )A’_r "5(.(3,1)a) (3.44)
where $, = x!B,;, and 8., and Sys.iyay are the a and (1-a)

empirical quantiles of the & s, whose ordered values are denoted by
84 S...S8,. This is analogous to the basic bootstrap method for confidence

intervals.
A somewhat better approach, which is analogous to the standard normal-

theory analysis, is to work with studentized prediction error

where s is the square root of residual mean square error for the linear

regression. The corresponding simulated values are given by

.
5 B
Z =
R)

b

with s calculated in Step3 of the algorithm. The @ and (1-a) quantiles of

Z are estimated by z,z.,),) and zz.y-q) respectively, where z, <..<z .

are the ordered value of all B z's. Then the studentized bootstrap prediction

interval for Y, is given by

Y7 =S rZ(srixi-a) Vi =SrZqanay (3.45)

3.8  Specific Algorithms for Bootstrapping in Regression Models

Some major steps to be followed in the proposed residual resampling
bootstrapping in dynamic regression model are based on some of the steps in
two algorithms for residual resampling bootstrapping applied by Prescott and
Stengos (1987) and Bemard and Veall (1987). Therefore, algorithm for
bootstrapping in dynamic regression model demonstrated by Precott and
Stengos (1987), and algorithm for bootstrapping in linear regression model
with AR(1) disturbances as proposed by Bemard and Veall (1987) are

presented in this Section 3.8.
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Prescott and Stengos (1987) demonstrated how the bootstrap method
can be applied to the construction of confidence intervals for the forecasts of
pork production generated by a dynamic econometric model of pork supply
when exogenous variables are stochastic during the period chosen for making
the forecasts. They presented the following two equations:

Y=8,+8Y_ +pB,X,_,+u, (3.46)

1

where f,, 5, and f, are the parameters, Y, is the dependent variable at time t,

o

=1

is the one lagged dependent variable, X,_, is the explanatory variables at
time t-2, and u, is the disturbance term at time t.
X!=70+71Xf-l+vl’ (347)

where 7, and y, are the parameters, X, is the dependent variable at time t,

I

X

{

_, Is the one lagged dependent variable, and v, is the disturbance term at

time t. One of the interesting point in the work done by Prescott and Stengos

(1987) was the construction of confidence interval for Y, , a forecast of future
pork production. To this end, it is assumed that initial values y,, x, and x_

are available.
In the context of Prescott and Stengos (1987), a forecast of pork

production at some time in the future f can be specified and determined as

follows:

Step 1. Estimate f,, f, and B, by OLS and compute OLS estimates of y,
and y,.
Step 2. Predict X, as
=70+ %0
Forecast y, with the equation
Vs = ﬁo +Bl.f’f-1 +Bz£}-2-
The residual resampling bootstrapping is implemented on this process in

the following algorithm:
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Algorithm for Bootstrapping in Dynamic Regression Model
Step 1. Compute estimates S,, B, S5, 7oand 7,.

Step 2.  Construct B bootstrap samples:

(a) Draw a random sample of size n+m with replacement from the
set of residuals v,. Let the resampled residuals be v, .
(b) The artificial sample X, is then developed as
X =7, +7 X, +V, fort=2,..,n,
where X| =7, +7,x,+v, and
X, =0+ X, +v, forf=n+2,..,n+m,
where X, =7,+7x,+V,.,-
(¢) Draw a random sample of size n+m with replacement from the
set of residuals %, . Let the resampled residuals be %, .
(d) The artificial sample ¥, is then developed as
Y =8,+BY., +pX. ,+i fort=2,...,n,
where Y’ = f, + By, + fyx., + 14, and
¥, = B, + ﬁ,Yf'_l +ﬁ2X}_2 +1, for f=n+2,.,n+m,
where Y’ =B, + By, + Box,, +1.,.
Step 3.  Using the artificial data (periods t=1,...,n), 7o, 7, Bq, Bi,and f;
are reestimated by OLS and sets of forecasts for X} and j’ are

recalculated.
_f; = f;” +}7;b£;_] forf=n+2,..,n+m-2and b = 1,...,B,

- .ob ..-b
where 22, =7, +7,°%,.

P =B+ B9 + '3y, forf=n+2,..n+mand b=1,...B,
ad “ob ‘ ‘cb “ob
where y, =8y +B) Yot By Xp -
The superscript b denotes that the estimate is taken from the b®

bootstrap sample.
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Step 4. For period f, the simulated forecast error is computed as

Y, -y, forf=n+1,..,n+mand b=1,...,B.

Bernard and Veall (1987) exploited the usefulness of the bootstrap for

time series applications in which the disturbance term has a (known) time
series correlation (Johnston and DiNardo, 1997). They applied the residual
resampling bootstrapping to the construction of a confidence interval for a
forecast of electricity demand Y in Quebec Province of Canada at some future
point in time. They settled on the following two-equation system:

Y=8+BX +u, (3.48)
where g, and p, are the parameters, Y, is the dependent variable at time t, X
is the explanatory variables at time t, and u, is the disturbance term at time t.

X, =7 +v, (3.49)

where yis the parameter, X, is the dependent variable at time t, Z, is the

!

explanatory variables at time t, and v, follows a AR(1) process given by
v, =pv,, +1,. (3.50)
Bemnard and Veall (1987) were interested in constructing confidence intervals

for ¥,, a forecast of future electricity demand. For this purpose it is assumed

that future values of Z are known.
In the context of electricity demand by Bernard and Veall (1987), a

forecast of electricity demand at some time in the future f can be determined

as follows:
Step 1. Estimate B, and g, by OLS and compute an OLS estimate of y .

Use the residuals from OLS estimation of Equation (3.49) to

calculate /. Calculate 75, using the estimate p.

Step 2. Predict X, as
f/ = iGLSZj ’

for a given set of values of Z,. Forecast y, with the equation

)‘}/ =ﬂo+ﬂl£f'
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The residual resampling bootstrapping is implemented on this process in

the following algorithm:

Algorithm for Bootstrapping in Linear Regression Model with AR(1)

Disturbances

Step 1.
Step 2.

Step 3.

Compute estimates f,, £,, p and 7,5 .
Construct B bootstrap samples:

(a) Draw a random sample 7, of size n with replacement from the

set of residuals 77. Take the first element of 7~ and divide by

J1- 57 toyield ¥, . Construct the remaining elements by:
v, = pv,_ +1, fort=2,..,n.
(b) The artificial sample of X; is then developed as
X =7.,Z +V, fort=1,.., n,
where 7., is the original GLS estimate.
(c) Draw a random sample &, of size n with replacement from the

set of residuals .

(d) The bootstrap sample is then completed by using

Y =B, +BX +it fort=1,..,n,

where f,, and ﬁl are the original OLS estimates.
With the bootstrap samples in hand, 7., f; and f are
reestimated. One can calculate £}:

f; = f&‘;‘ng for f=n+i, n+d,...and 6=1,...,B,
where the superscript b denotes that the estimate is taken from the
b™ bootstrap sample. This b® bootstrap estimate, ij, along with the
corresponding bootstrap estimates B, and ﬁ",', can be used to

construct an estimate of y:

)3; - ﬂ‘o'b 5 [}l“’f} forf=n+1, n+2,.. and b=1,... B.
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CHAPTER IV
RESISTANT BOOTSTRAP BASED ON OLS ESTIMATORS

In this Chapter IV, an alternative bootstrap method, that provides
reliable bootstrap distributions of the regression estimates in linear regression
model whenever the dataset is contaminated with outliers, is developed and
introduced. The performance of the proposed bootstrap method is evaluated

through simulations.

4.1 Resistant Bootstrap Based on OLS Estimators in Linear Regression

One of the conventional assumptions usually adopted and introduced in
a linear regression model is that disturbances are independently and identically
distributed normal variates with mean zero and finite variance. In such a case.
the OLS estimators of regression parameters are also normally distributed. It
the disturbances are not normally distributed, but assumed to be independently
and identically distributed random disturbances, the OLS estimators are
asymptotically normal. However, in the case of finite samples, the sampling
distributions of the OLS estimators, under nonnormality assumption of
disturbances, cannot be explicitly determined. An alternative approach is to
use bootstrap method instead of formal and standard methods under the
assumption of normally distributed disturbances.

However, the bootstrap distribution is a very poor estimator of the
distribution of the OLS estimate when a dataset is contaminated with outliers
because the OLS estimates are very sensitive to outliers. For analyzing
datasets that are contaminated with outliers, a robust regression method can be
used to obtain stable regression estimates. The standard error of the robust
regression estimate can be estimated using its asymptotic variance. The
asymptotic distribution of the robust regression estimate has been mainly
investigated under the normal model, which does not hold in most practical
situations; in such cases of non-normality, robust methods are to be highly

recommended and inevitably resorted to. Since many datasets with outliers do
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not satisfy the symmetry assumption, the calculation of the asymptotic
distribution of the robust regression estimate for asymmetric disturbances
becomes involved. The sampling distribution of a particular robust regression
estimate and its standard error can also be estimated using the bootstrap
method.

However, two problems usually arise when bootstrap method is used to
estimate the distribution of the robust regression estimate. Firstly, the
bootstrap distribution might be a very poor estimator of the distribution of the
robust regression estimate because the proportion of outliers in the bootstrap
samples can be higher than that in the original dataset. This problem arises
because outlying and non-outlying observations have the same chance of being
present in the bootstrap samples. In particular, a certain proportion of the re-
calculated values of robust regression estimates may be heavily influenced by
the outlier in the data. Thus, the outliers can heavily affect the tails of the
bootstrap distribution, which are of much concern and interest when building
confidence intervals for the unknown regression parameters in practice.

And then, secondly, it may not be practically feasible to obtain a few
thousand re-calculated robust regression estimates for moderately high
dimensional problems in which there are many independent variables in the
regression model. The number of bootstrap samples, which are needed to
obtain reliable distribution estimates, grows with the dimension of the statistic,
and it makes the problem even more computationally intensive and
complicated to solve. Therefore, robust bootstrap methods in linear regression,
that could overcome the above two problems, have been investigated by many
researchers.

Perhaps, the most important point is that gross outliers should be
removed before undertaking final regression analysis, including resampling.
There are two reasons for this. The first reason is that methods that are
resistant to outliers are usually not very efficient, and they may behave badly
under resampling. The second reason is that outliers can be disruptive to

resampling analysis based on the methods that are not resistant to outliers. For
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residual resampling, the distribution of disturbances will be contaminated and
the outliers can then occur in resampling at any covariates values (Davison and
Hinkley, 1997).

For datasets with multiple outliers, diagnosis is done by a robust
regression method that is highly resistant to the effects of outliers. One
preferred resistant method is LTS estimation method. The fit itself is not very
efficient, and should best be thought of as an initial step in a more efficient
analysis (Davison and Hinkley, 1997).

In this Section 4.1 an alternative bootstrap method which is not only
computationally simple but also resistant to the effects of outliers in linear
regression is proposed. This method provides reliable distributions of the
regression estimates for the linear regression model in Equation (3.1):

Y=0+p X, +5 X, +..+ B, X, +uy, fori=1,..,n

The idea for obtaining reliable bootstrap distributions is based on the
technique of finding OLS estimates which are not affected by outliers not only
in the original sample but also in the bootstrap replications. From the original
sample of cases, LTS weight for each case is computed by taking A, which is

In+p+1

defined in Section 3.3.2 of Chapter III, . The cases having zero LTS

weights as outlying cases are removed. Then, BOLS method is used for the
rest of the cases. This method hence forth will be called Resistant Bootstrap
Based on OLS Estimators (RBOLS). The algorithm for RBOLS method to

generate simulated datasets and corresponding estimates is as follows:

Algorithm for RBOLS Method in Linear Regression
In the algorithm for RBOLS method, a total of five steps needs to be

followed. They are:
Step 1: Fit LTS regression to the original sample of cases to obtain LTS

weight for each of the original cases, and remove the cases having zero

LTS weights from the dataset.
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Step 2: Fit OLS regression to the rest of the cases (say n') left from Stepl to

obtain regression estimates. These estimates will be called OLS Based
on LTS Weights (OLS-LTS) estimates, denoted by ﬂo,_g_m , from now
on. Then, compute the estimated values y, given by

3= (X, Bors-irs) fori=1..,n",

and obtain the residuals r; given by

r=Y -y fori=1,.,n".

Step 3: Draw a random sample ¢, of size n' from the values of r, from Step2

with replacement and obtain new bootstrap values Y~ of ¥; where
Y = (X, Boysirs )+ € fori=1..n".

Step 4: Fit OLS regression again to the new bootstrap values Y obtained in
Step3 on the independent variables of X’s to obtain the bootstrap
estimate A", s*( ") and s, respectively.

Step 5: Repeat Step3 and Step4 for B times of bootstrap replications to obtain

bootstrap estimates A", s*( #°)and s® (b = 1,...,B).

4.2  Assessment of the Bootstrap Methods

The performances of the bootstrap methods are evaluated based on the
bootstrap root mean squared error (rmse ). The smaller the rmse’, the better
the method. The rmse  can be computed using the following statistics and

formulae.

-~

The mean of the bootstrap distribution, A", in this study is given by
. 1 e
B = .EZﬂ . (4.1)

and the bootstrap estimate of bias of B, bias'(B°), is estimated by

bias'(ﬁ°)=5.-')é, 4.2)
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-~

where A is an estimate of the parameter S obtained by a specific estimation

method using the original dataset. The bootstrap estimated standard error of

B, se’ (B), is given by
se'(B') = \/B#_lz(ﬂ 5. (43)

The bootstrap root mean squared error of 8°, rmse’(8’), is given by

rmse’(ﬁ’) = \/(bias'(ﬁ')y + (se'([}')): : (4.4)

4.3  Simulation Results for a Three-Variable Regression Model

A simulation study is carried out to illustrate the performance of
RBOLS method compared with that of BOLS method. Computations are done
by using S-PLUS software. In the simulation study, observations on the
dependent variable Y are generated by the same linear regression model used
by Riadth er al. (2002) in their simulatioh study given below:

Y=0,+58,X,+B,X;+u, (4.5)
where g8, =2 g, =0.7,and g, =0.5.

For the above linear regression model, the distribution used for
generating data for the independent variable X; is X, ~ N(0.6,25); for X; is
X, ~N(-0.10.81); and for the disturbance term u is u ~ N(0,0.04). Qutliers
are introduced into generated datasets as contaminants. Some good
disturbances are deliberately deleted, and they are replaced with bad
disturbances. The contaminated bad disturbances are generated using the

distribution N(10,9), that is, u,,;, ~ N(10,9), as was also used by Raidth er al.
(2002).

Discussion on OLS Estimates and OLS-LTS Estimates
The estimates of the parameters B, S, and S, in Equation (4.5), their
estimated root mean squared errors (rmses) and coefficient of determination

(R’) are computed using OLS method and OLS-LTS method for various
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sample sizes having different percentages of outliers. The simulation results

are presented in Table (4.1) — Table (4.4).

Table (4.1)
Estimates, rmses and R? by OLS Method and OLS-LTS Method
for Three-Variable Regression Model When n=30

Percentage | Estimation 5 " " Sl e Hiria .
of Outliers | Method Po hi & Bo) | (B | (Bs) R
0% OLS 1.9885** | 0.6928"* | 0.4673"* | 0.0379 | 0.0105 | 0.0514 | 0.9968
OLS-LTS | 1.9565"" | 0.6958"" | 0.4749"* | 0.0542 | 0.0079 | 0.0427 | 0.9978
5% OLS 2.8868** | 0.5866"* | 1.2317 | 1.0832 | 0.1739 | 1.0018 | 0.4696
OLS-LTS | 1.9966** | 0.6918** | 0.4745°* | 0.0386 | 0.0115 | 0.0500 | 0.9968
10% OLS 3.2951"" | 0.6354"" | 1.3337 1.4779 | 0.2233 1.1439 | 0.3742
OLS-LTS | 1.9796"* | 0.6940"* | 0.4686"" | 0.0421 | 0.0097 | 0.0511 | 0.9973
15% OoLS 3.7192** | 0.6021** | 1.7595 | 1.8892 | 0.1928 | 1.5261 | 0.4016
OLS-LTS | 1.9900° | 0.6916" | 0.4635** | 0.0408 | 0.0126 | 0.0582 | 0.9S60
20% OLS 3.9466°* | 0.6382"* | 1.7789 | 2.1094 | 0.1830 | 1.5603 | 0.4064
OLS-LTS | 1.9973"* | 0.6932** | 0.4668°* | 0.0395 | 0.0115 | 0.0557 | 0.9963
** significant at 1% level
Table (4.2)
Estimates, rmses and R? by OLS Method and OLS-LTS Method
for Three-Variable Regression Model When n=60

Percentage | Estimation 2 4 " iR mae s :

of Outliers | Method Po Pi < (Bo) | (B | (B2) o
0% OoLS 2.0114** | 0.6976** | 0.4687*° | 0.0262 | 0.0058 | 0.0425 | 0.9972
OLS-LTS | 2.0200°* | 0.6974"* | 0.4722** | 0.0300 | 0.0055 | 0.0387 | 0.9976
5% OoLS 2.6041** | 0.6303** | 1.0688" | 0.6965 | 0.1041 0.7086 | 0.6127
OLS-LTS | 2.0182** | 0.6976°" | 0.4735"* | 0.0288 | 0.0055 | 0.0380 | 0.9978
10% OLS 3.0058"* | 0.6927* | 1.2747" | 1.0844 | 0.0906 | 0.9189 | 0.5889
OLS-LTS | 2.0287** | 0.6988** | 0.4766** | 0.0365 | 0.0052 | 0.0361 | 0.9976
15% OLS 3.2662** | 0.7167"" | 1.1508" | 1.3368 | 0.0869 | 0.8347 | 0.5686
OLS-LTS | 2.0235** | 0.6980"* | 0.4780°* [ 0.0330 | 0.0057 | 0.0353 | 0.9976
20% OLS 3.8677** | 0.7662** | 1.1868 1.9430 | 0.1365 | 0.9479 | 0.4885
OLS-LTS | 2.0245** | 0.6975"" | 0.4796"" | 0.0345 | 0.0060 | 0.0348 | 0.9976

** significant at 1% level

* significant at 5% level
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Table (4.3)
Estimates, rmses and R? by OLS Method and OLS-LTS Method
for Three-Variable Regression Model When n=100

Percentage | Estimation a = ’ msa anse mse s

of Outliers Method Po A % ([}o ) ( B; ) (Bz ) =
0% OLS 2.0119°* | 0.6946"" | 0.4793"* | 0.0226 | 0.0068 | 0.0291 | 0.9966
OLS-LTS | 2.0177** | 0.6943"* | 0.4821** | 0.0257 | 0.0070 | 0.0267 | 0.93969
5% OLS 2.6238" | 0.6782" | 0.9922*" | 0.6688 | 0.0573 | 0.5558 | 0.6585
OLS-LTS | 2.0293** | 0.6922** | 0.5035** | 0.0343 | 0.0087 | 0.0195 | 0.9973
10% OoLS 2.9871** | 0.7004"* | 0.9754"" | 1.0326 | 0.0666 | 0.5755 | 0.5634
OLS-LTS | 2.0231** | 0.6931** | 0.4980°" | 0.0296 | 0.0080 | 0.0186 | 0.9972
15% OLS 3.4475"" | 0.7635"" | 1.1443** | 1.4918 | 0.1016 | 0.7513 | 0.5228
OLS-LTS | 2.0289** | 0.6938"* | 0.4999** | 0.0346 | 0.0075 | 0.0196 | 0.9973
20% oLS 4.0206"* | 0.7296°* | 1.6446°* | 2.0599 | 0.0928 | 1.2222 | 0.4779
OLS-LTS | 2.0426** | 0.6929°* | 0.5064"* | 0.0472 | 0.0083 | 0.0219 | 0.9971

** significant at 1% level
Table (4.4)
Estimates, rmses and R? by OLS Method and OLS-LTS Method
for Three-Variable Regression Model When n=200

Percentage | Estimation - P - L s e 3

of Outliers | Method Po hi & (By) (B)) (B;) a
0% OLS 2.0081* | 0.7018*" | 0.5037** | 0.0169 | 0.0036 | 0.0170 | 0.9963
OLS-LTS | 2.0059** | 0.7010** | 0.5058** | 0.0157 | 0.0032 | 0.0173 | 0.9964
5% OLS 2.4811** | 0.6578** | 0.7279** | 0.5018 | 0.0518 | 0.2783 | 0.7265
OLS-LTS | 2.0087** | 0.6997°* | 0.5103"" | 0.0175 | 0.0032 | 0.0187 | 0.9564
10% OoLS 2.9570" | 0.6467°* | 0.8281* | 0.9785 | 0.0685 | 0.4001 | 0.5604
OLS-LTS | 2.0076" | 0.7008** | 0.5114" | 0.0175 | 0.0034 | 0.0209 | 0.S964
15% OLS 3.4708** | 0.6187°* | 0.6558" | 1.4925 | 0.0973 | 0.3241 | 0.4251
OLS-LTS | 2.0040** | 0.7018"* | 0.5142** | 0.0166 | 0.0038 | 0.0227 | 0.9963
20% OLS 3.9563"" | 0.6497°* | 1.0091* | 1.9770 | 0.0784 | 0.6012 | 0.4055
OLS-LTS | 2.0065°** | 0.7013"* [ 0.5110** | 0.0180 | 0.0037 | 0.0216 | 0.9964

** significant at 1% level

* significant at 5% level
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In Table (4.1) for n = 30, at 0% level of outlier percentage, OLS
estimates of parameters S, B, and B, are 1.9885, 0.6928 and 0.4673,
respectively, while the corresponding OLS-LTS estimates are 1.9565, 0.6958
and 0.4749, respectively. The estimates provided by both estimation methods
are not significantly different from each other. Comparing the rmses of the
estimates under the two methods of estimation, neither method is found to
provide smaller rmses of the estimates. The rmses of OLS estimates are
0.0379, 0.0105 and 0.0514 while the rmses of OLS-LTS estimates are 0.0342,
0.0079 and 0.0427. On comparison of R under the two methods of estimation,
the values of R’ provided by both estimation methods are also found to be
almost the same. For these reasons, it can be concluded that OLS-LTS method
provides almost equally good estimates of parameters 8, S, and f,, so does
OLS method in the case of no outliers in the dataset.

At 5% level of outlier percentagé, OLS estimate of constant term S, is
found to be 2.8868 while OLS-LTS estimate of 5, is 1.9966. Comparing the
two estimates, OLS estimate of 2.8868 is conspicuously different from the
actual parameter value of f,, which is 2.0; OLS-LTS estimate of 1.9966 is
found to be very near to actual value of £,. When it comes to the estimates of
regression coefficient g,, OLS method provides the estimate of 0.5866 while
OLS-LTS method gives the estimate of 0.6918, which is a little more closer to
the actual value 0.7 of 3, than OLS estimate. It is the same situation as in the
above case of the two estimates of constant term £,. When moving on to the
estimates of regression coefficient S, through the two methods of estimation,
OLS estimate of S, is found to be 1.2317, which diverges more conspicuously
from the actual value 0.5 of B,. However, OLS-LTS estimate of £, is 0.4745,
which is more or less closer to the actual value 0.5 of S, than OLS estimate of
1.2317. These results indicate that the biases of OLS-LTS estimates are

smaller than those of OLS estimates; that is, OLS-LTS estimates are more

desirable than OLS estimates from the standpoint of biases of the estimates.
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Comparing the rmses of the estimates of constant term S, under the two

methods of estimation at the same 5% level of outlier percentage, the rmse of
OLS estimate is found to be 1.0832 while the rmse of OLS-LTS estimate is
0.0386, which is much smaller than that of OLS estimate. The same situations
are found to be the case when it comes to the rmses of the estimates of two
regression coefficients £, and S, under the two methods of estimation. On
comparison of R’ under both estimation methods, R’ value of 0.9966 provided
by OLS-LTS method is much larger than R’ value of 0.4696 provided by OLS
method. These results lead to the conclusion that OLS-LTS estimates are far
more efficient and desirable than OLS estimates if the data are contaminated
with outliers.

At 10% level of outlier percentage, OLS estimate of S, becomes
3.2951. However, OLS-LTS estimate of £, tumns out to be 1.9796 which is
much closer to the actual value 2.0 of g,. Similarly, OLS-LTS estimate
0.6940 of B, is also very near to the actual value 0.7 of g, than OLS estimate
0.5354 of B,. As regards the estimation of 4,, OLS-LTS estimate of 0.4686 is
also found to be closer to the actual value 0.5 of £, than OLS estimate of

1.3337. When confining one’s attention to the rmses of the estimates at 10%

level of outlier percentage, it is fortunately and satisfactorily found that the

rmses of OLS-LTS estimates of 8,, 8, and [, are always much smaller than

those of OLS estimates. When evaluating the value of R’ under both
estimation methods, R’ provided by OLS-LTS method is found to be much
larger than R’ provided by OLS method. From the above results, it can be
concluded that OLS-LTS method is more efficient than and preferable to OLS

method at 10% level of outlier percentage.

In the case of 15% and 20% levels of outlier percentage, the same
scenario of performance and behaviour of OLS estimates and OLS-LTS
estimates of constant term f, and other regression coefficients g, and S, is

captured from the standpoints of the bias and rmse of the corresponding

estimates and R’°. It leads to the conclusion that OLS-LTS method, in the
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presence of outliers in a given dataset, is satisfactorily more efficient than OLS
method in the sense that the biases as well as rmses of the corresponding OLS-
LTS estimates of the parameters are almost always smaller than those of the
corresponding OLS estimates and R’ provided by OLS-LTS method is always
larger than that provided by OLS method at 15% and 20% levels of outlier
percentage, respectively.

Turning one’s attention to the results in Table (4.2) through Table (4.4),
at 0% level of outlier percentage for various sample sizes, OLS-LTS estimates

of parameters g, f, and S, are found to be significantly no different from

OLS estimates. Comparing the rmses of the estimate under both estimation
methods, it is found that there is no estimation method which always provides
the smaller rmses of the estimates. On comparison of R’ under the two
methods of estimation, the values of R’ provided by both estimation methods
are also found to be almost the same, indicating almost the same goodness of
fit of estimation methods. For these findings, it can be concluded that OLS-
LTS method can be used instead of OLS method for the dataset with no
outliers. However, OLS-LTS method is desirably more efficient than OLS
method on the existence of outliers in a given dataset at different percentages
of outliers apart from 0% under study.

Finally, based on the results in Table (4.1) — Table (4.4), it is concluded
that, if there is no outlier in a dataset, OLS-LTS estimates are as desirable as
OLS estimates. It is also concluded that, when there exists outliers in a dataset,
OLS-LTS estimates are always much better than OLS estimates. It indicates,
in case of outliers in a dataset, that (i) OLS-LTS method is more appropriate
and preferable than OLS method and (ii) one should resort to OLS-LTS method

rather than OLS method so as to obtain less biased and efficient regression

estimates.

Comparison of RBOLS Estimates with BOLS Estimates

In most practical situations for which residuals are not normally

distributed, the sampling distributions of the regression estimates and their
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standard errors can be estimated using the bootstrap method. By the use of

BOLS method and RBOLS method, the distributions of regression estimates

are estimated based on 1,000 bootstrap replications at different percentages of

outliers for various sample sizes. The means and the rmse’s computed from

the bootstrap distributions so obtained are presented in Table (4.5) —

Table(4.8).
Table (4.5)
Estimates and rmse s by BOLS Method and RBOLS Method
for Three-Variable Regression Model When n=30
Percentage | Bootstrap /-}'_ ﬂ-: E rmse’ | rmse’ | rmse
i 0 l 2 ~s Ao ~Ae

of Outliers Method (Bs) (B) (33)
0% BOLS 1.9889 | 0.6926 | 0.4684 | 0.0343 | 0.0074 | 0.0375
RBOLS 1.9567 | 0.6955 | 0.4756 | 0.0298 | 0.0063 | 0.0330
5% BOLS 2.8837 | 0.5946 | 1.2435 | 0.5829 | 0.1294 | 0.6384
RBOLS 1.9965 | 0.6920 | 0.4753 | 0.0356 | 0.0078 | 0.0401

10% BOLS 3.2514 | 0.5311 | 1.3656 | 0.6818 | 0.1388 | 0.7247
RBOLS 1.9795 | 0.6939 | 0.4683 | 0.0346 | 0.0071 0.0376

15% BOLS 3.7141 | 0.6052 | 1.7417 | 0.7515 | 0.1835 | 0.8169
RBOLS 1.9900 | 0.6917 | 0.4636 | 0.0380 | 0.0088 | 0.0417

20% BOLS 3.9294 | 0.6332 | 1.7699 | 0.7451 0.1595 | 0.8453
RBOLS 1.9981 | 0.6934 | 0.4688 | 0.0357 | 0.0088 | 0.0422

Table (4.6)
Estimates and rmse s by BOLS Method and RBOLS Method
for Three-Variable Regression Model When n=60
Percentage | Bootstrap ﬂT E E e | e || ERaE
. 0 l 2 e e ~e

of Outliers Method (ﬂo ) (ﬂl ) (ﬂz )
0% BOLS 2.0109 | 0.6978 | 0.4703 | 0.0226 | 0.0051 0.0287
RBOLS 2.0204 | 0.6975 | 0.4738 | 0.0215 | 0.0049 | 0.0261

5% BOLS 25796 | 0.6279 | 1.0965 | 0.3245 | 0.0745 | 0.4231
RBOLS 2.0180 | 0.6975 | 0.4738 | 0.0218 | 0.0046 | 0.0263

10% BOLS 3.0070 | 0.6860 | 1.2700 | 0.3957 | 0.0854 | 0.4677
RBOLS 2.0285 | 0.6987 | 0.4764 | 0.0213 | 0.0051 0.0270
15% BOLS 3.2826 | 0.7167 | 1.1728 | 0.4213 | 0.0927 | 0.5168
RBOLS 2.0223 | 06980 | 0.4789 | 0.0223 | 0.0053 | 0.0272
20% BOLS 38949 | 0.7659 | 1.1731 | 0.5253 | 0.1170 | 0.6462
RBOLS 2.0243 | 0.6973 | 0.4808 | 0.0235 | 0.0053 | 0.0263
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Table (4.7)

Estimates and rmse s by BOLS Method and RBOLS Method
for Three-Variable Regression Model When n=100

Percentage | Bootstrap = =, =. rmse | rmse’ rmse’
of Outliers Method Po A Z (Be) (B;) (fs)
0% BOLS 2.0114 | 0.6946 | 0.4786 | 0.0191 | 0.0041 | 0.0212
RBOLS | 2.0178 | 0.6942 | 0.4825 | 0.0180 | 0.0040 | 0.0197

5% BOLS 2.6138 | 0.6782 | 1.0004 | 0.2425 | 0.0520 | 0.2494
RBOLS | 2.0283 | 0.6923 | 0.5031 | 0.0174 | 0.0039 | 0.0182

10% BOLS 2.9892 | 0.6976 | 0.9754 | 0.3023 | 0.0673 | 0.3355
RBOLS | 2.0228 | 0.6932 | 0.4978 | 0.0176 | 0.0039 | 0.0197

15% BOLS 3.4611 | 0.7633 | 1.1546 | 0.3648 | 0.0757 0.3822
RBOLS | 2.0300 | 0.6941 | 0.4995 | 0.0192 | 0.0042 | 0.01S2

20% BOLS 4.0249 | 0.7257 | 1.6385 | 0.4009 | 0.0895 | 0.4225
RBOLS | 2.0431 | 0.6930 | 0.5058 | 0.0203 | 0.0044 | 0.01S85

Table (4.8)
Estimates and rmse s by BOLS Method and RBOLS Method
for Three-Variable Regression Model When n=200

Percentage | Bootstrap =, =. =. rmse’ | rmse’ | rmse’
of Outliers Method Po A A (/}(;) (ﬁl') (ﬁz')
0% BOLS 2.0073 | 0.7018 | 0.5032 | 0.0143 | 0.0029 | 0.0162
RBOLS | 2.0058 | 0.7011 | 0.5053 | 0.0140 | 0.0031 | 0.0160

5% BOLS 2.4762 | 0.6576 | 0.7249 | 0.1432 | 0.0297 | 0.1612
RBOLS | 2.0090 | 0.6997 | 0.5108 | 0.0150 | 0.0031 | 0.0169

10% BOLS 2.9618 | 0.6472 | 0.8214 | 0.2072 | 0.0436 | 0.2273
RBOLS | 2.0078 | 0.7007 | 0.5118 | 0.0157 | 0.0033 | 0.0178

15% BOLS 3.4731 | 0.6189 | 0.6479 | 0.2482 | 0.0529 | 0.2768
RBOLS | 2.0036 | 0.7019 | 0.5140 | 0.0160 | 0.0033 | 0.0179

20% BOLS 3.9515 | 0.6494 | 1.0104 | 0.2778 | 0.0571 | 0.3142
RBOLS | 2.0067 | 0.7013 | 0.5113 | 0.0173 | 0.0035 | 0.0184
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Confining one’s attention to the results given in Table (4.5) through
Table (4.8), almost all rmse’s of RBOLS estimates are found to be smaller
than those of BOLS estimates at 0% outliers in the dataset. Moreover, the
rmse s of RBOLS estimates in all the above tables are distinctively less than
those of BOLS estimates for datasets having 5% to 20% outliers. As
percentage of outliers increases from 5% to 20% the rmse's of BOLS
estimates become gradually larger and larger. Nevertheless, the rmse’s of
RBOLS estimates become almost stable. These facts support the desirability of
the proposed RBOLS method over BOLS method whenever a dataset is
contaminated with outliers.

In order to clearly illustrate superiority of RBOLS method over BOLS

method in case of existence of outliers in a dataset, the graphs drawn for the
rmse’s of BOLS and RBOLS estimates at different percentages of outliers for
various sample sizes are presented in Figure Bl(a) — Figure B4(c) of

Appendix B.

4.4 Simulation Results for a Four-Variable Regression Model

In another simulation study, observations on the dependent variable Y
are generated by the following linear regression model consisting of three
independent variables:

Y=q,+a, X,+a, X,+a;D+u (4.6)
with presumed values of the regression coefficients that are set at ,= 2,
a,=0.7, a,=0.5 and a;=0.2.

For the above linear regression model, the distribution used for
generating data for the independent variables X; and X} are X, ~ N(0.6,25) and
X, ~N(-0.10.81); and for the disturbance term w is wu~ N(0,0.04). The
variable D is the dummy variable.

Outliers are introduced into generated datasets as contaminants. Some
good disturbances are deliberately deleted, and they are replaced with bad

disturbances. The contaminated bad disturbances are generated using the
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distribution N(10,9), that is, u, , ~ N(/0,9). This simulation study is the same
as the simulation study presented in Section 4.3 except that the dummy variable

D is added to the three-variable regression model in Equation (4.5).

Discussion on OLS Estimates and OLS-LTS Estimates

The estimates of parameters @, «,, @, and a; in Equation (4.6), their
rmses and R’ are computed using OLS method and OLS-LTS method for
various sample sizes having different percentages of outliers. The simulation

results are presented in Table (4.9) — Table (4.12).
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Based on the results in Table (4.9) — Table (4.12), at 0% level of outlier
percentage for various sample sizes, neither method is found to provide smaller
biases and rmses of the estimates. On comparison of R’ under the two
methods, the values of R’ provided by both estimation methods are also found
to be almost the same, indicating almost the same goodness of fit for both
estimation methods. However, at 5% to 20% levels of outlier percentage for
various sample sizes, it is also found that the biases and rmses of the
corresponding OLS-LTS estimates are always smaller than those of OLS
estimates, and R’ provided by OLS-LTS method is always larger than that
provided by OLS method. It can be concluded that OLS-LTS method is

preferable to OLS method whenever a dataset is contaminated with outliers.

Comparison of RBOLS Estimates with BOLS Estimates
BOLS method and RBOLS method are used to estimate the distributions

of regression estimates on the basis of 1,000 bootstrap replications at different
percentages of outliers for various sample sizes. The means and the rmse’ s
computed from the bootstrap distributions of the regression estimates are

presented in Table (4.13) — Table (4.16).
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Confining one’s attention to the results given in Table (4.13) through

Table (4.16), almost all rmse’s of RBOLS estimates are found to be smaller
than those of BOLS estimates in the absence of outliers, i.e., at 0% outliers in
the dataset. Moreover, the rmse s of RBOLS estimates in all the above tables
are distinctively less than those of BOLS estimates for datasets having 5% to
20% outliers. These facts support the desirability of the proposed RBOLS
method over BOLS method whenever the dataset is contaminated with outliers.

The superiority of RBOLS method over BOLS method can be seen in
the graphs drawn for the rmse s of BOLS and RBOLS estimates at different
percentages of outliers for various sample sizes as shown in Figure B5(a) —
Figure B8(d) of Appendix B.

Based on the findings from the simulation results conducted for two
different linear regression models considered in this chapter, a conclusion can
be drawn that the proposed RBOLS method has proved to be better than BOLS

method whenever the dataset applied to linear regression model has been

contaminated with outliers.



CHAPTER V
BOOTSTRAP PREDICTION INTERVALS
FOR SPIRULINA PRODUCTIVITY

In this Chapter V, one-day-ahead bootstrap prediction intervals for
Spirulina productivity in culturing ponds at MSF are constructed. At first, a
dynamic regression model of optical density of Spirulina is fitted. Using the
fitted model, the prediction intervals are constructed by the method of residual
resampling bootstrapping. Then, a linear regression model of the optical
density of Spirulina is fitted based on the dataset in which outliers had been
removed. Using the fitted model, the prediction intervals are constructed by

applying the proposed RBOLS method developed in Chapter IV.

5.1 Bootstrap Prediction Intervals in Dynamic Regression Model
Based on the two algorithms presented in Section 3.8, an algorithm for
the residual resampling bootstrapping associated with a dynamic regression

model in which the disturbance term follows the AR(1) scheme is suggested.

A dynamic regression model is described as:
Y=B+B Y. +5 X, + B X, +u, fore=l..n, (5.1)

where A,,..., 3, are the unknown parameters of interest, ¥, is the dependent
variable at time t, Y, is the one lagged dependent variable, X, and X ,are
the explanatory variables at time t-1, and , is the disturbance term at time t. It
is assumed that u, follows the AR(1) scheme in Equation (3.13), namely,

u,=pu,_, +v,, -l<p<l.

Algorithm for Prediction Intervals in Dynamic Regression Model

In the algorithm for one-step-ahead bootstrap prediction intervals in a

dynamic regression model of Equation (4.1), a total of six steps needs to be

followed. They are:



Stepl:

Step2:

Step3:

Step4:

Step5:

Step6:

=BT

Fit the OLS regression to the original sample of observations and use
Cochrane-Orcutt iterative method to obtain the estimated first-order

correlation coefficient p, and transform the original observations as

follows:
y, =Y -pY, fore=2...n,
xfr.n =Xy =Xy fort=2,..,n,
x,=X,,-PX.., fort=2,..,n.

Fit again the OLS regression to the transformed observations to obtain
FGLS estimates ﬁm,_g , then compute the estimated values ] given by

aT T T r 2 _
yl = f(yl-l’ xl—l,l’xl-l,l’ﬁFGlj) for = 31'“tn)

and obtain the residuals r,’s given by

r, = y'T _)-),T fort = 3,...,n.
Draw a random sample ¢, of size (n-2) from the values of r, with
replacement and obtain new bootstrap values Y" of y[ where

A ﬂAo + /éIYr:l + ﬂAz Xo + [}3 ¥ia T, fort=+4,..n,
in which

A :léo +ﬁly: +ﬂA2 xizr.l +BJ xi.z +&.

Fit the OLS regression to the new bootstrap values Y obtained in

- M
.

Step3 on the (Y., x.,,,x.,,) to obtain bootstrap estimates A",
s'(B™) and s, respectively.
Repeat Step3 and Step4 for B replications to obtain the bootstrap
distributions of A%, 5°(4®) and s (b =1,...,B).
(a) Obtain the bootstrap distribution of the forecast y,, given by

PR B Y AP SRV AP o forb = 1,...,B,

where 8, = 2 1(1-5).
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(b) Obrain the bootstrap studentized prediction error z™ given by

“ _ JA’..b: ~ (Vo +62) forb=1,..,B

.S'b

Z

where ,; = ﬂAO(GLS) * [}uc;z.s;y; ‘*’)éz(cm X+ ﬁswm X
(c) Construct the (1-2a) one-day-ahead prediction interval for : g
given by
LV =3, z(.(Bvl)(I—a))’ Yen =5, Z(.(s'na)]’
where 5, =s(/+ x,(XX) " x )",

in which x =(l,y,,x,,,x,,).

5.2  Bootstrap Prediction Intervals for Spirulina Productivity in

Dynamic Regression Model

In order to compute prediction intervals for Spirulina productivity (the
optical density of Spirulina) in culturing ponds at MSF, a dynamic regression
model of the optical density of Spirulina is first specified on the basis of the
dataset on optical density of Spirulina and related variables over a period of
365 days for the year 2007 presented in Table C1, Appendix C. Computations
are done by using S-PLUS software and Microsoft Office Excel 2007 with Pop

Tool 3.1.0 package add-in.

5.2.1 A Dynamic Regression Model of the Optical Density of Spirulina
Some studies on the optical density of Spirulina have shown, as a
hypothesis, that the optical density of Spirulina on a particular day might
mainly depend on the previous day's (i) optical density of Spirulina, (ii) salinity
of water, (iii) pH value of water, (iv) air temperature, (v) light, (vi) season, and
(vii) condition that Spirulina was harvested or not. Therefore, a dynamic
regression model of the optical density of Spirulina that is supposed to be

consistent with the above said hypothesis is postulated as follows:
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OD, = B, + B,OD,_, + §,SAL,_, + B,DW,_, + B, DHAR,
+pB,DS,_, + B,PH,_, + B, TEM,_ + B,LIG,, +u,, (5.2)
where OD, is the optical density of Spirulina on day (1),
SAL,., is the salinity of water on day (1-1)(in parts per ten thousand),
DW,, is the dummy variable that takes value 1 if the season happens to
be winter (cold season) on day (t-1) or value 0 otherwise,
DHAR,.; is the dummy variable that takes value 1 if Spirulina was
harvested on day (t-1) or value 0 otherwise,
DS,.; is the dummy variable that takes value 1 if the season happens to
be summer (hot season) on day (t-1) or value 0 otherwise,
PH,_, is the pH value of water on day (t-1),
TEM,, is the air temperature on day (t-1), and
LIG,,, is the light on day (1-1).
The final term v, is the random disturbance term at day (¢). It is assumed that y,
follows the AR(!) process in Equation (3.13), namely,
u =pu_ +v,. -l<p<l
The disturbance term v, is assumed to be independent and identically
distributed with a zero mean and a finite variance with no autocorrelation at all.
Equation (5.2) is fitted using OLS method and applying the stepwise
variable selection procedure. Of the variables considered, DS,.;, PH,.;, TEM,,
and LIG,, are found not to be significant. The fitted model obtained is as
follows:
O/l\), =0.090 +0.777 OD,.; +0.040 SAL,.; +0.023 DW,.; -0.104 DHAR,.,.
(5.3)
The specific OLS results of the above fitted model are reported in Table (5.1).
All of the regression coefficients in Table (5.1) are statistically
significant and different from zero. Nevertheless, Durbin A-statistic in
Equation (3.15), which is an appropriate test statistic when the lagged
dependent variable appears on the right-hand size of Equation (5.3), takes the

value of -4.271, which leads to the conclusion that there exists first-order

autocorrelation in the fitted model (p-value = 0.000).
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Table (5.1)
OLS Estimates of the Dynamic Regression Model
Variable Eshma.ted Standard error | t-statistic Sig-t
coefficient
(Constant) 0.090 0.009 9.682 0.000
OD, 4 0.777 0.032 24.121 0.000
SAL,., 0.040 0.020 2.047 0.041
DW,., 0.023 0.007 3.283 0.001
DHAR,., -0.104 0.006 -16.865 0.000
R®=0.733, Adjusted R* = 0.730,
Standard error of the estimate = 0.054
F(4, 359) = 246.974, Sig. F = 0.000

BG test statistic in Equation (3.18) for higher orders of autocorrelation
and autoregressive structure in the disturbances is found to take the value of
22.063. It indicates that the null hypothesis of no autocorrelation is rejected
against the alternative hypothesis of autocorrelation up to order three (p-value
= 0.000). In light of results from Durbin 4 test and BG test, one can conclude
that the disturbances are not independent of each other; that is, they are

autocorrelated to each other.
For that reason, Equation (5.2) is fitted again using the method of FGLS

as discussed in Section 3.4 of Chapter III. The first-order autocorrelation in
Equation (3.13) is estimated by the Cochrane-Orcutt iterative method. The

estimated value of -0.264 is used to transform the variable in Equation (5.3).
The dynamic regression model of transformed optical density of Spirulina OD/
fitted by the method of FGLS is finally obtained as follows:
OD7=0.091+0.857 OD[,+0.021 SALL,+0.015 DW,-0.101 DHAR',,
(5.4)
where OD] =(0OD, - pOD,.,), SAL] =(SAL - pSAL_), DW, =(DW,-pDW,,)
and DHAR' =(DHAR, - pDHAR,). The FGLS results for the fitted dynamic

regression model in Equation (5.4) are presented in the following Table (5.2).
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Table (5.2)
FGLS Estimates of the Dynamic Regression Model
) Estimated - :
Variable ) Standard error | t-statistic Sig-t
coefficient
(Constant) 0.091 0.009 9.596 | 0.000
oD/, 0.857 0.026 32.533 | 0.000
SALT 0.021 0.010 2.100 | 0.036
DWW/, 0.015 0.006 2.765 | 0.006
DHAR], -0.101 0.006 -17.199 | 0.000
R® = 0.824, Adjusted R = 0.822
Standard error of the estimate = 0.053
F(4, 358) = 418.946, Sig. F = 0.000

All of the regression coefficients are statistically significant and
different from zero. Durbin A-statistic takes the value of -0.672, which is
consistent with independent disturbances (p-value = 0.501). To check further,
BG test is also carried out. BG test statistic turns out to take the value of 4.536
indicating that the null hypothesis of no autocorrelation is not rejected against
the alternative hypothesis of autocorrelation up to order three (p-value =
0.209). In light of these tests, one may be confident that the disturbances are
independent of each other.

All the correlation coefficients between each explanatory variable and

residual v, are 0.000. The null hypothesis of no correlation between each

explanatory variable and the disturbance term v, is not rejected (p-value =
1.000). This means that all explanatory variables and the disturbance term v,

are uncorrelated.

To verify whether there exists heteroscedasticity in the model, special
case of White test in Subsection 3.2.2 is also used. Based on White test
statistic value of 3.495, one cannot reject the null hypothesis of no
heteroscedasticity (p-value = 0.174); that is, there exists no heteroscedasticity
in the model.

And then, to ensure whether the disturbances follow the normal

distribution, JB test of normality in Subsection 3.2.1 is conducted. Since the

[}
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value of JB statistic turns out to be 304.658, the hypothesis that the
disturbances are normally distributed is rejected (p-value = 0.000); that is, one
concludes that the disturbances are not normally distributed.

Now, to apply the model in Equation (5.4) for forecasting one-day-
ahead optical density of Spirulina, i.e., on day (t1+1), Equation (5.4) can be re-
expressed as follows:

OD, = 0.072 +0.857 OD,.; +0.021 SAL,, +0.015 D, , -0.101 DHAR,.,.

| (5.5)
Using Equation (5.5), the optical density of Spirulina on day (1+1) can be
predicted by the information on the optical density of Spirulina, salinity of

water, season and harvest on day (1).

5.2.2 Confidence Intervals for the Parameters of the Dynamic Regression

Model
Based on JB test of normality, it has been found that the disturbances in

the fitted regression model are not normally distributed. In this subsection, the
bootstrap distributions of the FGLS estimates and the corresponding
confidence intervals for the respective parameters are presented. The bootstrap
distributions of the FGLS estimates are based on 1,000 bootstrap replications,
that is, B = 1,000. These distributions are presented in Figure (5.1) —
Figure(5.5).

Figure (5.1) Bootstrap Distribution of P

T
LE- ]




Jg
.

Figure (5.2) Bootstrap Distribution of 3;

ﬂ"‘o
Figure (5.3) Bootstrap Distribution of ﬁz
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Figure (5.5) Bootstrap Distribution of 3,
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After obtaining the bootstrap distributions of 4, f£;, 5, B and B,
JB test is then conducted to examine their shapes. The values of skewness for
the distributions of f,, A’, B, B, and f;, are 0.253, -0.391, 0.234, 0.100
and 0.306, respectively. The results from JB test indicate that all the above
bootstrap distributions are not normally distributed except the bootstrap
distribution of £;. The means and standard errors of the distributions of g s
are computed. They are compared with the FGLS estimates in the following

Table(5.3).

Table (5.3)
FGLS Estimates and Bootstrap Estimates
of the Dynamic Regression Model

Variable FGLS Estimate Bootstrap Estimate
Coefficient | Standard error | Mean | Standard error
(Constant) 0.091 0.009 0.094 0.009
272 0.857 0.026 0.848 0.021
SALT | 0.021 0.010 0.022 0.010
DWW, 0.015 0.006 0.016 0.006
DHR!, -0.101 0.006 -0.101 0.006

It can be found from the above Table (5.3) that the bootstrap estimates

are very close to the FGLS estimates. Moreover, the bootstrap estimated

standard errors are found to be approximately equal to those of the

corresponding FGLS estimates.
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In order to construct the studentized bootstrap confidence intervals for

the parameters, the bootstrap distributions of the FGLS estimates are first

-

-
) ﬂ, _'ﬂ;

transformed into the bootstrap distributions of z)'s: z) = 7
s
J

(/=0,1,2,3,4). The bootstrap distributions of z; 's are presented in Figure (5.6)

— Figure (5.10).

Figure (5.6) Bootstrap Distribution of z; for /,
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Figure (5.8) Bootstrap Distribution of z; for /3,
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Unlike the distributions of ﬁj , all the above distributions of z; 's that are

used to get studentized bootstrap confidence intervals are found to be normally
distributed indicated by JB test results. The values of skewness for the
distributions of z,, z,, z,, z, and z, are -0.039, -0.035, 0.109, 0.073 and

-0.001, respectively. Since all the distributions of z; 's are found to be more or

less symmetrical, all studentized bootstrap confidence intervals for the
parameters are found to be approximately symmetrical. The 95% studentized
bootstrap confidence intervals for the respective parameters are presented in

Table (5.4).

Table (5.4)
Bootstrap Confidence Intervals for the Parameters
of the Dynamic Regression Model

Variable 95 % confidence interval Variable 95 % confidence interval |

Lower limit | Upper limit Lower limit | Upper limit |

(Constant) 0.070 0.107 (Constant) 0.060 0.097 |

|

oD/, 0.819 0916 | OD, 0.819 0.916 |
SAL_, -0.011 0051 | SAL,_, -0.011 0.051
DWW/, 0.003 0.027 | DW,, 0.003 0.027
DHAR!, -0.113 0.090 | DHAR,, 0.113 -0.080

Attempts have been made to construct prediction intervals for the optical

density of Spirulina. Some of these prediction intervals are discussed in the

following Subsection 5.2.3.

5.2.3 Prediction Intervals for the Optical Density of Spirulina Using the
Dynamic Regression Model
The construction of 95% one-day-ahead bootstrap prediction intervals
for the optical density of Spirulina is carried out. The median value of the
optical density of Spirulina in the recorded dataset is found to be 0.29 (in 680
nanometer). Taking the median value of the optical density of 0.29 (in 680
nanometer), and different values of salinity of water, season, and state of being

harvested as the data on day (1), the prediction intervals for the optical density
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of Spirulina on day (t+1) are computed and presented in Table (5.5). In

Table(5.5), the prediction intervals are found to cover almost all the observed

(actual) optical density of Spirulina, except Case No. (2).

Table (5.5)

One-Day-Ahead Prediction Intervals for the Optical Density of Spirulina
Using the Dynamic Regression Model

Case OD, | SAL, | OW, | DHAR, | Forecast 95% prediction interval Observed
No. ODy.y Lower limit | Upper limit ODy.4
1 0.29 0.1 0 0 0.323 0.230 0.428 0.30
2 0.29 0.1 0 0 0.323 0.230 0.428 %..0.48
3 0.29 0.1 1 0 0.338 0.246 0.445 0.36
4 0.29 0.2 0 0 0.325 0.232 0.429 0.32
5 0.29 0.2 0 1 0.223 0.128 0.325 0.25
6 0.29 0.2 1 0 0.340 0.247 0.446 0.29
¥ 0.29 0.2 1 0 0.340 0.247 0.446 0.29
8 0.29 0.2 1 1 0.239 0.143 0.342 0.28
9 0.29 0.3 0 0 0.327 0.234 0.431 0.29
10 0.29 0.3 0 0 0.327 0.234 0.431 0.30
11 0.29 0.3 0 1 0.225 0.130 0.328 0.24
b 0.29 0.3 0 1 0.225 0.130 0.328 0.26
13 0.29 0.3 0 1 0.225 0.130 0.328 0.28
14 0.29 0.3 1 0 0.342 0.249 0.448 0.29
15 0.29 0.3 1 0 0.342 0.249 0.448 0.33
16 0.29 0.3 1 0 0.342 0.249 0.448 0.39
17 0.29 0.4 0 1 0.228 0.131 0.330 0.22
18 0.29 0.4 0 1 0.228 0.131 0.330 0.23
19 0.29 0.5 0 1 0.230 0.132 0.334 0.27

For different values of the optical density of Spirulina, salinity of water,

season and state of being harvested in 2007 taken as the observed values on day

(1), 95% one-day-ahead bootstrap prediction intervals for the optical density of

Spirulina are computed and presented in Table C2, Appendix C. Out of 364

prediction intervals computed, it is found that 342 actual readings of the optical

density of Spirulina on a day (94.0 percent) fall within the intervals.
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5.3  Bootstrap Prediction Intervals for Spirulina Productivity in Linear

Regression Model

In 138 cases of the dataset used for fitting the dynamic regression
model, the optical density of Spirulina on day (t+1) is lower than that on day (1)
because Spirulina was harvested on day (). Under the natural situation, one
can seldom find that the optical density of Spirulina on day (t+1) is unusually
lower than that on day (1). Therefore, these cases are removed from the dataset
in undertaking the analysis and a linear regression model of the optical density
of Spirulina is fitted based on the rest of the dataset containing 226 cases which
are approximately 62 percent of the original dataset, and prediction intervals

for the optical density of Spirulina are determined.

5.3.1 A Linear Regression Model of the Optical Density of Spirulina
A linear regression model of the optical density of Spirulina is
formulated as follows:
OD, =a,+a,0D,_, +a,SAL,_, ++a,DW,_ +a,DS§,
+a,PH,_ +a,TEM,  +a,LIG,_ +u,, (5.6)
where OD, is the optical density of Spirulina on day (1),
SAL,.; is the salinity of water on day (¢-1) (in parts per ten thousand),
DW,, is the dummy variable that takes value 1 if the season happens to
be winter (cold season) on day (1-1) or value 0 otherwise,
DS,.; is the dummy variable that takes value 1 if the season happens to
be summer (hot season) on day (t-1) or value 0 otherwise,
PH,, is the pH value of water on day (1-1),
TEM,., is the air temperature on day (t-1), and
LIG,,, is the light on day (1-1).
The final term , is the random disturbance at day (1), which is assumed to be
independent and identically distributed with a zero mean and a finite variance.
Equation (5.6) is fitted (i) using OLS estimation method and applying
the stepwise procedure for variable selection and (ii) using OLS-LTS

estimation method. The fitted model so obtained is as follows:
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0/5, =0.036 + 0.934 OD,.; + 0.030 SAL,.; + 0.009 DW,.;.  (5.7)
The OLS-LTS results of the fitted model in Equation (5.7) are reported in
Table(5.6).

Table (5.6)
OLS-LTS Estimates of the Linear Regression Model
Variable Esuma.ted Standard error | t-statistic Sig-t
coefficient
(Constant) 0.036 0.006 6.402 0.000
OD,., 0.934 0.021 43.753 0.000
SAL, 0.030 0.012 2.560 0.011
DW,, 0.009 0.005 2.031 0.044
R® = 0.940, Adjusted R* = 0.939
Standard error of the estimate = 0.024
F(3, 190) = 994.332, Sig. F = 0.000

All of the regression coefficients have the expected signs, and they are
statistically significant and different from zero. Based on the significance of
individual regression coefficients and overall significance of regression model
itself, the fitted regression model in Equation (5.7) is able to explain the optical
density of Spirulina well. To check for higher orders of autoregressive
structure in the disturbances, BG test is carried out and test statistic takes the
value of 4.996 indicating that the null hypothesis of no autocorrelation is not
rejected against the alternative hypothesis of autocorrelation up to order three
(p-value = 0.172). In the light of BG test, one may be confident that the
disturbances are independent of each other.

All the correlation coefficients between each explanatory variable and

residual %, are 0.000. The null hypothesis of no correlation between each

explanatory variable and the disturbance term u, is not rejected (p-value =

1.000). This means that all explanatory variables on the right hand side of
Equation (5.7) and the disturbance term u, are uncorrelated.

To verify that whether there is heteroscedasticity in the disturbance in
the fitted model, special case of White test is then carried out. It is found that
the test statistic value of 0.417 is not able to reject the null hypothesis of no
heteroscedasticity (p-value = 0.812); that is, there exists homoscedasticity In

the disturbances.
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Further, to ensure whether the disturbances follow the normal
distribution, JB test is also conducted. Since the value of JB statistic turns out
to be 14.444, the hypothesis that the disturbances are normally distributed can
be rejected (p-value = 0.001).

Using the fitted model, the optical density of Spirulina on day (1+1) can
be forecasted by the information on the optical density of Spirulina, salinity of
water, season on day (1).

On comparing the FGLS estimates in Table (5.2) with the OLS-LTS
estimates in Table (5.6), it is found that adjusted R’ and computed F-value for
the linear regression model are substantially larger than those for the dynamic
regression model and standard error of the estimate of linear regression model

is noticeably smaller than that of dynamic regression model.

5.3.2 Confidence Intervals for the Parameters of the Linear Regression

Model

In the simulation study, regressors are assumed as stochastic and the
estimators belong to desirable asymptotic properties. Since bootstrapping is
considered in large sample case, the estimators can be safely applied to actual
data. Based on 1,000 bootstrap replications, the bootstrap distributions of the
OLS-LTS estimates obtained through RBOLS method as proposed in Chapter
III are presented in Figure (5.11) — Figure (5.14).

Figure (5.11) Bootstrap Distribution of &,
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Figure (5.12) Bootstrap Distribution of &,
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The values of skewness for the distributions of @, &,, &, and &, are
0.039, 0.113, 0.084 and -0.060, respectively and JB test indicates that all the
above distributions are concluded to be normally distributed. The means and

standard errors of the distributions of c'i';. are computed. These results are then

compared with the OLS-LTS estimates in the following Table (5.7).

Table (5.7)
OLS-LTS Estimates and Bootstrap Estimates
of the Linear Regression Model

Variable OLS-LTS Estimates Bootstrap Estimates
Coefficient | Standard error | Mean | Standard error
(Constant) 0.036 0.006 0.035 0.005
OD,, 0.934 0.021 0.935 0.021
SAL.4 0.030 0.012 0.029 0.011
DW,, 0.009 0.005 0.009 0.005

It can be seen from the above Table (5.7) that the bootstrap estimates
and bootstrap estimated standard errors are found to be almost the same as the
corresponding OLS-LTS coefficients and their estimated standard errors. In
order to construct the bootstrap confidence intervals for the parameters, the

bootstrap distributions of the OLS-LTS estimates are then transformed into the

bootstrap distributions of z;. 's G = 0,1,2,3). The bootstrap distributions of z,'s

are presented in Figure (5.15) — Figure (5.18).

Figure (5.15) Bootstrap Distribution of z; for &,
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The values of skewness for the distributions of z,, z;, z, and z; are
—0.022, 0.120, 0.109 and -0.066, respectively. JB test indicates that all the

above distributions of z;. 's are normally distributed. The 95% studentized

bootstrap confidence intervals for the parameters, that are computed based on

the OLS-LTS estimates, their standard errors and the distributions of z,'s, are
presented in Table (5.8).
Table (5.8)

Bootstrap Confidence Intervals for the Parameters
of the Linear Regression Model

Variable 95 % confidence interval
Lower limit Upper limit
(Constant) 0.025 0.047
OD,, 0.891 0.975
SALys 0.008 0.052
DW,, 0.000 0.018

To sum up and to end with, the prediction intervals for the optical

density of Spirulina are constructed.

5.3.3 Prediction Intervals for the Optical Density of Spirulina Using the
Linear Regfessionn Model
The construction of 95% one-day-ahead bootstrap prediction intervals
for the optical density of Spirulina is carried out. Taking the optical density of
0.28 (in 680 nanometer) that is the median value as well as the modal value,

and different values of salinity of water and season taken as data on day(t), the

prediction intervals for the optical density of Spirulina on day (1+1) are

computed, and they are presented in Table (5.9). It is found from the

Table(5.9) that the prediction intervals cover all the observed (actual) optical

density of Spirulina.
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Table (5.9)
One-Day-Ahead Prediction Intervals for the Optical Density of Spirulina
Using the Linear Regression Model

Case. OD, | SAL, | DW, | Forecast 95% prediction interval Observed
No. ODy.4 Lower limit | Upper limit ODyy
1 0.28 0.1 0 0.300 0.266 0.358 0.33
2 0.28 0.2 0 0.303 0.270 0.361 0.28
3 0.28 0.2 0 0.303 0.270 0.361 0.28
4 0.28 0.2 0 0.303 0.270 0.361 0.30
5 0.28 0.2 0 0.303 0.270 0.361 0.32
6 0.28 0.2 0 0.303 0.270 0.361 0.35
7 0.28 0.2 1 0.312 0.278 0.370 0.29
8 0.28 0.2 1 0.312 0.278 0.370 0.30
9 0.28 0.3 0 0.306 0.273 0.363 0.29
10 0.28 0.4 0 0.309 0.276 0.367 0.28
11 0.28 0.4 0 0.309 0.276 0.367 0.34
12 0.28 0.5 0 0.312 0.278 0.369 0.29

For different values on the optical density of Spirulina, salinity of water
and season in 2007 taken as the observed values on day (1), 95% one-day-ahead
bootstrap prediction intervals for the optical density of Spirulina are computed
and these intervals can be obtained in Table C3, Appendix C. Out of 194
prediction intervals computed, 187 actual readings of the optical density of
Spirulina on a day (96.4 percent) are found to fall within the intervals.

The widths of prediction intervals obtained from both regression models
are computed and compared. It is found that the maximum value of the widths
of prediction intervals obtained from linear regression model is less than the
minimum value of the widths of prediction intervals obtained from dynamic
regression model. Therefore, it is concluded that all the widths of prediction
intervals obtained from linear regression model are narrower than those
obtained from the dynamic regression model and the prediction intervals
obtained from the linear regression model are more precise than those obtained
from the dynamic regression model.

Based on the findings from the results of bootstrap prediction intervals
for Spirulina productivity computed in this chapter, the following suggestions

can be drawn.
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The prediction intervals for the optical density of Spirulina on day (1+1)
obtained from the linear regression model can be applied for the cases in which
Spirulina was not harvested on day (1). However, for the cases in which
Spirulina was harvested on day (?), the prediction intervals for the optical
density of Spirulina on day (t+1) obtained from the dynamic regression model
should be used. In order to apply the prediction intervals for the optical density
of Spirulina on day (t+1) by using the linear regression model when Spirulina
was harvested on day (1), one needs to measure the optical density of Spirulina

after harvesting and filling media in the culturing pond.



CHAPTER VI
CONCLUSION

In this final Chapter VI, based on the results and findings in this study,
conclusion on performance of the proposed RBOLS method compared to
BOLS method and some suggestions on prediction intervals for Spirulina

productivity in culturing ponds at MSF, together with recommendations are

presented.

6.1 Conclusion on Performance of the Proposed RBOLS Method

If the disturbances in a linear regression model do not follow normal
distribution, the finite sample distributions of the OLS estimates would no
longer follow normal distributions. At this juncture, to estimate the
distributions of the OLS estimates, BOLS method can be employed. Bootstrap
distributions of the OLS estimates are desirable whenever the original dataset
does not contain any outliers. However, the bootstrap distribution is a very
poor estimator of the distribution of the OLS estimate when the dataset is
contaminated with outliers because the OLS estimates are very sensitive to
outliers. In such a situation, in order to obtain reliable distributions of the
regression estimates, robust bootstrap methods should be resorted to, instead of
BOLS method. An alternative bootstrap method called RBOLS which is not
only computationally simple but also resistant to the effect of outliers has been
introduced in this study. Based on the findings from the simulation results, it
was found that bootstrap distributions of the regression estimates, which were
obtained from RBOLS method, were better than the bootstrap distributions of
the corresponding regression estimates which were obtained from BOLS
method.  Achieving almost always smaller rmse’s was the criterion in
selecting the most plausible method to be put into use. It could be concluded
that the proposed RBOLS method has proved to be bertter than BOLS method
whenever the dataset applied to linear regression model has been contaminated

with outliers.
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6.2  Suggestions on Prediction Intervals for Spirulina Productivity

In order to empirically compute one-day-ahead bootstrap prediction
intervals for Spirulina productivity (the optical density of Spirulina) in
culturing ponds at MSF, the daily recorded data on the optical density of
Spirulina, salinity of water, pH value of water, air temperature, light, season
and state of being harvested for the year 2007 at a randomly chosen culturing
pond were collected. A dynamic‘regression model of optical density of
Spirulina was fitted by the method of FGLS. Using the residual resampling
bootstrapping, confidence intervals for the respective parameters and 95% one-
day-ahead bootstrap prediction intervals for the optical density of Spirulina
were computed. Out of 364 prediction intervals computed, it was found that
342 actual readings of the optical density of Spirulina on a day (94.0 percent)
fell within the intervals.

In a total of 364 cases of the dataset used for fitting the dynamic
regression model, it was found that there were 138 cases in which the optical
density of Spirulina on day (¢+1) was less than the optical density of Spirulina
observed on day (1). These 138 cases were excluded from the dataset, and a
linear regression model of the optical density of Spirulina was fitted based on
the rest of the original dataset. The proposed RBOLS method was applied to
compute confidence intervals for the regression parameters and 95% one-day-
ahead bootstrap prediction intervals for the optical density of Spirulina. Out of
194 prediction intervals computed, 187 actual readings of the optical density of
Spirulina on a day (96.4 percent) were found to fall within the intervals.

Comparing between the widths of respective prediction intervals
obtained from both regression models, it was found that all the widths of
prediction intervals obtained from the linear regression model were narrower
than those obtained from the dynamic regression model. Therefore, it was
concluded that the prediction intervals obtained from the linear regression
model were more precise than those obtained from the dynamic regression

model and desirable to be applied in making forecasts.
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However, only for the cases in which Spirulina was not harvested on
day(1), the prediction intervals for the optical density of Spirulina on day (t+1)
obtained from the linear regression model can be applied. For the cases in
which Spirulina was harvested on day(1), the prediction intervals for the optical
density of Spirulina on day (t+1) obtained from the dynamic regression model
should be used. In order to apply the prediction intervals for the optical density
of Spirulina on day (7+1) by using the linear regression model when Spirulina
was harvested on day (), one needs to measure the optical density of Spirulina

after harvesting and filling media in the culturing pond.

6.3 Recommendations
A few areas of research work concerned with the application of robust

bootstrap methods in linear regression are given below:

In the proposed RBOLS.method, outliers are removed by using the LTS
weights. Other methods that deal with outliers not by using the LTS weights
should be explored in order to compare the efficiency of the bootstrap
distributions of regression estimates and select the more efficient method.

If the original dataset is contaminated with outliers, better bootstrap
methods based on robust regression methods, that are capable of resisting
outliers in both original dataset as well as bootstrap samples, can be developed.
However, achievement of such bootstrap methods would depend upon the

availability of ready-made computer software and researcher’s capacity to write

the required computer programs.
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APPENDIX A

Plate A1 Photobioreactor for Pre-Culture of Selected Spirulina Strain

e L
St

Plate A2 Inoculation Ponds (110" x 55'x 1.5')




Plate A3 A Culturing Pond (420" x 55" x 1.5")

Plate A4 Cascade Filter for Harvesting




-98 -

APPENDIX B
Figure B1(a)
The Graph of the rmse’s of BOLS and RBOLS Estimates of £,
at Different Percentages of Outliers When n = 30
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Figure B1(b)
The Graph of the rmse"s of BOLS and RBOLS Estimates of S,
at Different Percentages of Outliers When n = 30
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Figure B1(c)
The Graph of the rmse s of BOLS and RBOLS Estimates of £,
at Different Percentages of Outliers When n = 30
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Figure B2(a)
The Graph of the rmse’ s of BOLS and RBOLS Estimates of 5,
at Different Percentages of Qutliers When n = 60
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Figure B2(b)
The Graph of the rmse”s of BOLS and RBOLS Estimates of f,
at Different Percentages of Outliers When n = 60
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Figure B2(c)
The Graph of the rmse’ s of BOLS and RBOLS Estimates of £,
at Different Percentages of Outliers When n = 60
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Figure B3(a)
The Graph of the rmse" s of BOLS and RBOLS Estimates of 4,
at Different Percentages of Outliers When n =100
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Figure B3(b)
The Graph of the rmse’ s of BOLS and RBOLS Estimates of f,
at Different Percentages of Outliers When n = 100
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Figure B3(c)
The Graph of the rmse s of BOLS and RBOLS Estimates of f,
at Different Percentages of Outliers When n = 100
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Figure B4(a)
The Graph of the rmse’ s of BOLS and RBOLS Estimates of S,
at Different Percentages of Outliers When n = 200
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Figure B4(b)
The Graph of the rmse’ s of BOLS and RBOLS Estimates of S,
at Different Percentages of Outliers When n = 200
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Figure B4(c)
The Graph of the rmse" s of BOLS and RBOLS Estimates of /5,
at Different Percentages of Outliers When n = 200
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Figure B5(a)
The Graph of the rmse"s of BOLS and RBOLS Estimates of Qa,

at Different Percentages of Outliers When n = 30
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Figure B5(b)
The Graph of the rmse" s of BOLS and RBOLS Estimates of &,
at Different Percentages of Outliers When n = 30
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Figure B5(c)
The Graph of the rmse’ s of BOLS and RBOLS Estimates of @,
at Different Percentages of Outliers When n = 30
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Figure B5(d)
The Graph of the rmse’s of BOLS and RBOLS Estimates of a,

at Different Percentages of Outliers When n = 30
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Figure B6(a)
The Graph of the rmse’ s of BOLS and RBOLS Estimates of a,
at Different Percentages of Outliers When n = 60
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Figure B6(b)
The Graph of the rmse” s of BOLS and RBOLS Estimates of ¢,
at Different Percentages of Outliers When n =60
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Figure B6(c)

The Graph of the rmse" s of BOLS and RBOLS Estimates of a,

at Different Percentages of Outliers When n = 60
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Figure B6(d)

The Graph of the rmse"s of BOLS and RBOLS Estimates of a,
at Different Percentages of Outliers When n = 60
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Figure B7(a)

The Graph of the rmse s of BOLS and RBOLS Estimates of a,

at Different Percentages of Outliers When n = 100
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Figure B7(b)

The Graph of the rmse’ s of BOLS and RBOLS Estimates of g
at Different Percentages of Outliers When n = 100
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Figure B7(c)

The Graph of the rmse” s of BOLS and RBOLS Estimates of a,
at Different Percentages of Outliers When n = 100
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Figure B7(d)

The Graph of the rmse” s of BOLS and RBOLS Estimates of &,
at Different Percentages of Outliers When n =100
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Figure B8(a)
The Graph of the rinse’s of BOLS and RBOLS Estimates of @,
at Different Percentages of Outliers When n = 200
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Figure B8(b)
The Graph of the rmse”s of BOLS and RBOLS Estimates of @,
at Different Percentages of Outliers When n = 200
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Figure B8(c)
The Graph of the rmse s of BOLS and RBOLS Estimates of a,
at Different Percentages of Outliers When n = 200
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Figure B8(d)
The Graph of the rmse’ s of BOLS and RBOLS Estimates of a,
at Different Percentages of Outliers When n = 200
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APPENDIX C

Table C1
Data on the Optical Density of Spirulina and Related Variables
at a Culturing Pond in 2007

Day | Optical Density pH Salinity Air Temperature Light Harvest
(OD) (PH) (SAL) (TEM) (LIG) (DHAR)
(680 (part: per (centigrade) (watt per | (1=yes,0=no)
nanometer) thousand) (meter)?)
1 0.19 9.9 2 19 80.2 1
2 0.18 9.8 2 22 88.2 0
3 0.49 10.3 2 18 92.7 1
4 0.30 10.3 2 20 93.5 1
5 0.29 104 2 24 113.2 1
6 0.28 10.0 2 24 87.5 0
V4 0.30 10.3 2 22 103.3 0
8 0.36 10.4 2 22 107.2 0
9 0.36 10.6 2 21 90.7 1
10 0.22 10.9 2 22 106.3 0
11 0.24 10.7 2 23 11583 0
12 0.26 10.8 2 24 118.3 0
13 0.39 10.1 2 24 116.8 1
14 0.32 10.1 2 26 119.5 0
15 0.33 10.7 4 25 100.8 0
16 0.43 10.8 3 26 106.3 0
17 0.46 10.9 3 26 88.7 0
18 0.48 11.0 3 26 95.4 1
19 0.28 11.0 2 21 96.1 0
20 0.29 10.9 3 21 99.4 0
21 0.39 10.9 3 20 85.2 1
22 0.35 11.1 5 20 100.7 1
23 0.34 10.8 2 20 99.5 0
24 0.36 10.5 1 20 80.1 0
25 0.36 10.4 2 21 80.9 1
26 0.34 10.5 1 21 102.1 0
27 0.41 114 . 22 106.7 0
28 0.42 11.2 9 22 96.8 0
29 0.46 11.5 1 22 85.7 1
30 0.33 11.6 2 22 56.2 1
31 0.23 11.3 1 22 924 0
32 0.23 9.0 1 18 35.5 0
33 0.37 9.9 1 18 37.6 0
34 0.39 10.1 1 22 95.5 1
35 0.31 10.0 1 20 714 1
36 0.26 10.0 1 20 66.3 0
37 0.31 9.7 2 24 79.3 0
38 0.48 10.0 3 21 54.0 0
39 0.54 10.1 3 22 89.6 0
40 0.65 10.4 3 20 46.5 1
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Table C1 Contd.
Data on the Optical Density of Spirulina and Related Variables
at a Culturing Pond in 2007

Day | Optical Density | pH Salinity | Air Temperature Light Harvest
(OD) (PH) (SAL) (TEM) (LIG) (DHAR)
(680 (part per (centigrade) (watt per | (1=yes,0=no)
nanometer) thousand) (meter)’)
41 0.33 10.3 3 24 114.7 1
42 0.30 10.2 : 24 105.5 1
43 0.25 10.1 3 24 100.2 1
44 0.15 11.2 3 24 105.6 0
45 0.29 10.0 3 23 89.9 0
46 0.29 10.0 3 22 105.2 0
47 0.33 9.8 2 22 77.6 1
48 0.23 9.7 2 23 86.3 0
49 0.27 9.6 2 24 79.5 0
50 0.33 9.8 2 26 63.6 1
51 0.23 10.0 9 24 79.5 0
52 0.27 9.9 2 22 85.7 0
53 0.31 9.8 2 24 58.6 0
54 0.31 9.7 2 24 83.2 0
55 0.40 9.7 3 24 65.4 0
56 0.40 9.7 5 24 755 0
57 0.41 9.9 3 24 91.2 1
58 0.39 10.1 3 26 95.4 0
59 0.44 10.0 4 26 88.2 1
60 0.36 9.7 4 28 82.6 1
61 0.31 9.7 4 26 75.4 1
62 0.25 9.7 4 27 74.5 1
63 0.21 9.7 4 26 81.6 0
64 0.25 9.6 2 28 79.3 1
65 0.21 9.8 3 25 70.4 0
66 0.28 9.8 9 23 80.8 1
67 0.21 9.5 2 23 84.2 0
68 0.32 9.4 2 24 89.5 1
69 0.17 9.8 2 26 86.3 0
70 0.22 10.0 5 o 80.3 0
71 0.25 10.0 2 28 Y35 0
72 0.29 10.0 2 29 13.7 1
73 0.25 10.2 2 26 69.1 0
74 0.28 9.8 9 28 92.4 0
75 0.28 9.8 4 29 95.6 0
76 0.28 9.5 4 28 80.3 0
77 0.34 9.9 2 27 87.5 1
78 0.18 10.0 2 26 61.5 0
79 0.30 10.5 2 26 716 0
80 0.35 10.1 2 29 84.7 0
81 0.35 10.1 2 30 112.6 1
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Table C1 Contd.
Data on the Optical Density of Spirulina and Related Variables
at a Culturing Pond in 2007

Day | Optical Density pH Salinity Air Temperature Light Harvest
(OD) (PH) (SAL) (TEM) (LIG) (DHAR)
(680 (part - per (centigrade) (watt per | (1=yes,0=no)
nanometer) thousand) (meter)?)
82 0.13 9.9 2 28 94.2 0
83 0.40 9.9 2 28 97.5 0
84 0.40 10.0 2 30 98.6 0
85 0.40 10.3 3 32 103.8 1
86 0.35 10.3 3 31 92.5 1
87 0.25 10.2 5 30 83.3 1
88 0.14 10.0 1 30 68.4 0
89 0.14 10.0 1 30 89.4 0
90 0.14 10.0 1 32 92.2 0
91 0.20 10.5 4 30 70.3 0
92 0.20 10.5 4 30 62.1 1
93 0.07 10.5 4 30 82.3 0
94 0.21 10.5 3 34 81.3 0
95 0.27 10.3 3 31 87.3 1
96 0.25 10.3 3 31 87.6 0
97 0.27 10.5 3 32 92.0 0
98 0.28 10.4 4 32 99.1 0
99 0.29 10.5 3 30 94.3 1
100 0.28 10.5 3 22 32.2 1
101 0.20 10.2 1 30 98.3 0
102 0.25 10.2 2 31 100.6 0
103 0.28 10.3 2 31 102.2 0
104 0.35 10.5 2 31 91.5 0
105 0.38 10.3 2 32 115.6 1
106 0.30 10.3 9 30 101.4 0
107 0.32 104 2 29 92.5 1
108 0.31 10.4 9 28 83.3 0
109 0.33 10.4 2 28 88.4 1
110 0.28 10.5 2 28 100.2 0
111 0.30 10.2 2 30 112.4 0
112 0.31 10.1 3 29 88.6 1
113 0.18 10.4 5 30 106.5 0
114 0.18 10.2 5 28 108.5 0
115 0.36 10.2 7 37 112.3 0
116 0.39 10.3 7 34 107.1 1
117 0.37 10.0 7 33 111.8 0
118 0.37 10.0 10 30 74.3 0
119 0.40 10.1 7 31 30.8 0
120 0.42 10.2 8 31 89.2 1
121 0.39 10.1 10 35 100.1 0
122 0.44 10.2 10 37 106.5 0
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Table C1 Contd.
Data on the Optical Density of Spirulina and Related Variables
at a Culturing Pond in 2007

Day | Optical Density pH Salinity Air Temperature Light Harvest
(OD) (PH) (SAL) (TEM) (LIG) (DHAR)
(680 (part - per (centigrade) (watt per | (1=yes,0=no)
nanometer) thousand) (meter)?)
123 0.45 10.2 10 34 104.5 0
124 0.52 10.0 7 31 79.0 0
125 0.56 9.9 7 37 118.9 1
126 0.48 9.9 8 35 120.6 1
127 0.23 9.8 10 32 119.1 0
128 0.30 10.0 5 30 549 0
129 0.34 10.0 5 27 56.9 0
130 0.46 10.1 4 29 97.0 1
131 0.36 10.2 5 31 68.8 0
132 0.37 10.3 4 30 38.7 1
133 0.35 10.1 4 33 101.4 0
134 0.38 10.1 4 34 105.2 1
135 0.30 10.2 4 31 84.4 0
136 0.33 10.1 4 28 22.9 1
137 0.25 10.2 4 32 92.4 1
138 0.17 10.3 9 28 18.5 0
139 0.32 10.4 4 25 243 1
140 0.28 10.4 2 26 245 1
141 0.12 10.4 1 27 28.7 0
142 0.13 10.3 1 25 9.8 0
143 0.23 10.1 9 29 58.0 1
144 0.15 10.1 - 31 113.9 0
145 0.21 10.2 3 29 38.5 0
146 0.24 10.3 3 32 107.9 1
147 0.20 10.3 5 33 110.3 1
148 0.17 10.5 4 34 108.0 0
149 0.27 10.6 4 33 115.7 1
150 0.25 10.4 4 33 113.3 0
151 0.32 10.2 4 33 110.4 1
162 0.3 10.1 4 34 123.7 0
163 0.32 10.1 4 34 113.8 1
154 0.3 10.2 4 34 112.5 1
155 0.21 10.4 5 31 67.3 0
156 0.37 9.9 6 33 109.4 1
157 0.15 10.1 3 33 121.1 0
158 0.22 10.2 2 32 81.3 0
159 0.24 10.0 2 32 59.9 1
160 0.23 10.3 2 34 62.4 0
161 0.24 10.2 2 32 60.4 0
162 0.25 10.1 5 32 234.8 1
163 0.23 9.8 5 28 83.0 0
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Table C1 Contd.
Data on the Optical Density of Spirulina and Related Variables
at a Culturing Pond in 2007

Day | Optical Density | pH Salinity | Alr Temperature Light Harvest
(OD) (PH) (SAL) (TEM) (LIG) (DHAR)
(680 (part per (centigrade) (watt per | (1=yes,0=no)
nanometer) thousand) (meter)?)
164 0.23 9.8 5 26 21.7 1
165 0.17 10.0 2 32 169.4 0
166 0.21 9.9 3 31 146.8 0
167 0.21 10.0 1 32 172.3 1
168 0.13 10.1 2 32 158.3 0
169 0.13 10.1 2 33 220.2 1
170 0.1 10.0 3 33 215.8 0
171 0.17 10.1 5 36 258.6 0
172 0.26 10.0 5 34 255.1 0
173 0.29 10.0 4 34 290.7 1
174 0.23 9.8 3 35 308.3 0
175 0.23 9.8 3 34 290.7 0
176 0.24 9.8 3 35 265.2 1
177 0.19 9.9 3 253.8 1
178 0.17 9.9 3 33 257.3 0
179 0.25 9.9 2 32 216.6 0
180 0.27 10.0 5 34 325.5 0
181 0.59 9.9 4 32 276.9 1
182 0.18 9.8 5 33 265.8 0
183 0.36 9.6 4 34 231.9 1
184 0.23 9.7 g 31 169.6 0
185 0.30 9.7 4 31 99.5 0
186 030 . 9.7 2 32 280.2 0
187 0.42 9.6 2 29 75.7 0
188 0.42 9.6 2 30 76.3 1
189 0.40 9.7 2 30 75.3 1
190 0.39 9.7 2 31 133.6 0
191 0.42 10.0 3 34 245.9 1
192 0.34 10.1 3 33 248.7 1
193 0.23 10.3 2 32 123.4 0
194 0.24 10.2 3 34 248.5 0
195 0.28 10.5 2 35 275.5 0
196 0.28 10.5 2 33 252.3 0
197 0.32 10.5 2 32 177.0 1
198 0.26 10.2 3 32 249.6 0
199 0.31 10.0 3 33 206.7 0
200 0.31 10.0 3 30 223.1 0
201 0.31 10.0 2 ar 36.1 1
202 0.27 10.0 2 26 49.2 0
203 0.27 10.0 3 30 215.2 1
204 0.20 10.0 2 31 262.2 0
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Table C1 Contd.
Data on the Optical Density of Spirulina and Related Variables
at a Culturing Pond in 2007

Day | Optical Density pH Salinity Air Temperature Light Harvest
(0D) (PH) (SAL) (TEM) (LIG) (DHAR)
(680 (part per (centigrade) (watt per | (1=yes,0=no)

nanometer) thousand) (meter)®) !

205 0.29 9.9 4 28 59.7 1 ;

206 0.22 9.8 3 30 182.8 1 !

207 0.18 9.9 3 30 160.1 0 |

208 0.20 9.8 2 26 37.8 0 5

209 0.20 9.8 2 30 129.5 1 |

210 0.16 9.9 3 30 130.3 0 E

211 0.16 9.9 3 32 192.1 0

212 0.19 9.5 3 31 142.8 0

213 0.24 10.1 2 33 260.0 0

214 0.29 9.9 3 32 190.9 1

215 0.24 10.1 2 29 141.9 0 |

216 0.29 9.9 3 32 205.7 0 |

217 0.3 10.0 2 32 230.2 0 |

218 0.31 10.5 1 33 260.7 0 5

219 0.31 10.2 2 35 260.1 1 !

220 0.22 10.2 2 33 99.8 0

221 0.22 10.3 2 35 260.3 0

222 0.27 10.5 3 33 240.9 0

223 0.29 10.1 2 31 261.8 0

224 0.32 9.9 2 30 2233 0

225 0.36 9.7 2 30 81.0 1 |

226 0.29 9.8 3 30 101.5 1 i

227 0.26 9.3 2 31 169.9 0 ;

228 0.34 10.8 4 31 118.4 0

229 0.35 9.9 5 29 74.6 1

230 0.33 9.9 3 31 125.2 0

231 0.35 10.2 3 32 203.5 0

232 0.37 10.2 4 33 286.5 0

233 0.45 10.1 5 32 248.9 0

234 0.53 9.9 4 34 249.5 1

235 0.33 9.8 5 30 101.3 0

236 0.36 9.9 5 30 149.2 0

237 0.4 9.8 4 30 108.2 1

238 0.37 9.7 3 31 201.1 0

239 0.38 9.7 3 32 249.6 1 i

240 0.21 9.8 3 34 281.6 0 !

241 0.28 9.7 5 29 94.1 0o |

242 0.29 9.8 3 33 278 1 o |

243 0.29 9.8 5 30 108.5 1 '

244 0.27 9.5 2 33 252.3 0

245 0.27 9.8 3 32 175.5 0
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Table C1 Contd.
Data on the Optical Density of Spirulina and Related Variables
at a Culturing Pond in 2007

Day | Optical Density pH Salinity Air Temperature Light Harvest
(OD) (PH) (SAL) (TEM) (LIG) (DHAR)
(680 (part per (centigrade) (watt per | (1=yes,0=no)
nanometer) thousand) (meter)’)
246 0.39 9.8 3 33 79.8 0
247 0.45 9.7 3 33 248.0 0
248 0.61 9.8 2 o2 164.7 1
249 0.37 9.8 4 32 122.4 0
250 0.37 9.8 3 29 145.0 0
251 0.37 9.8 3 32 148.7 1
252 0.33 9.8 3 33 180.2 1
253 0.32 9.8 3 33 193.8 1
254 0.26 9.8 2 34 279.6 1
255 0.22 9.8 3 32 126.0 0
256 0.22 9.8 1 34 235.6 0
257 0.31 9.6 1 32 195.1 1
258 0.25 9.4 1 28 526 1
259 0.23 9.4 1 30 120.7 1
260 0.10 8.6 1 33 250.1 0
261 0.12 8.5 1 32 121.9 1
262 0.10 8.9 1 36 260.6 0
263 0.15 9.0 1 34 235.4 1
264 0.13 8.9 1 34 119.8 0
265 0.14 9.2 1 33 190.5 0
266 0.15 9.3 1 32 188.5 0
267 0.17 8.4 1 29 64.0 0
268 0.19 8.8 1 34 192.3 0
269 0.20 8.7 1 34 213.8 0
270 0.25 9.1 1 33 162.9 0
27 0.30 9.4 1 33 247.8 1
272 0.25 9.2 1 31 116.9 0
273 0.27 9.5 1 31 159.4 0
274 0.29 9.8 1 33 276.5 0
209 0.48 9.8 1 33 284.6 1
276 0.28 9.7 1 38 242.8 0
277 0.33 9.7 1 36 235.9 1
278 0.23 9.7 1 35 140.5 0
279 0.39 9.6 1 32 138.6 0
280 0.39 9.6 1 32 125.6 1
281 0.38 9.9 1 32 114.0 1
282 0.34 9.9 1 33 2353 0
283 0.35 9.6 1 M4 233.0 0
284 0.35 9.5 1 32 184.5 0
285 0.41 9.5 1 31 152.6 1
286 0.33 9.6 1 32 144.7 1
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Table C1 Contd.
Data on the Optical Density of Spirulina and Related Variables
at a Culturing Pond in 2007

Day | Optical Density | pH Salinity | Air Temperature Light Harvest
(0D) (PH) (SAL) (TEM) (LIG) (DHAR)
(680 (part per (centigrade) (watt per | (1=yes,0=no)
nanometer) thousand) (meter)?)
287 0.30 9.6 1 32 160.0 1
288 0.29 9.5 1 31 100.3 0
289 0.30 9.5 1 30 8.4 1
290 0.22 9.4 1 30 12.6 0
291 0.23 9.6 1 31 12.4 0
292 0.35 9.3 1 32 99.8 1
293 0.24 9.3 1 31 105.0 1
294 0.23 9.3 1 31 110.0 1
295 0.21 9.4 1 30 101.4 1
296 0.17 9.4 1 30 100.1 1
297 0.16 9.3 1 30 100.7 0
298 0.18 9.3 1 30 99.8 0
299 0.18 9.3 1 31 131.4 0
300 0.18 9.3 1 31 129.0 1
301 0.12 9.3 2 31 118.9 0
302 0.13 9.1 2 31 121.0 1
303 0.06 9.2 2 31 113.3 0
304 0.09 9.2 2 30 128.9 0
305 0.26 9.9 9 31 130.9 1
306 0.15 9.5 1 30 131.0 0
307 0.20 9.7 1 29 128.9 0
308 0.21 9.9 1 29 130.6 1
309 017 = 10.1 1 28 108.0 0
310 0.25 10.0 2 27 50.3 0
311 0.36 9.9 1 29 72.8 1
212 0.21 9.9 1 31 112.3 0
313 0.25 9.9 1 31 102.3 0
314 0.36 9.9 4 31 100.7 1
315 0.21 9.9 1 31 95.4 0
316 0.25 9.9 1 31 84.0 0
317 0.26 9.8 1 30 76.3 0
318 0.28 9.8 1 29 39.3 1
319 0.21 9.8 1 23 222 0
320 0.24 9.5 2 25 284 0
321 0.30 9.2 1 25 14.8 1
322 0.25 9.9 1 26 30.0 1
323 0.20 9.6 1 27 34.0 0
324 0.25 9.0 1 29 105.1 1
325 0.23 9.8 1 29 101.6 0
326 0.40 10.3 9 29 99.7 1
327 0.29 10.2 2 28 75.2 0 |
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Table C1 Contd.
Data on the Optical Density of Spirulina and Related Variables
at a Culturing Pond in 2007

Day | Optical Density pH Salinity Air Temperature Light Harvest
(0OD) (PH) (SAL) (TEM) (LIG) (DHAR)
(680 (part per (centigrade) (watt per | (1=yes,0=no)
nanometer) thousand) (meter)?)
328 0.29 10.2 2 27 62.5 0
329 0.29 9.5 1 26 59.6 0
330 0.36 9.2 1 27 49.0 1
331 0.32 9.3 1 28 59.7 0
332 0.38 9.3 1 27 47.9 0
333 0.39 9.5 1 20 8.0 0
334 0.46 9.5 1 26 67.6 1
335 0.42 9.5 2 26 78.6 1
336 0.40 9.5 1 26 70.4 0
337 0.44 9.3 1 27 78.4 0
338 0.44 9.3 2 27 80.4 0
339 0.44 9.3 2 28 83.1 0
340 0.59 9.4 2 25 87.7 1
341 0.50 9.9 1 27 94.3 1
342 0.46 9.4 2 26 92.4 0
343 0.46 9.7 2 26 88.4 0
344 0.49 9.5 2 26 93.0 0
345 0.54 9.5 2 25 89.9 1
346 0.49 9.6 2 25 85.1 0
347 0.54 9.3 2 26 101.3 1
348 0.51 9.3 2 22 103.0 0
349 0.53 9.3 2 25 108.3 1
350 0.51 9.3 2 23 100.4 - 0
351 0.51 9.5 2 24 111.6 0
352 0.51 9.5 2 20 16.4 1
353 0.47 9.5 2 27 131.75 1
354 0.44 8.5 3 25 108.04 0
355 0.46 9.3 3 26 112.36 0
356 0.46 9.3 3 22 121.84 0
357 0.47 9.2 = 21 109.35 0
358 0.47 9.3 3 22 115.65 0
359 0.47 9.4 3 21 109.65 0
360 0.47 9.0 3 21 98.71 1
361 0.45 9.2 2 o2 129.2 1
362 0.42 9.2 2 22 a4 :
363 0.37 9.4 2 22 104.12 0
17 88.44 0
364 0.41 9.4 2 -
365 0.46 9.4 2 20 95.65

Source: Myanma Spirulina Factory.
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Table C2
95% One-Day-Ahead Bootstrap Prediction Intervals
for the Optical Density of Spirulina Using the Dynamic Regression Model

Sr. No. OD; | SAL; | DW; | DHAR; | Forecast 95% prediction interval
ODys4 Lower limit | Upper limit

1 0.06 | 0.2 0 0 0.128 0.033 0.235
2 0.07 | 04 0 0 0.140 0.044 0.246
3 0.09 | 0.2 0 0 0.153 0.058 0.260
4 0.10 | 0.1 0 0 0.160 0.063 0.267
5 0.10 | 0.3 0 0 0.164 0.070 0.270
6 0.12 | 0.1 0 0 0.177 0.081 0.284
7 0.12 | 0.1 0 1 0.075 0.000 0.178
8 0.12 | 0.2 0 0 0.179 0.084 0.285
9 0.13 0.1 0 0 0.185 0.090 0.292
10 0.13 | 0.2 0 0 0.188 0.092 0.294
11 0.13 | 0.2 0 1 0.086 0.000 0.188
12 0.14 | 0.1 0 0 0.194 0.099 0.301
13 015 | 0.1 0 0 0.203 0.107 0.309
14 0.15 | 0.1 0 1 0.101 0.007 0.203
15 0.15 0.1 1 0 0.218 0.124 0.326
16 0.15 | 0.2 0 0 0.205 0.109 0.311
17 0.15 0.3 0 0 0.207 0.113 0.312
18 0.15 | 0.3 1 0 0.222 0.128 0.329
19 0.16 | 0.3 0 0 0.215 0.121 0.321
20 0.17 | 0.1 0 0 0.220 0.125 0.326
21 0.17 | 0.1 0 1 0.118 0.023 0.220
22 0.17 | 01 1 0 0.235 0.142 0.343
23 0.17 0.2 0 0 0.222 0.126 0.327
24 0.17 0.3 0 0 0.224 0.130 0.329
25 0.17 0.4 0 0 0.226 0.133 0.332
26 0.17 0.5 0 0 0.228 0.132 0.335
27 0.18 | 0.1 0 0 0.228 0.134 0.335
28 0.18 | 0.1 0 1 0.127 0.032 0.228
29 0.18 | 0.2 0 0 0.230 0.135 0.336
30 0.18 0.2 1 0 0.246 0.153 0.354
31 0.18 0.3 0 0 0.233 0.138 0.337
32 0.18 | 0.5 0 0 0.237 0.141 0.344

33 0.19 | 0.1 0 0 0.237 0.143 0.343
34 0.19 | 0.2 1 1 0.153 0.055 0.257

35 0.19 0.3 0 0 0.241 0.147 0.346

36 0.19 | 0.3 0 1 0.140 0.043 0.242

7 0.20 0.1 0 0 0.245 0.152 0.352

38 0.20 | 0.1 1 0 0.261 0.167 0.368

39 0.20 0.2 0 0 0.248 0.1583 0.383

40 0.20 0.2 0 1 0.146 0.051 0.248

41 0.20 | 0.4 0 0 0.252 0.158 0.358

42 0.20 | 0.4 0 1 0.150 0.054 0.254

43 0.20 | 0.5 0 1 0.152 0.055 0.257
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Table C2 Contd.
95% One-Day-Ahead Bootstrap Prediction Intervals
for the Optical Density of Spirulina Using the Dynamic Regression Model

Sr. No. OD,; | SAL, | DW, | DHAR, | Forecast 95% prediction interval
OD.4 Lower limit | Upper limit
44 0.21 | 0.1 0 1 0.153 0.058 0.253
45 0.21 | 0.1 1 0 0.269 0.176 0.377
46 0.21 | 0.1 1 1 0.168 0.071 0.273
47 0.21 | 0.2 0 0 0.256 0.162 0.361
48 0.21 | 0.3 0 0 0.258 0.164 0.363
49 0.21 | 0.4 0 0 0.260 0.167 0.366
50 021 | 0.5 0 0 0.262 0.167 0.369
51 022 | 0.1 0 0 0.263 0.169 0.369
52 0.22 | 0.2 0 0 0.265 0.171 0.370
53 0.22 | 0.2 1 0 0.280 0.188 0.387
54 022 | 0.3 0 0 0.267 0.173 0.371
55 0.22 { 0.3 0 1 0.165 0.069 0.268
56 0.23 | 0.1 0 0 0.271 0.178 0.377
57 0.23 | 0.1 0 1 0.170 0.075 0.270
58 0.23 | 01 1 0 0.287 0.193 0.394
59 0.23 | 0.2 0 0 0.273 0.179 0.379
60 0.23 | 0.2 0 1 0.172 0.077 0.274
61 0.23 | 0.2 1 0 0.289 0.196 0.395
62 023 | 0.3 0 0 0.275 0.181 0.379
63 0.23 | 0.5 0 0 0.280 0.185 0.386
64 023 | 0.5 0 1 0.178 0.081 0.283
65 023 | 1.0 0 0 0.290 0.188 0.400
66 0.24 | 0.1 0 1 0.178 0.084 0.279
67 0.24 | 0.2 0 0 0.282 0.188 0.387
68 0241 02 O 1 0.180 0.086 0.282
69 0.24 | 0.2 1 0 0.297 0.205 0.404
70 0.24 | 0.3 0 0 0.284 0.190 0.388
71 0.24 | 0.3 0 1 0.183 0.087 0.285
72 0.25 | 0.1 0 0 0.288 0.195 0.394
73 0.25 | 0.1 0 1 0.187 0.093 0.287
74 0.25 | 0.1 1 0 0.304 0.210 0.411
75 0.25 | 0.1 1 1 0.202 0.106 0.307
76 0.25 | 0.2 0 0 0.290 0.197 0.396
77 0.25 | 0.2 0 1 0.189 0.095 0.291
78 0.25 | 0.2 1 0 0.306 0.213 0.412
79 0.25 | 0.3 0 0 0.293 0.199 0.397
80 0.25 | 0.3 1 1 0.207 0.110 0.310
81 025 | 04 0 0 0.295 0.201 0.401
82 0.25 | 04 0 1 0.193 0.096 0.297
83 0.25 | 0.5 0 1 0.195 0.098 0.300
84 0.26 | 0.1 1 0 0.312 0.219 0.420
85 0.26 | 0.2 0 0 0.299 0.206 0.404
86 0.26 | 0.2 0 1 0.198 0.103 0.299
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Table C2 Contd.
95% One-Day-Ahead Bootstrap Prediction Intervals
for the Optical Density of Spirulina Using the Dynamic Regression Model

Sr. No. OD, | SAL; | OW, | DHAR, | Forecast 95% prediction interval
ODq4t Lower limit | Upper limit
87 0.26 | 0.2 1 0 0.314 0.222 0.420
88 0.26 | 0.2 1 1 0.213 0117 0.316
89 026 | 0.3 0 0 0.301 0.208 0.405
90 0.26 | 0.5 0 0 0.305 0.211 0.412
91 0.27 | 0.1 0 0 0.306 0.213 0.411
92 0.27 | 0.2 0 0 0.308 0.215 0.413
93 0.27 | 0.2 1 0 0.323 0.230 0.429
94 0.27 | 0.3 0 0 0.310 0.217 0.414
g5 027 | 0.3 0 1 0.208 0.113 0.311
96 027 | 04 0 1 0.210 0.113 0.314
97 0.27 | 0.5 0 0 0.314 0.219 0.420
98 0.28 | 0.1 0 0 0.314 0.221 0.420
99 0.28 | 0.1 1 1 0.228 0.133 0.332
100 0.28 | 0.2 0 0 0.316 0.224 0.421
101 0.28 | 0.2 0 1 0.215 0.120 0.317
102 0.28 | 0.2 1 0 0.332 0.239 0.437
103 0.28 | 0.3 0 0 0.318 0.226 0.422
104 0.28 | 0.3 0 1 0.217 0.121 0.319
105 0.28 | 0.4 0 0 0.320 0.227 0.426
106 028 | 0.5 0 0 0.322 0.228 0.429
107 029 | 01 0 0 0.323 0.230 0.428
108 029 | 0.1 1 0 0.338 0.246 0.445
109 029 | 0.2 0 0 0.325 0.232 0.429
110 029 | 0.2 0 1 0.223 0.128 0.325
111 029 | 0.2 1 0 0.340 0.247 0.446
112 0.29 | 0.2 1 1 0.239 0.143 0.342
113 0.29 | 03 0 0 0.327 0.234 0.431
114 0.29 | 0.3 0 1 0.225 0.130 0.328
118 029 | 03 1 0 0.342 0.249 0.448
116 0.29 0.4 0 1 0.228 0.131 0.330
117 0.29 [ 0.5 0 1 0.230 0.132 0.334
118 0.30 | 0.1 0 1 0.230 0.135 0.330
119 0.30 0.1 1 1 0.245 0.150 0.349
120 0.30 | 0.2 0 0 0.333 0.241 0.438
121 0.30 | 0.2 1 0 0.349 0.256 0.454
122 0.30 | 0.2 1 1 0.247 0.152 0.350
123 0.30 | 0.3 1 1 0.249 0.154 0.353
124 0.30 | 04 0 0 0.338 0.244 0.444
125 0.30 | 0.4 0 1 0.236 0.139 0.339
126 0.30 | 0.5 0 0 0.340 0.246 0.446
127 0.31 0.1 0 0 0.340 0.248 0.445
128 0.31 | 0.1 0 1 0.238 0.144 0.339
129 0.31 | 0.1 1 1 0.254 0.159 0.357
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Table C2 Contd.
95% One-Day-Ahead Bootstrap Prediction Intervals
for the Optical Density of Spirulina Using the Dynamic Regression Model

Sr. No. OD, | SAL, | DW, | DHAR, | Forecast 95% prediction interval
OD;.q Lower limit | Upper limit

130 0.31 | 0.2 0 0 0.342 0.250 0.447
131 0.31 | 0.2 0 1 0.240 0.145 0.342
132 0.31 | 0.2 1 0 0.357 0.264 0.462
133 0.31 | 0.3 0 0 0.344 0.2561 0.448
134 031 | 0.3 0 1 0.243 0.147 0.345
135 0.31 | 0.4 0 1 0.245 0.148 0.347
136 0.32 | 0.1 1 0 0.364 0.272 0.470
187 0.32 | 0.2 0 0 0.350 0.259 0.456
138 0.32 | 0.2 0 1 0.249 0.154 0.351
139 0.32 | 0.2 1 0 0.366 0.273 0.471
140 032 | 03 0 1 0.251 0.156 0.353
141 0.32 | 0.4 0 1 0.253 0.157 0.356
142 0.33 | 0.1 0 1 0.256 0.161 0.356
143 0.33 | 0.2 0 1 0.258 0.162 0.360
144 0.33 | 0.2 1 1 0.273 0.178 0.376
145 0.33 | 0.3 0 0 0.361 0.269 0.466
146 033 { 03 0 1 0.260 0.165 0.362
147 0:33 | 0.3 1 1 0.275 0.180 0.378
148 033 | 04 0 1 0.262 0.165 0.364
149 0.33 | 04 1 0 0.379 0.286 0.486
150 0.33 | 0.5 0 0 0.365 0.272 0.471
151 0.34 | 0.1 0 0 0.366 0.274 0.471
162 0.34 | 0.1 1 0 0.381 0.289 0.487
153 0.34 | 0.2 0 1 0.266 0.171 0.368
154 0.34 | 0.2° 1 0 0.383 0.291 0.488
155 0.34 | 0.3 0 1 0.268 0.173 0.370
156 034 | 04 0 0 0.372 0.280 0.478
157 0.34 | 0.5 0 0 0.374 0.280 0.480
158 0.35 | 0.1 0 0 0.374 0.283 0.480
159 0.35 | 01 0 1 0.273 0.179 0.373
160 0.35 | 0.2 0 0 0.376 0.284 0.482
161 0.35 | 0.2 0 1 0.275 0.180 0.377
162 035 { 0.2 1 1 0.290 0.196 0.393
163 0.35 | 0.3 0 0 0.378 0.286 0.483
164 035 | 0.3 0 1 0.277 0.182 0.379
165 0.35 | 04 0 0 0.380 0.288 0.487
166 035 | 0.5 0 1 0.281 0.183 0.386
167 0.36 | 0.1 1 0 0.398 0.307 0.504
168 0.36 | 0.1 1 3 0.297 0.203 0.400
169 0.36 | 0.2 0 1 0.283 0.188 0.386
170 0.36 | 0.2 1 0 0.400 0.309 0.505
171 0.36 | 0.2 1 1 0.299 0.205 0.401

172 0.36 { 0.4 0 1 0.288 0.191 0.380
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Table C2 Contd.
95% One-Day Ahead Bootstrap Prediction Intervals
for the Optical Density of Spirulina Using the Dynamic Regression Model

Sr. No. OD, | SAL; | DW, | DHAR, | Forecast 95% prediction interval
ODy44 Lower limit | Upper limit
173 036 | 04 1 1 0.303 0.207 0.407
174 0.36 | 0.5 0 0 0.391 0.297 0.497
175 0.36 | 0.7 0 0 0.395 0.301 0.504
176 0.37 | 0.1 1 0 0.407 0.316 0.512
177 0.37 | 0.2 1 0 0.409 0.318 0.514
178 0.37 | 0.3 0 0 0.395 0.304 0.500
179 0.37 | 0.3 0 1 0.294 0.199 0.396
180 0.37 | 04 0 0 0.398 0.306 0.504
181 037 | 04 0 1 0.296 0.199 0.399
182 037 | 0.6 0 1 0.300 0.201 0.407
183 0.37 | 0.7 0 0 0.404 0.310 0.512
184 037 | 1.0 0 0 0.410 0.310 0.520
185 0.38 | 0.1 0 1 0.298 0.205 0.399
186 0.38 | 0.1 1 0 0.415 0.325 0.521
187 0.38 | 0.2 0 1 0.300 0.206 0.403
188 0.38 | 0.3 0 1 0.303 0.207 0.404
189 0.38 | 0.4 0 1 0.305 0.208 0.407
190 0.39 | 0.1 0 0 0.408 0.318 0.514
191 0.39 | 0.1 0 1 0.307 0.214 0.408
192 0.39 | 0.1 1 0 0.424 0.334 0.529
193 0.39 | 0.1 1 1 0.322 0.229 0.425
194 0.39 | 0.2 0 0 0.410 0.320 0.516
195 0.39 | 0.2 1 1 0.324 0.231 0.427
196 0.39 | 0.3 0 0 0.413 0.322 0.518
197 039 | 0.3 1 0 0.428 0.336 0.534
198 0.39 | 0.3 1 1 0.327 0.232 0.429
199 0.39 | 0.7 0 1 0.320 0.220 0.428
200 0.39 | 1.0 0 0 0.427 0.328 0.537
201 0.40 | 0.1 1 0 0.432 0.342 0.538
202 040 | 0.2 0 0 0.419 0.328 0.525
203 0.40 | 0.2 0 1 0.318 0.223 0.420
204 0.40 ! 0.2 1 1 0.333 0.239 0.435
205 0.40 | 0.3 0 1 0.320 0.224 0.421
206 040 | 0.3 1 0 0.437 0.345 0.543
207 0.40 | 04 0 1 0.322 0.225 0.425
208 0.40 | 0.7 0 0 0.430 0.335 0.538
209 0.41 | 0.1 0 1 0.324 0.231 0.425
210 0.41 | 0.2 1 0 0.443 0.353 0.549
211 041 | 0.3 1 1 0.344 0.249 0.447
212 042 | 0.2 0 0 0.436 0.346 0.542
213 042 | 0.2 0 1 0.335 0.240 0.437
214 0.42 | 0.2 1 0 0.452 0.361 0.557
215 0.42 | 0.2 1 1 0.350 0.256 0.452
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Table C2 Contd.
95% One-Day Ahead Bootstrap Prediction Intervals
for the Optical Density of Spirulina Using the Dynamic Regression Model

Sr. No. OD, | SAL, | DW, | DHAR, | Forecast 95% prediction interval
ODy.4 Lower limit | Upper limit
216 042 | 0.3 0 1 0.337 0.241 0.438
217 042 | 0.8 0 1 0.347 0.246 0.456
218 043 | 0.3 1 0 0.462 0.371 0.569
219 044 | 0.1 1 0 0.467 0.375 0.572
220 044 | 0.2 1 0 0.469 0.378 0.575
221 044 | 0.3 1 0 0.471 0.380 0.578
222 044 | 04 1 1 0.372 0.276 0.476
223 044 | 1.0 0 0 0.470 0.370 0.579
224 045 | 0.2 1 1 0.376 0.282 0.478
225 0.45 | 0.3 0 0 0.464 0.372 0.570
226 045 | 0.5 0 0 0.468 0.375 0.574
227 045 | 1.0 0 0 0.479 0.379 0.587
228 0.46 | 0.1 1 1 0.382 0.289 0.485
229 0.46 | 0.2 1 0 0.486 0.395 0.592
230 046 | 0.3 1 0 0.488 0.397 0.595
231 0.46 | 0.4 0 1 0.373 0.278 0.476
232 0.47 | 0.2 1 1 0.393 0.300 0.495
233 047 | 03 1 0 0.497 0.405 0.604
234 0.47 | 0.3 1 1 0.395 0.300 0.499
235 0.48 | 0.1 0 1 0.384 0.290 0.4886
236 0.48 | 0.3 1 1 0.404 0.309 0.507
237 0.48 | 0.3 1 0 0.505 0.414 0.612
238 0.48 | 0.8 0 1 0.399 0.299 0.508
239 049 | 0.2 1 0 0.512 0.420 0.618
240 049 | 0.2 1 1 0.410 0.317 0.512
241 0.50 | 0.1 1 1 0.417 0.323 0.519
242 0.51 | 0.2 1 0 0.529 0.437 0.638
243 0.51 | 0.2 1 1 0.427 0.334 0.529
244 0.52 | 0.7 0 0 0.532 0.437 0.641
245 0.53 | 0.2 1 1 0.444 0.350 0.547
246 0.53 | 0.4 0 1 0.433 0.337 0.536
247 0.54 | 0.2 1 1 0.453 0.358 0.555
248 0.54 | 0.3 1 0 0.557 0.464 0.664
249 0.56 | 0.7 0 1 0.465 0.368 0.574
250 0.59 | 0.2 1 1 0.496 0.401 0.598
251 0.59 | 0.4 0 1 0.485 0.389 0.588
252 0.61 | 0.2 0 1 0.498 0.402 0.601
253 0.65 | 0.3 1 1 0.549 0.454 0.654

* Prediction intervals are shown in ascending order of the values of OD, SAL, DW, and

DHAR,.
* For same values of OD,, SAL, DW, and DHAR,, prediction interval is only shown once.
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Table C3
95% One-Day-Ahead Bootstrap Prediction Intervals
for the Optical Density of Spirulina Using the Linear Regression Model

Sr. No. OD, | SAL DW, Forecast 95% prediction interval
ODyeq Lower limit | Upper limit

1 0.06 0.2 0 0.098 0.062 0.157
2 0.10 0.1 0 0.132 0.097 0.190
3 0.10 0.3 0 0.138 0.104 0.196
4 0.12 0.1 0 0.151 0.116 0.209°
5 0.12 0.2 0 0.154 0.119 0.212
6 0.13 0.1 0 0.160 0.125 0.218
7 0.13 0.2 0 0.163 0.129 0.221
8 0.14 0.1 0 0.169 0.135 0.227
9 0.15 0.1 0 0.179 0.144 0.236
10 0.15 0.1 1 0.188 0.152 0.245
11 0.15 0.2 0 0.182 0.147 0.240
12 0.15 0.3 0 0.185 0.151 0.243
13 0.16 0.3 0 0.194 0.160 0.252
14 0.17 0.1 0 0.197 0.163 0.255
15 0.17 0.1 1 0.207 0.171 0.265
16 0.17 0.2 0 0.200 0.167 0.258
17 0.17 0.3 0 0.203 0.169 0.261
18 0.17 0.5 0 0.209 0.175 0.267
19 0.18 0.1 0 0.207 0473 0.264
20 0.18 0.3 0 0.213 0.179 0.270
21 0.18 0.5 0 0.219 0.184 0.276
22 0.19 0.1 0 0.216 0.182 0.274
23 0.19 0.3 0 0.222 0.188 0.279
24 0.20 0.1 0 0.225 0.192 0.283
25 0.20 0.1 1 0.235 0.199 0.292
26 0.20 0.2 0 0.228 0.195 0.286
27 0.20 0.4 0 0.234 0.201 0.292
28 0.21 0.1 1 0.244 0.209 0.302
29 0.21 0.2 0 0.238 0.204 0.296
30 0.21 0.3 0 0.241 0.208 0.298
31 0.21 0.4 0 0.244 0.210 0.301
32 0.22 0.1 0 0.244 0.210 0.302
39 0.22 0.2 0 0.247 0.214 0.305
34 0.22 0.2 1 0.256 0.221 0.314
35 0.22 0.3 0 0.250 0.217 0.307
36 0.23 0.1 1 0.263 0.228 0.320
37 0.23 0.2 0 0.256 0.223 0.314
38 0.23 0.2 1 0.266 0.230 0.323
39 0.23 0.3 0 0.259 0.226 0.317
40 0.23 0.5 0 0.265 0.231 0.322
41 0.23 1.0 0 0.280 0.239 0.343
42 0.24 0.2 0 0.266 0.232 0.323
43 0.24 0.2 1 0.275 0.240 0.333
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Table C3 Contd.
95% One-Day-Ahead Bootstrap Prediction Intervals
for the Optical Density of Spirulina Using the Linear Regression Model

Sr. No. OD, | SAL, | DW, | Forecast 95% prediction interval
ODy.q Lower limit | Upper limit
44 024 | 0.3 0 0.269 0.236 0.327
45 025 [ 0.1 0 0.272 0.238 0.330
46 025 [ 0.1 1 0.281 0.246 0.338
47 025 [ 02 0 0.275 0.241 0.332
48 025 | 0.3 0 0.278 0.245 0.336
49 025 | 04 0 0.281 0.248 0.338
50 026 [ 0.1 1 0.291 0.256 0.347
51 026 [ 0.2 0 0.284 0.251 0.342
52 026 | 0.3 0 0.287 0.254 0.345
53 026 | 05 0 0.293 0.260 0.350
54 027 [ 0.1 0 0.291 0.257 0.349
55 027 [ 02 0 0.294 0.260 0.351
56 027 | 02 1 0.303 0.269 0.361
57 027 | 0.3 0 0.297 0.263 0.354
58 028 | 0.1 0 0.300 0.266 0.358 |
59 028 | 0.2 0 0.303 0.270 0.361 |
60 028 | 0.2 1 0.312 0278 | 0370 |
61 028 [ 0.3 0 0.306 0.273 0.363 |
62 0.28 | 0.4 0 0.309 0.276 0.367
63 0.28 | 0.5 0 0.312 0.278 0.369
64 0.29 | 0.1 0 0.310 0.275 0.367
65 029 [ 0.1 1 0.319 0.284 0.376
66 029 | 0.2 0 0.313 0.279 0.370
67 029 | 0.2 1 0.322 0.287 0.379
68 029 [ 03 0 0.315 0.282 0.373
69 029 [ 03 1 0.325 0.290 0.382
70 030 | 02 0 0.322 0.288 0.380
71 030 | 02 1 0.331 0.296 0.389
72 030 [ 04 0 0.328 0.294 0.385
73 0.30 | 0.5 0 0.331 0.297 0.388
74 0.31 | 0.1 0 0.328 0294 | 0.386
75 031 | 02 0 0.331 0298 | 0.389 |
76 031 | 02 1 0.340 0.306 0.3%8 |
77 0.31 | 0.3 0 0.334 0.301 0352 |
78 0.32 | 0.1 1 0.347 0.312 | 0404 |
79 032 | 0.2 0 0.341 0307 | 0399 |
80 032 | 02 1 0.350 0315 | 0407 |
81 0.33 | 0.3 0 0.353 0320 | 0410
82 033 | 05 0 0.359 0325 | 0416 |
83 034 | 01 0 0.356 0322 | 0415 |
84 0.34 | 0.1 1 0.365 0331 | 0423
85 0.34 | 02 1 0.368 0334 | 0428
86 034 | 04 0 0.365 0332 | 0423
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Table C3 Contd.
95% One-Day-Ahead Bootstrap Prediction Intervals
for the Optical Density of Spirulina Using the Linear Regression Model

Sr. No. oD, SAL, DW, Forecast 95% prediction nterval
ODy.q Lower limit | Upper mat

87 0.35 0.1 0 0.366 0.331 0.424
88 0.35 0.2 0 0.369 0.335 0.427
89 0.35 0.3 0 0.372 0.339 0.428 |
80 0.35 0.4 0 0.374 0.341 0.432 |
91 0.36 0.1 1 0.384 0.349 0.442 |
92 0.36 0.2 1 0.387 0.353 0.445 |
93 0.36 0.5 0 0.387 0.353 0.444
94 0.36 0.7 0 0.393 0.357 0.451
85 0.37 0.1 1 0.393 0.359 0.451
g6 0.37 0.2 1 0.396 0.362 0.454
97 0.37 0.3 0 0.390 0.357 0.448
g8 0.37 0.4 0 0.393 0.360 0.450
99 0.37 0.7 0 0.402 0.367 0.461
100 0.37 1.0 0 0.411 0.371 0.473
101 0.38 0.1 1 0.403 0.368 0.461
102 0.39 0.1 0 0.403 0.367 0.461
103 0.39 0.1 1 0.412 0.377 0.470
104 0.39 0.2 0 0.406 0.371 0.464
105 0.39 0.3 0 0.409 0.376 0.467
106 0.39 0.3 1 0.418 0.384 0.476
107 0.39 1.0 0 0.430 0.390 0.492
108 0.40 0.1 1 0.421 0.386 0.478
109 0.40 0.2 0 0.415 0.381 0.473
110 0.40 0.3 1 0.427 0.393 0.485
111 040 | 0.7 0 0.430 0.394 0.489
112 0.41 0.2 1 0.434 0.399 0.491
113 0.42 0.2 0 0.434 0.399 0.492
114 0.42 0.2 1 0.443 0.408 0.501
115 0.43 0.3 1 0.455 0.421 0.513
116 0.44 | 0.1 1 0.459 0.423 0.517 |
117 0.44 0.2 1 0.462 0.426 0.519 t
118 0.44 0.3 1 0.465 0.430 0.522
119 0.44 1.0 0 0.476 0.436 0.538
120 0.45 0.5 0 0.471 0.436 0.529
121 0.45 1.0 0 0.486 0.446 0.548
122 0.46 0.2 1 0.480 0.445 0.538
123 0.46 0.3 1 0.483 0.448 0.541
124 0.47 0.3 1 0.493 0.457 0.550
125- | 0.48 | 0.3 1 0.502 0.466 0.559
126 0.49 0.2 1 0.509 0.472 0.566
127 0.51 0.2 1 0.527 0.491 0.585
128 0.52 0.7 0 0.542 0.504 0.602

« Prediction intervals are shown in ascending order of the values of OD,, SAL, and Dw,.
* For same values of OD,, SAL,and DW,, prediction interval is only shown once.




