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Abstract 

Hamiltonian graphs are named after Sir, Willian Rowan Hamilton, an Irish mathematician, who introduced the 

problems of finding a cycle in which all vertices of a graph appear exactly once except for the starting and ending 

vertex that appears twice. In this paper,  sufficient conditions for a graph to be Hamiltonian graph are illustrated. 

Moreover, some applications on Hamiltonian Graph are studied. 
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 Introduction 

A path that contains every vertex of G is called a 

Hamilton path of G; similarly a Hamilton cycle of G is a 

cycle that contains every vertex of G. Such paths and 

cycles are named after Hamilton (1856), who described, 

in a letter to his friend Graves, a mathematical game on 

the dodecahedron in which one person sticks five pins 

in any five consecutive vertices and the other is required 

to complete the path so formed to a spanning cycle. A 

graph is hamiltonian if it contains a Hamilton cycle. The 

dodecahedron is Hamiltonian; the Herschel graph is 

nonhamiltonian, because it is bipartite and has odd 

number of vertices. Although no useful and sufficient 

conditions for the existence of Hamilton cycle are 

known, quite a few sufficient conditions have been 

found. If a graph G with    3 vertices and the clousure 

of G, c(G), is complete, then G is Hamiltonian. Now, 

we will discuss the sufficient conditions found by Dirac 

in 1952, Ore in 1962 and Chvatal  in 1972. 

 

 

 

 

 

 

Figure1 The dodecahedron 

 

 

 

 

 

 

Figure 2 The corresponding graph 

 

Some Theorems on the Sufficient 

Conditions for a Hamiltonian Graph 

We now discuss sufficient conditions for a graph G 

to be hamiltonian, since a graph  is hamiltonian if and 

only if its underlying graph is hamiltonian, it suffices to 

limit our discussion to simple graph. We start with a 

result due to Dirac (1952). 

Theorem (1)Dirac (1952).If G is a simple graph with  

    and    
 

 
   then G is hamiltonian. 

Proof. By contradiction. Suppose that the theorem is 

false, and let G be a maximal nonhamiltonian simple 

graph with      and    
 

 
. Since    3, G cannot be 

complete. Let u and v be nonadjacent vertices in G. 

 

By the choice of G, G + uv is hamiltonian. 

Moreover, since G is nonhamiltonian, each Hamilton 

cycle of G + uv  must contain the edge uv. Thus there is 

a Hamilton path v1v2…vv  in G with origin u = v1  and 

terminus  v  =    .  Set 

S = {vi | uvi+1  E}  and T  = {vi | viv  E}. 

Since     S T  we have |   |<  .  Furthermore  
|   |  = 0 since  if  S   T  contained some vertex    , 

then G would have the Hamilton cycle v1v2 … vivv vv-1 

…vi+1vi  contrary to assumption. 

Using  |   |<   and  |   | = 0  we obtain     

d(u) + d(v) = | | + | |= |   | + |   |<     

But   this contradicts the hypothesis that   
 

 
.          

Bondy and Chvatal (1974) observed that the proof of 

theorem 1 can be modified to yield stronger sufficient 

conditions than that obtained by Dirac. The basis of 

their approach is the following condition.  

Figure 3  A Hamilton Graph 

 

vi v1 v2 v3 vv-1 vi+1 vv 
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Dirac’s condition is immediate corollary. A stronger 

sufficient condition than that of Dirac was modified by 

Ore. 

Theorem (2)Ore (1962).Let G be a simple graph and 

let u and v be nonadjacent vertices in G such that       

d(u) + d(v)   . Then G is hamiltonian if and only if    

G + uv is hamiltonian. 

Proof.  If G is Hamiltonian then, trivially, so too   is     

G + uv.  Conversely,  suppose  that G + uv  is 

hamiltonian  but G is not. Then, as in the proof of 

Theorem 1, we obtain  

d(u) + d(v) = | | + | |    = |   | + |   |<   . 

But this contradicts hypothesis  

d(u) + d(v)                                                               

Ore theorem motivates the following definition. 

Definition(1).The closure of G is the graph obtained 

from G by recursively  joining  pairs  of nonadjacent 

vertices whose degree sum is at least v  until no such 

pair remains. We denote the closure of G by c(G). 

Lemma(1).The closure of the graph G, c(G) is well 

defined. 

Proof. Let G1 and G2 be two graphs obtained from G 

by recursively joining pairs of nonadjacent vertices 

whose degree sum is at least v until no such pair 

remains. Denote by e1, e2, …,em and f1, f2, …, fn the 

sequences  of edges added to G in obtaining G1 and G2, 

respectively. We shall show that each ei is an edge of G2 

and each fj is an edge of G1. If possible, let ek+1 = uv be 

the first edge in the sequence e1, e2, …, en that is not an 

edge of G2.Set H = G + {e1, e2, …,ek}. It follows from 

the definition of G1 that dH(u) + dH(v)  v. By the choice 

of ek+1, H is a subgraph of G2.  

Therefore    
2 2G Gd u d v .       

This is contradiction, since u and v are nonadjacent 

in G2. Therefore each ei is an edge of G2 and, similarly, 

each fj  is an edge of G1.  

Hence G1 = G2, and c(G) is well defined.                     

Example(1).This example illustrates the construction of 

the closure of a graph G on six vertices. In this example, 

c(G) is not complete. 

 

Example(2).This example illustrates the construction of 

the closure of a graph G on six vertices. In this example, 

c(G) is complete. 

 
Figure 5  The closure of a graph 

Theorem (3).A simple graph is hamiltonian  if and only 

if a closure is hamiltonian. 

Proof. Let a simple graph G be hamiltonian. 

Therefore, G contains Hamilton cycle. There is no effect 

on the Hamilton cycle by adding edges. So, the closure 

of G is also hamiltonian.  

Conversely, suppose that the closure of G is 

hamiltonian and G is not. Let u and v be adjacent 

vertices in c(G) but not in G. Therefore, d(u) + d(v)  
 . Since c(G) is hamiltonian and G is nonhamiltonian. 

Each Hamilton cycle contains the edge uv. Then, there 

is a Hamilton path v1v2 … vv   in G with origin u = v1 

and terminus v =   . Set S ={vi | uvi+1  E} and  

T ={vi | viv  E}. Since    S T we have |   |< . 

Furthermore |   | = 0. Since if S  T contains some 

vertex    , then G would have the Hamilton cycle        

v1v2… vivv vv-1 …vi+1 v1.  It is contrary to the 

assumption.  

Using |   |<  and  |   |  = 0, we obtain  d(u) + 

d(v) = | | + | | = |   | + |   |<  . 

This is contradiction to d(u)+ d(v)   . Our supposition 

is false. Therefore, if the closure of G is hamiltonian, a 

simple graph G is hamiltonian.                                     

Corollary (1).Let G be a simple graph with v   3. If 

c(G) is complete, then G is hamiltonian. 

Corollary 1 can be used to deduce various sufficient 

conditions for a graph to be hamiltonian in terms of its 

vertex degrees. For example, since c(G) is clearly 

complete when   
 

 
, Dirac’s condition is an immediate 

corollary. A more general condition than that of Dirac 

was obtained by Chvatal (1972).  

Theorem(4)(Chvatal (1972)).Let G be a simple graph 

with degree sequence (d1, d2, …, dv), where                

d1  d2  …   dvand  v  3. Suppose that there is no 

value of m less than  v/2 for which dm  m and             

dv-m  v  – m.  Then G is hamiltonian.  

Proof. Let G satisfy the hypothesis of the theorem. 

We shall show that its closure c(G) is complete, and the 

conclusion will then follow from corollary 1. We denote 

the degree of a vertex v in c(G) by   (v). Assume that 

c(G) is not complete, and let u and v be two nonadjacent 

vertices in c(G) with  (u)     (v) and    (u)  +    (v)   

as large as possible; since no two nonadjacent vertices 

Figure 4  c(G) is not complete 
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in c(G) can  have degree sum or more, we have   (u) + 

  (v)  v. Now denote by S the set of vertices in V – {v} 

which are nonadjacent to v in c(G), and by T the set of  

vertices in V– {u}  which are nonadjacent to u in c(G). 

Clearly| | =  v – 1 –    (v)  and | |  =  v – 1  –    (u).  

Furthermore, by the choice of u and v, each vertex in S 

has degree at most   (u) and each vertex in T {u} has 

degree at most   (v). Setting   (u)  =  m  and using      

  (u)  +    (v)   v  and 

| | =  v – 1 –    (v)  and | |  =  v – 1  –    (u), we find 

that  c(G) has at least  m vertices of degree at most m 

and least v –m vertices of degreeless than v – m.   

 

 

Because G is a spanning subgraph of c(G), the same 

is true of G ; therefore   dm  m and dv-m   v – m .  But 

this is contrary to hypothesis since, by                  (u)  

   (v) and   (u)  +    (v)   v,  m  v/2. We conclude 

that c(G) is indeed complete and hence, by Corollary 1, 

that G is hamiltonian.                              

 

Finding Hamiltonian Graph on the 

Sufficient Conditions 

Example 3(i). The graph with four vertices satisfies 

Dirac’s Theorem. 

 
  

Clearly, it is a Hamilton cycle. And, it satisfies Dirac’s 

Theorem since    = 4,       and 

 (v) = 3  
 

 
. 

Example 3(ii).The graph with five vertices does not 

satisfy  Dirac’s Theorem. 

 

 

Figure 8 does not satisfy Dirac’s Theorem. It is 

not Hamiltonian since    = 5,     and  

  (v) = 2   
 

 
. 

Example 4(i). The graph with five vertices satisfies 

Ore’s Theorem. 

 

 

It is a Hamiltonian   for the graph of Figure 9.  

And, it satisfies Ore’s Theorem since    = 5, such that 

for every pair of distinct nonadjacent verticesu,v G, 

d(u) + d(v)     , then G is Hamiltonian. 

Example 4(ii). The graph with five vertices does not 

satisfy Ore’s Theorem. 

 

It is nohamiltonian for the graph of Figure 10. And, 

it does not satisfy Ore’s Theorem since    = 5, such that 

for every pair of distinct nonadjacent vertices u, v   G, 

d(u)+ d(v)     , then G is nonhamiltonian. 

Example 5(i).The graph with six vertices satisfies 

Chvatal’s Theorem. 

  
Figure 6  A Hamiltonian graph 
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Figure 10  A graph with nonhamiltonian 

Figure 9  A graph with a Hamiltonian  

Figure 8  A graph with nonhamiltonian 

Figure 7  A graph with a Hamiltonian 
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G is Hamiltonian since the degree sequence of G is 

(2, 3, 4, 4, 4, 5).    = 6,     . There is no value m less 

than 3 for which 
md m and 

md m.  
 

Example 5(ii).The graph with six verticesdoes not 

satisfy Chvatal’s Theorem. 

 

 

G is nonhamiltonian since the degree sequence of G 

is (2, 2, 2, 3, 4, 5).    = 6. There is a value m less than 3 

for which 
md m and

md m.  
 

 

Some Applications on Hamiltonian Graph 

The Knight's Tour.In chess, the knight's move consists 

of moving two squares horizontally or vertically and 

then moving one square in the perpendicular direction. 

For example, in Figure 13 a knight on the square 

marked  K can move to any of the squares marked X. A 

knight's tour of an n n  board begins as some square, 

visits each square exactly once making legal moves, and 

returns to the initial square. The problem is to determine 

for which n a knight's tour exists.      

 X  X  

X    X 

  K   

X    X 

 X  X  

 

 

We let the squares of the board, alternately colored 

black and white in the usual way, be the vertices of the 

graph and we place an edge between two vertices if the 

corresponding squares on the board represent a legal 

move for the knight. We denote the graph as GKn. Then 

there is a knight's tour on the n  n  board if and only if  

GKn has a Hamiltonian cycle. 

We show that if GKn has a Hamiltonian cycle, n is 

even. To see this, note that GKn is bipartite. We can 

partition the vertices into set V1, those corresponding to 

the white squares, and V2, those corresponding to the 

black squares ; each edge is incident on a vertex in V1 

and V2 . 

 

 

Since any cycle must alternate between a vertex in V1 

and one in V2, any cycle in  GKnmust have even length. 

But since a Hamiltonian cycle must visit each vertex 

exactly once, a Hamiltonian cycle in GKn must have 

length n2. Thus n must be even. 

 In view of the preceding result, the smallest 

possible board that might have a knight's tour is the       

2  2  board, but it does not have a knight's tour because 

the board is so small the knight has no legal moves. The 

next smallest board that might have a knight's tour is the 

4  4  board, although, as we shall show, it too does not 

have a knight's tour. 

We argue by contradiction to show that GK4 does 

not have a Hamiltonian cycle. Suppose that GK4 has a 

Hamiltonian cycle C = (v1 , v2 , ..., v17) . We assume that 

v1 corresponds to the upper - left square. We call the 

eight squares across the top and bottom outside squares, 

and we call the other eight squares inside squares. 

Notice that the knight must arrive at an outside square 

from an inside square and that the knight must move 

from an outside square to an inside square. Thus in the 

cycle C, each vertex corresponding to an outside square 

must be preceded and followed by a vertex 

corresponding to an inside square. Since there are equal 

numbers of outside and inside squares, vertices vi where 

i  is odd correspond to outside squares, and vertices vi  

where i  is even correspond to inside squares. But  

looking  at  the moves the knight makes, we see that 

vertices vi where i  is odd correspond to white squares, 

and vertices vi where i  is even correspond to black 

squares. Therefore, the only outside squares visited are 

white and the only inside squares visited are black. Thus 

C is not a Hamiltonian cycle. This contradiction 

completes the proof that GK4 has no Hamiltonian cycle. 

This argument was given by Louis Posa when he was a 

teenager. 

The graph GK6 has a Hamiltonian cycle. This fact 

can be proved by simply exhibiting one .  

v1 

v2 

v4 

v6 

v5 

v3 

v4 

v5 

v3 

v6 

v2 

v1 

Figure 12  A graph with nonhamiltonian 

Figure 14  A 4 4 chessboard and the graph GK4 

Figure 13 The knight's legal moves in chess 

 

Figure 11  A graph with Hamiltonian 
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Figure 16  GK8 

 

It can be shown using elementary methods that GK4 

has a Hamiltonian cycle for all even n   6 . The proof 

explicity constructs Hamiltonian cycle for certain 

smaller boards and then pastes smaller boards together 

to obtain Hamiltonian cycles for the larger boards. 

 

 

 

 

 

 

 

 

 

 

 

The Travelling Salesperson Problem 
We can solve the travelling salesperson problem in 

the following traffic system. The travelling salesperson 

problem is related to the problem of finding a 

Hamiltonian cycle in a weighted graph. The weights on 

the edges are given. From given a weighted graph G, we 

must find a minimum-length Hamiltonian cycle in G. 

We think of the vertices in a weighted graph as cities 

and the edges weights as distances. 

 

The above traffic system contains a Hamiltonian 

cycle.  

161+540+137+702+522+386+101+445+168+294+ 

399+445+374+355+246+252+413+211+623+485+ 

348+510 = 8117 miles. 

The Hamiltonian cycle is (ab, bc, cf, fg, gm, ml,lk, 

kp, pq, qr, rn, ns, sv, vu, ut, to, oj, ji, id ,dh, he, ea).  Its 

minimum weight is  8117  miles. 

 

 Finding the Shortest Road  
In the following figure, we can find the shortestroad 

in which the salesperson can visit each city. The shortest 

road  is Mahlaing, Wundwin,  ThaPhayWa,  Meiktila, 

Thazi, Payagazu, Pyawbwe, Yamethin, Hkabu, 

ThitSoneGyi, AhLeYwa, SganMaNge, Sedo, 

KyaykTan, Mahlaing. 

24.01+9.54+9.14+11.41+13.89+14.82+11.44+7.84+11.

53+21.57+9.26+9.55+8+5 = 167miles. 

 

Figure 15  GK6 
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Figure 17  The traffic system 

769 985 

 

477 

374 445 

593 

252 

189 

168 

426 

355 

338 

252 613 

137 

574 

459 

348 

510 486 

485 
699 

623 

726 

467 

436 

427 

653 

610 386 
636 

548 195 

489 

445 

522 

535 

702 

399 

523 

504 

731 

348 

101 

211 413 
500 

389 

415 

294 

o 

p 

r 

n 

m 

l 

k 

j 

i 

s 

u 

t 

q 

e 

d a 

b 
h 

g 

f 

c 
v 

246 



Meiktila University Research Journal, 2020, Vol. XI, No.1 277 

 

 

 

 

Figure 19  The Shortest road  in which the 

salesperson can visit each city 

 

 

 

Conclusion 

In this paper, some Theorems on the sufficient 

conditions for a Hamiltonian graph are presented and 

considered with examples. Finally, some applications on 

Hamiltonian graph are studied. 
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Figure 18  The graph model for the given cities 
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