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Chapter 1

Introduction

1.1 Introduction

A time series consists of a serics of obscrvations on a variable of interest
collected sequentially in time. The analysis of time series is a necessary technique
in many areas such as industrial research, economics, marketing, physical and
chemical sciences, etc. One of the important aspects of such a series is the
dependent structure of adjacent observations. For the satisfactory analysis of the
series, it is necessary to construct an appropriate stochastic model which can
further be used in various ways, depending on the field of applications.

The parametric approach to modeling the time series in terms of linear
difference equations has led to an important class of models, namely
autoregressive integrated moving average model with order p, d and g, popularly
known as ARIMA(p,d,q) (Box and Jenkins, 1976). In particular, if {Z, tex}, K
the set of integers, is a time series, then the ARIMA(p,d,q) model is

#(B) (1 - B)*Z,=0(B) a, tek | (1.1)
where ¢(B) = 1 — ¢;B - ¢,B’— ... - ¢,B” and 6(B) = 1- 6,B - 0,B? -...— 6,B’ are
polynomials of degree pand ¢ in B, ¢;,i= 1,2, ...,pand 6, j = 1,2, ..., g are the
autoregressive and moving average parameters of the time series respectively and

B is the backward shift operator, i.e., szt = Zj. In the model above, {a, tex} is



the white noise, called the error series, and we assume throughout that a,'s are i.i.d
normal with mean zero and variance o,”, referred to as the error variance (or
innovation variance).

We assume the series (1 - B)?Z, to be stationary, i.c., the roots of §(B) =0
lie outside the unit circle, and invertible, i.c., the roots of 0(B) = 0 lic outside the
unit circle. Ford=0, (1.1) represents a stationary process ARMA(p,q), given by

d(B) Z,= 0(B) a,. ke ¥ (1.2)

For certain situations, the ARMA(p,q) process {Z, tex} can also be
represented as a random shock model

Z,=y(B)a,, tex (1.3)
where w(B) = 1 + y;B + y,B? +... and the y weights are calculated by equating
the coefficients of B in the equation ¢(B)y(B) = 6(B). For the series to be

stationary, we assume that \(B) converges for [B| < 1, that is, on or within the unit

circle. Alternatively, the y weights have the condition Z|\y J'I <o, Similarly, {Z,
j=0

tet} can also be represented as an inverted form of the model using the © weights
as

n(B)Z, = a,, tex (1.4)
where n(B) = 1 — mB — m,B? — ... The © weights are analogously obtained by
equating coefficients of B in ¢(B) = 6(B)n(B). To satisfy the condition of

invertibility, we assume that m(B) converges on or within the unit circle.



" . )
Alternatively, the  weights are assumed (o satisfy the condition Zln J'l <o (Box,
j=0

Jenkins and Reinsel, 1994, Section 3.1).

Following Box and Jenkins (1976), analysis based on these models has
been extensively studied in the literature and for details we refer to Abraham and
Ledolter (1983), Chatfield (1989), Kendall and Ord (1990), Box et al. (1994),
Mills (1994) and Brockwell and Davis (1991, 1996). The inferential problems
considered in the literature are identification of the order p, d and g in the model,
estimation of time series parameters and error variance, diagnostic checking of the
model, forecasting of future values, etc. Box and Jenkins suggested that the
principle of parsimony is important in model building ie., the number of
parameters p, d, and g of the fitted model must be minimum (Box et al., 1994, p.
16).

In this thesis, we focus on the analysis of stationary and invertible time

series ARMA(p,q) in the presence of outlier.

1.2 Presence of Outliers in Time Series

The time series data often encounters anomalous observations due to
external disturbances or errors which disrupt the pattern of the time series. Such
observations are called outliers. The presence of the outliers has significant
influence on the analysis of the series. The outliers may influence adjacent

observations due to the presence of correlation pattern in the series. Apart from



affecting the estimates of model parameters, forecasting and so on, outliers can
distort the model specification itself and the impact of outliers in time series
modeling can be serious enough to affect the credibility of the model (Barnett and
Lewis, 1994, Chapter 10).

Consequently, the typical ARMA model may not represent the set of these
observations because of the presence of outliers. Thus the presence of outliers in
the observed series manifests into the problem of efficiency and adequacy in
fitting of the models. Thus the investigation into presence of outliers,
identification of outliers, assessment of their effects on the analysis and the
remedial measures to accommodate the outliers is a crucial aspect of time series
analysis.

The dependent structure of time series observations makes the detection of
outliers difficult as the presence of outliers may escape notice due to the
dependent structure of the process. Also, unlike in case of general linear models,
an outlier in time series need not necessarily be an extreme value (Barnett and
Lewis, 1994, p. 395).

Sometimes, the business and economics time series are influenced by non-
repetitive interventions suéh as strikes, outbreaks of war, monetary crises,
implementation of a new regulation, major changes in political or economic
procedure and so on. Such events usually bring in outliers into the time series data.
Often in such cases, the position of outliers is known and an appropriate handling

can be done using intervention analysis (Box and Tiao, 1975; Kendall and Ord,



1990, pp. 222-227; Wei, 1990, pp. 184-195; Box et al., 1994, pp. 461-469).
[However, we are not considering intervention analysis in this thesis.

In many situations, the presence of outliers is rarely known before hand.
Hence the crucial step in analysis of time scrics in the presence of outliers is
constructing an appropriate model representing outliers in the data.

For the construction of a useful model appropriately representing outliers,
it is important to understand the nature of outliers and their impact on the time
series. Following Fox (1972) and Abraham and Box (1979), the possible outliers
in ARMA (p,q) model are divided into two types, Type I or Additive Outliers
(AOs) and Type II or Innovational Outliers (10s). The AOs are those which do not
affect adjacent observations and hence can be visualized in terms of
superimposing an isolated measurement or execution error on the standard
process.

We denote by T, the time point at which a single outlier of either AO or 10
type is present in the series and refer to it as ‘outlier position’. Note that T may or
may not be known. -The model which accounts for an AO at time T in ARMA
(p,9) (Fox, 1972; Abraham and Box, 1979) is

Y, =Z+ot", ter (1.5)
where {Y, , tet} is the observed series, { Z;, tet} is an unobserved outlier free

series as in (1.2), T = {1, ..., n}, o is the outlier parameter —0 <® <o, and &{"’=

lift=T and £™= 0 otherwise. Thus, AO does not have any “carry-over effect”



on the succeeding observations. As a result, the presence of AOs is often
dramatically manifested in a time sequence plot.

Altemnatively, the 10s are those which indicate inherent form of
contamination influencing successive observations through the correlation
structure. As a result, the realiiation of an outlier often gets concealed by the
observations succeeding it, which are affected by the “carry-over effect”. The
model which accounts for an IO at time T in ARMA (p,g) is specified by (Fox,
1972; Abraham and Box, 1979)

Y. = Zi+ o y(B)ED, tet (1.6)
where, as before, {Y,, tet} is the observed series, {Z, tet} is an unobserved
outlier free series as in (1.2), ® is the outlier parameter —o0 < @ < oo, and &= 1 if
t=T and £™= 0 otherwise. As per this model, the effect of outlier on time series
begins at the observation Zy at time T and the effect on successive observations
decays with y weights.

In addition to these two main outlier types, two other types of outlier
models are proposed in the literatl;re to handle sudden level changes which may be
of temporary or permanent type, called the Temporary Change (TC) model and

Level Shift (LS) model (Tsay, 1988; Chen and Liu, 1993) respectively.

The TC model is expressed as

- @ m .
Y, Z+(1_6B) & s tet (1.7)



where 8 is the dampening factor with 0 <8 < 1. In this model, the temporary
change is the initial effect on the observation at T and the cffect on subsequent
observations decays exponentially according to some dampening factor, 8. If §=0,
the model is the same as the AO type model given by (1.5).

The LS model is same as (1.7) with § = 1, given by

(V]
(I-B)

Yi=Z+ &7, tet (1.8)

and in this case, the effect on the series is the change in the series level by a
constant magnitude o starting from time point T till the end of the series.

It is not unusual to come across time series data with more than one outlier.
The problem of handling multiple outliers in time series is. more complicated, for
the simple reason that the outliers could be of different types (Barnett and Lewis,

1994, p. 397). The outlier models presented earlier can be easily extended to the

multiple outliers situation as follows.

Y. =Z+ Zm:mij(B)E_f“{ tet (1.9)
j=1

where ‘m’ is the total number of outliers present in the series, w;,j=1,2,...,m
are the corresponding outlier parameters which may not be distinct. Further, based
on outlier type present at time point Tj, j =1, 2, ..., m, we define

D;B)=1 for an AO,

=y(B) for an 10,



D) foralc¢
(a-sm) AIC
— for a
T oral.S.
(1-B) .
The multiple outliers can occur af 'solated time points T,, T,, ... T.. and are

called isolated outliers. Altematively, they can occur at consecutive time points T,

= Pl ] = 1 & it starting at time point T. Such outliers are called patch
outliers of patch length m (Martin, 1979; Bruce and Martin, 19%9). The
occurrence of multiple outliers as patch outliers is a much more complicated
phenomenon due to the masking effect (Chen and Liu, 1993; Justel, Pefia and
Tsay, 2001). To handle certain time series data, another type of outliers called
reallocation outliers are also proposed in the literature by W, Hosking and
Ravishanker (1993).

Among the various types of outliers which can occur in a time series, the
AO and IO are considered most often in the literature and we focus on these two

types in this thesis.

1.3 Review of Literature

As mentioned in Section 1.2, Fox (1972) introduced models 1o
accommodate the presence of two types of outliers namely Additive and
Innovational outlier (AO and IO respectively) in autoregressive time series data.

A likelihood ratio test for outlier detection was also proposed.




9
The Bavesian approach wae : :
ayesian approach was used in the time series models with A0 and [0)

outlier types by Abraham and Box (1979). The models proposed by Fox (1972)

were extended to their present form (see (1.5) and (1.6)) for ARMA(p.g) and
Bayesian parametric inference for time scries parameters as well as outlier
parameter in the presence of both types of outliers in case of AR(p) was carried
out. Abraham and Box also presented some numerical cxamples based on
generated data from AR(1).

Using the mixed outlier model proposed by Fox; Muirhead (1986) .
introduced a likelihood ratio test for detection of single outlier and identification
of the type of outlier. Muirhead also compared the proposed method with the
corresponding Bayes rule proposed by Abraham and Box (1979) for identification
of outlier.

Following Fox (1972), Chang and Tiao (1983) proposed an iterative
detection procedure for outliers in ARMA models. This procedure is based on
likelihood ratio test and involves the identification of the outlier types as well.
Tiao (1985) illustrated this procedure using two real life data sets.

Chang, Tiao and Chen (1988) formally presented this iterative likelihood
ratio test procedure for detection of IO and AO and estimation of time series
parameters of ARMA in the presence of outliers. A detailed disc~ussi0n on the
performance of the iterative procedure based on simulation in the context of AR(1)

and MA(1) in the presence of up to two outliers is also presented in this work.
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The procedures discussed so far are based on the assumption that time
series model is known, whereas Tsay (1986) proposed an iterative procedure for
model specification of time series in the presence of outliers where the iterative
outliers detection procedure proposed by Chang and Tiao (1983) was effectively
used. Chen and Liu (1993) introduced a procedure for joint estimation of model
parameters and outlier effect in ARMA where a similar iterative outlier detection
and identification procedure based on likelihood ratio test is used. In this
procedure, if an outlier is detected at any stage of iteration, the series is
appropriately adjusted depending on the detection of outlier type. It was shown
that in case an IO is detecteq at time point t, the adjusted observation at t is the
conditional expectation of the original observation given the past; unlike the AO
case, where the adjusted observation is an interpolation based on past and future
observation. Chen and Liu also investigated the effects of different types of
outliers on the observed series and pointed out that « ...the effect of an IO is more
intricate than the effects of other types of outliers”.

Schmid (1986, 1990) considered multiple outliers problem and derived a
test of discordancy for AO type of outliers in an AR process. Further the
asymptotic behaviour of the test is investigated. Earlier to that, Schmid (1989)
proposed a UMPU test for AO identification in an AR model. Schmid (1996)
introduced an alternative multiple outlier detection and identification test
procedure for AR process which is based on observed and predicted values at each

time instance. Asymptotic distribution of the test statistic under the hypothesis of
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outlier free model is derived in this paper. Schmid further presented a simulation
based performance comparison ol various  procedures  with  the proposed
procedure.

Tsay, Pena and Pankratz (2000) extended the outlier problem in univariate
time series to a vector valued autoregressive integrated moving average (ARIMA)
series.  The effect of multivariate outlier and its impact on the joint and marginal
models was discussed. It was pointed out that the effects depend not only on the
outlier size and the model, but also on the interaction between the two. Two
statistics for various types of outlier detection were proposed and investigated in
this study.

The Bayesian approach to outliers in time series is addressed by a number
of authors. As mentioned earlier, Abraham and Box (1979) were the first to
present the Bayesian analysis which was followed by Muirhead (1986), who
proposed a Bayes rule to distinguish between AO and IO type. Smith (1983)
considered a general approach to robust Bayesian methods with specific
consideration of outliers in time series. Bayesian forecasting methods in the
presence of outliers from contaminated sources were presented by Ameen and
Harrison (1985).

Alternatively, McCulloch and Tsay (1994), and Barnett, Kohn and Sheather
(1996, 1997) used Markov Chain Monte Carlo (MCMC) methods to detect outliers

and compute the posterior distribution of the parameters in case of ARIMA.
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Several authors  have considered  robust  estimation  procedures  for
parameters of time series in the presence of outliers. Denby and Martin (1979)
first proposed a class of generalized maximum likelihood estimates (GM-
estimates) for AR(1) model in the presence of a single outlier of either type. It
was shown that though GM-estimates perform moderately well in the presence of
outliers AO and IO, the M-estimates perform much better in the presence of [0.

Martin (1979) extended the GM-estimates to AR(p) model. He also
discussed some theory and methodology of robust estimation for time series with
AO and IO as well as the problem of patch outliers. In addition, a formal
significance test and a residual plotting diagnostic technique were proposed for
determining the outlier type.

It was pointed out by Bustos and Yohai (1986) that the GM-estimator has a
complicated asymptotic covariance matrix. They proposed two new robust
estimators based on residual autocovariances (RA-estimators) and truncated
residual autocovaﬁances (TRA-estimators). The proposed estimators were
compared with least squares (LS) estimator, M and GM estimators for AR(1) and
MA(1) models with AO and IO outliers. Based on Monte Carlo results, it was
shown that RA estimators are not qualitatively robust when the model has the
moving average part but are milch stable than LS and M estimators in the presence
of AO.

A detailed review of robust estimators for ARMA model with outliers was

presented by Martin and Yohai (1985). The influence curve of time series with
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AQ and 10 from isolated to patch outliers was also briefly discussed in this paper
In a later paper. Maddala and Yin (1997) also review the outlier detection in time
series model.

Based on re-weighted maximum likelihood estimator using Huber or
redescending weights, Lucefio (1998) proposed robust estimators in the presence
of nonconsecutive multiple outliers in ARMA(p,q) seriecs. By choosing
appropriate weight for robust ARMA(p,q) fitting, a multiple outlier detection
procedure was also introduced. Earlier to that, influence function based outlier
detection procedure was proposed by Chernick, Downing and Pike (1982). The
effect of outliers on stationary time series was investigated using the influence
function of the autocorrelations. Another attempt in this direction was by Pefia
(1987) who discussed sample influence function for parameters in the presence of
outliers in ARMA model.

Various diagnostic procedures for deletion of outliers and influential points
in regression models have been discussed in the literature (Cook and Weisberg,
1982; Chatterjee and Hadi, 1988). Abrgham (1987) and Pefia (1987) were the first
in adapting some of these procedures to time series models. Abraham discussed
diagnostic tests based on deletion of suspected observations and in particular the
impact of deletion on Q statistic (Draper and John, 1981) for AR(1) series.

Pefia (1987) investigated the impact of outlier on parameter estimation
through sample influence function by treating a single observation as missing in

turn. The missing values were estimated using least squares predictors. The
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procedure is a natural generalization of leave-one-out technique in regression
diagnostic,

Further, Abraham and Chuang (1989) investigated the effect of deletion of
k observations on Q statistics in case of ARMA(p,q) and proposed an outlier
deletion procedure based on Q statistic which is used for identification of outlier
type as well. A model building strategy based on the investigation of the pattern
of Q statistic was also presented.

An in-depth leave-k-out diagnostics approach to outliers in time series was
proposed by Bruce and Martin (1989), where k consecutive observations were
treated as missing and the parameters were estimated using Kalman filter in case
of ARIMA(p,d,q). The effect of missing observations on sample influence
function of time series parameters and error variance was investigated which led to
various diagnostic tests. Since k consecutive observations were treated as missing,
the proposed procedure was shown to handle outliers patch and avoid the masking
effect. It was also shown that the diagnostics based on error variance is superior to
that based on parameters of time series.

Another attempt at using deletion diagnostic for detecting outliers in time
series was by Ledolter (1990). The impact of outlier on Cook D statistic (Cook
and Weisberg, 1982, p. 185), which is equivalent to likelihood displacement
criteria, was investigated by treating each observation as missing. Ledolter also
investigated the behaviour of the proposed diagnostic procedure and presented

simulation study for AR(1) process. Ledolter further investigated the additive
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outlier model and claimed that the sensitivity of variance estimate depends on the
difference between observations and their interpolation values, which justifies the
satisfactory behaviour of the deletion procedure in the presence of AO.

Ljung (1993) showed that analogous to the estimation of outlier parameter
in regression model, the estimation of additive outlier in ARMA(p,g) is directly
related to estimation of missing or deleted observation and established the relation
between leave-k-out diagnostics procedure by Bruce and Martin and likelihood
ratio criteria. Ljung, however, pointed out that deletion diagnostic measures are
expected to perform well for AO but not IO.

In recent years, the procedure using Gibbs sampling was proposed by
McCullogh and Tsay (1994) who showed that the Gibbs sampling provides
satisfactory inference in case of AR process when the outliers do not occur in
patches. Justel, Pefia and Tsay (2001) showed that the procedure, however, is not
efficient in the presence of patches of additives outliers in an autoregressive
process. It was also pointed out that the leave-k-out procedure cannot efficiently
determine the block size of the patches of outliers. Their procedure ‘consists of
modification of standard Gibbs sampling and the algorithm presented is shown to
work effectively using real life and simulated data.

Another approach to diagnostic checking of outlying values, level shifts
and switches using state space modeling of time series was done by De Jong and

Penzer (1998).



1.4 Need and Outline of Present Study

The discussion in most of the available literature on outlier detection
pertains to detection of presence of outliers, detection of position of outliers,
estimation of parameters in the presence of outliers, accommodation of outliers
and so on. It is well accepted in the literature that IO may have less influence on
time series parameter estimation than AO (Abraham, 1987; Ljung, 1993) and the
detection of such outliers is much more difficult.

As discussed in Section 1.3, various diagnostics procedures for handling of
outliers in time series are being adapted. These procedures follow the approach of
“deletion diagnostics”, analogous to the deletion diagnostics in regression (Pefia,
1987; Abraham and Chuang, 1989; Bruce and Martin, 1989; Ledolter, 1990;
Ljung, 1993). In these proposed deletion diagnostic procedures, each observation
is treated as missing in turn and is replaced by its least squares predictor, which is
the weighted sum of adjacent observations.

The method of deletion diagnostics works well in the presence of AO but
the IO poses a problem because of its dynamic nature (Chen and Liu, 1993; Ljung,
1993). The proposed deletion diagnostics methodé, with the exception of Abraham
and Chaung (1989), do not take into account the AO or IO type separately and
hence do not identify the type of outlier, which is crucial in adapting an
appropriate model for data analysis.

This thesis attempts to fill in this gap by proposing a different diagnostic

procedure called adjustment diagnostics. In this procedure, two separate models
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for two types of outliers are considered. Further, cach observation is treated as a
possible outlier of cach type in turn and the observed serics is appropriately
adjusted, taking into account the underlined model and estimation of parameters.
The model adjustment is shown to be similar to deletion diagnostics in case of AO
and is also shown to handle the iﬁﬂucncc of IO on successive observations. The
adjustment diagnostics are presented both from theoretical and empirical points of
view.

In Chapter 2, a detailed investigation of the effects of both types of outliers
based on empirical study in case of AR(1) and MA(1) series is presented. The
study suggests using estimate of error variance to analyze the outliers in time
series. The maximum likelihood estimation of model parameters and outlier
parameter used for further analysis is briefly discussed in Section 2.4. Section 2.5
heuristically shows that the deletion diagnostic procedure cannot satisfactorily
handle the effect of I0. In Section 2.6, we investigate how the model can be
appropriately adjusted to handle the effect of outliers, and suggest adjustment of
the observed series as a possible wéy of analyzing the presence of outliers.

Chapter 3 analyzes the effect of series adjustment on the estimate of error
variance. Two types of series adjustments corresponding to AO and IO are
considered at each time point in turn. The expression for the estimates of error
variance under the adjustment at correct and incorrect positions for correct type
are derived in Section 3.3 and it is shown that the estimate of error variance is

likely to be the smallest among all the estimates when the series is adjusted for the
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correct type ol outlier at correet position. In Section 3.5 we investigate the impact
on the estimate of error variance due to the incorreet type of adjustment at correct
position.  Computations supporting theoretical investigations are presented in
Section 3.6 for specific AR(1) and MA(1) series.

Based on the findings of Chapters 2 and 3, an adjustment diagnostic
procedure using Cook’s likelihood displacement criterion (Cook, 1986, 1987) is
derived for outliers in ARMA(p,q) scrics in Chapter 4. We call the proposed
procedure “Adjustment Diagnostic based on Variance"” (ADV) which, in addition
to outlier detection, is can be used to identify the correct outlier type and the
correct outlier position in the series. The problem of deriving the exact null
reference distribution of the statistic in time series analysis is similar to that in
case of regression diagnostics discussed in the literature (Abraham, 1987;
Chatterjee and Hand;, 1988; Bruce and Martin, 1989; Ljung, 1993).

Hence the critical values of the proposed procedure are computed based on
extensive Monte Carlo simulations The simulation study presents upper 10% and
5% percentiles of the adjustment diagnostic procedure using 5000 replications in
case of AR(1), AR(2), MA(1l), MA(2) and ARMA(1,1) series of lengths n =
100(25)300 for a wide range of values of time series parameters.

Monte Carlo based performance evaluation of the proposed procedure in
the presence of a single outlier and its comparative performance with the existing
deletion diagnostic procedures is presented in Section 4.3 for AR(1) and MA(1)

series with a single AO or IO outlier and outlier parameter @ = 0, 2(1)7. The
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Monte Carlo simulations arc carried out using IMSI, (International Mathematical
and Statistical Libraries) subroutines. The procedure here uses the maximum
likelihood estimate of the time series parameters which is same as the least squares
(LS) estimate since the errors are assumed to be Gaussian with mean 0 and
variance o”. The tables and figures presented in Section 4.3 indicate that ADV
provides a comprehensive diagnostic tool which performs satisfactorily better than
the existing deletion diagnostics procedures irrespective of the type of outlier.
Since it is well known that the LS estimates are in general not robust in the
presence of outliers or abnormal observations in the time series (Denby and
Martin, 1979; Bustos and. Yohai, 1986, Barnett and Lewis, 1994, p. 404), we
further evaluate the performance of the proposed procedure using a robust
estimate of time series parameter and compare it with that using LS estimate. The
evaluation is again carried out on 1000 simulations of AR(1) and MA(1) for a
wide range of time series parameter and is presented in Section 4.4. Based on the
performance evaluation presented here it can be claimed that the detection of
outlier and position identification is carried out with equal precision irrespective of
whether the procedure uses robust or LS estimates of time series parameter. The
performance of the procedure to identify the outlier type and its correct position
marginally improves in the presence of AO type of outlier when a robust estimate
is used. However, the performance using LS estimate is marginally better than that
using robust estimate when IO is present in the series. The simulation study

shows that the use of robust estimate of time series parameters for a contaminated
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series does not uniformly improve the performance of the procedure in the
presence of any type of outlier,

Sections 4.5 to 4.7 address the problem of multiple outliers. An iterative
procedure based on adjustment diagnostic is proposed for multiple outliers
detection in Section 4.5. In Section 4.6 performance evaluation of multiple
outliers detection procedure is presented based on Monte Carlo study of AR(1)
and MA(1) in the presence of two outliers. We consider the presence of isolated
and patch outliers of same type (2 AOs or 2 10s) and different types (AO-IO or
I0-AO) for evaluation. The simulation study shows that the procedure has
satisfactory performance in the presence of two outliers as well, though it
performs better in the presence of isolated outliers as against patch outliers. In
Section 4.7, we critically address this issue and suggest possible ways of
overcoming this drawback. We also present the effect of multiple outliers on the
estimate of error variance when the outliers are isolated and when they occur in
patches and claim that the identification of patch outliers will not be satisfactorily
handled using estimates of error variance.

Chapter 5 presents analysis of some simulated data sets and real life data
sets available in the literature using the proposed procedure. In Section 5.2, using
simulated AR(1) and MA(1) series, the usefulness of proposed ADV plots in the
presence of up to two outliers is demonstrated. Various simulated AR(1) and
MA(1) series are considered in Section 5.3 to illustrate the performance of ADV.

In Section 5.4, some real life data sets which are already discussed in the
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literature, namely, “Daily Average Number of ‘Truck Manufacturing Defects
Series”™ (Wei, 1990, p. 4406), “Scries A”, “Series (", “Series 1) and “Series J”
(Box et al.,, 1994, pp. 541-545) are considered. The analyses of these data sets
using proposed procedure are compared with the outlier analysis available in the
literature.

The thesis ends with a short write up under the title Conclusions, which
gives a summary of work presented and statements on performance comparison of
the proposed procedure with procedures available in the literature. The possible
future investigations are briefly outlined.

Appendix A presents upper 10% and 5% percentiles of the proposed
procedure for AR(1), AR(2), MA(1), MA(2) and ARMA(1,1) series of lengths n
=100(25)300 for a wide range of values of time series parameters.

We have developed STDS (Statistical Time Series Diagnostic Software), a
software to diagnose the outliers in time series. The main features of STDS are
diagnostic plots and ADV procedures for ARIMA(p,d,q) model. The software
provides the estimation of the magnitudes of outlier parameters, time series
parameters and error variance after detecting the positions of outliers and
identifying their types. The contents page of STDS manual is presented in
Appendix B. The software STDS and its manual are provided in a Compact Disk
(CD) at the end of this thesis. All the computer programs used for simulation and
computations are afso provided in the CD. The list of available programs is

provided in Appendix C.
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Chapter 2

The Effect of Outlier and Series Adjustment

2.1 Introduction

One of the important problems in time series analysis is the detection of the
presence of an outlier and its position in the observed series. If the position of the
outlier and also its type are known, the estimation of series parameters and the
outlier parameter can be carried out simultaneously (Tiao, 1985; Tsay, 1986; Wei,
1990, Section 9.3; Box et al., 1994, Section 12.2). In order to have satisfactory
outlier detection procedures, it is important to study the effect of outliers on
statistical analysis of the series, in particular, the parameter estimation. Various
authors have commented on the effect of outliers on the estimation of the time
series parameters (Chang and Tiao, 1983; Bruce and Martin, 1989; Abraham and
Chuang, 1989; Ljung, 1993; Wu et al., 1993; Lucefio, 1998). Based on sample
influence function, Bruce and Martin claimed that the effect of outliers on the
estimation of error variance is more serious than that on the time series
parameters. It is also mentioned that the effect of AO is more serious than that of
IO on general parameter estimation (Chang and Tiao, 1983; Abraham 1987,
Ljung, 1993). In Section 2.2, we discuss the model with two types of outliers and
briefly describe the effect of both types of outliers on to original series and error

series. In order to get a better understanding of these issues, we investigate them
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in more details based on empirical study in case of AR(1) and MA(1) series in
Section 2.3. In Secction 2.4, we bricfly discuss estimation of time series
parameters and outlicr parameter (Chang et al., 1988; Box et al., 1994, Chapter 7)
as we use these estimators (or further analysis.

As mentioned in Section 1.3, most of the outlier detection procedures are
based on deletion diagnostics, where ecach observation is deleted in turn and its
predicted value based on remaining observations is substituted using missing value
cstimation (Pefia, 1987; Ledolter, 1990; Ljung, 1993). The estimation of
parameters of interest and the analysis of the time series is carried out using the
substituted value. Ljung (1993) proved that this is equivalent to likeliheod ratio
procedure for outlier detection in case of AO. It is claimed in Section 2.5 that the
deletion diagnostic procedure cannot satisfactorily handle the effect of an IO. In
particular, it is argued based on hypothetical situation that the dynamic effect of an
IO on the subsequent observations cannot be removed by treating only single
observation as missing,.

To overcome this drawback, in Section 2.6 we present an alternative
method of handling the presence of outliers in time series. The method proposes
the adjustment of the observed time series according to the underlying model, after
estimating the outlier parameter. It is shown that the series adjustment takes care
of the effect of outlier in case of both AO and IO types. Using ARMA(p,q), it is
further shown that the method is equivalent to missing value estimation in AO

case.



24

2.2 Effect of an Outlier on Original Series

In this section, we discuss the effect of an outlier on the original series (also
called outlier fiee series) {7, tet} which is a stationary and invertible
ARMA(p,q) process with error series {a,, tet} where 1= {1, 2, ..., n}. The errors
a's are assumed to be i.i.d normal with mean 0 and variance o,”. Following (1.5)

and (1.6), consider the observed series {Y,, tet}, contaminated by a single outlier

of AO or IO type, given by
Yi=ZL+t m&lm , tetr for AO
Y. =Z+ oyB)E", tetr forIO. (2.1)

As mentioned in Section 1.2, the model in (2.1) allows only a single
observation at time point t = T of the underlined series {Z,, tet} to be affected by
AO, whereas the effect of 10 at t = T is carried over to the subsequent
observations of {Z,, tet} and decays with y’s weights.

Suppose the observed series {Y,, tet} is treated as a typical stationary and
invertible ARMA(p,q) series ignoring the presence of outlier. We then define the
residual series of {Y,, tet} by {e, tet} for ter,

e, = n(B)Y, (2.2)

where n(B) = y™'(B) = 1- 3 n;B"

i=l
The error series of {Z,, tet} is given by {a, tet} where

a = n(B)Z, 2.3)
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However, since {Y,, tet} is an outlicr contaminated serics, using (2.1) and
(2.3), {e, tet) can be expressed in terms of {a,, tet) as
For AO: ¢ =n(B)Y, = n(B){ 7, w&")
= a + on(B)E"

ForlO:  e=nB)Y, = n(B){ Z + ow(B)E" }

a + (DE;I("" (2.4)
From (2.4), it can be seen that the presence of 10 affects a single

observation of {a, tet} series at only one time point t = T, whereas the effect of

AO on {a, tet} is carried over to the subsequent observations and decays with ©

weights (Chang et al., 1988; Box et al., 1994, p. 471).

Additive outlier (AO) Innovational outlier ( 10)

Dynamic effect

0V ®
il
t=T t=T,T+1,T+2,...
Yi=24,+ (D&tm Y. =Z+t0 \P(B)E,\tm

Figure 2.1: The Effect of an Outlier on {Z, tet} Series

In Figures 2.1 and 2.2, we present a hypothetical situation representing the

effect of outlier of either type on the original series {Z,, tet} and the error series
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{a, tet} respectively, with the outlier parameter of magnitude o ~ 0. Note that
the dynamic effect of 10 on observations and that of AO on error series can be

cither positive or negative depending on the signs of the weights  and rt, and o,

Additive outlier ( AO) [nnovational outlier (10)

Dynamic effect
() 0]
i
o W I L S t=T
e, =a, + o n(B)ED e =a + "

Figure 2.2: The Effect of an Outlier on {a,, tet} Series

To know the effect of an outlier on the analysis of the observed series, one
must understand the effect on the estimators of time series parameters, error
variance and some other statistics such as autocorrelation function. We discuss

them in the next section.

2.3 The Effect of an Outlier on Some Estimates

In this section, we separately study the effect of the two types of outliers on
the analysis of AR(1) and MA(1) series using simulated data. A wide range of
values of outlier parameter is considered ( Ol < @ £ 10) to highlight the effect of

AO and IO on the estimates of parameter, error variance and autocorrelation
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function, which are important statistics for the model building procedure in time
series. The estimates considered are Maximum Likelihood (ML) estimates which
arc same as the Least Squares (1.8) estimators under the assumption of Normal
errors (Box et al, 1994, Chapter 7). The ML estimation procedure for all
parameters is briefly discussed in Scction 2.4, The simulation of the series and the
estimation of the parameters is carricd out using IMSL (International
Mathematical and Statistical Libraries) subroutines under the Sun Operating
System and the programs are given in the attached CD and listed in Appendix C.
The IMSL subroutine NSLSE is an iterative procedure which gives non-linear LS
estimators of the time series parameters . For all the computations presented in the
thesis NSLSE is used and Yule Walker estimates (moment estimates) are selecfted
as initial values. The Yule Walker estimators are not used in the thesis as final
estimators of time series parameters since they are known to be ‘unstable’ (Wei,

1990, p. 137; Box et al., 1994, pp. 260-262).

AR(1) with One Outlier:

We now consider the observed series {Y, tet} with AR(1) model and a
single AO type outlier at T, given by

Y, =7 + otM, tet (2.5)
where Z, = §;Z,_; + a, is the AR(1) model without outlier, @ is the outlier

parameter, ¢ is the autoregressive parameter, and a, is the error term and has i.i.d
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normal with mean ‘0" and variance o,”and £ 1ift T and £~ 0 otherwise.
We can rewrite the model as

(% un‘_';,‘” g7 1 a, tEX

Hence, we can represent the AO model as

o+ ¢Z +a, t=T
o
071 +ay, E#T, (2.6)

Similarly, to study the effect of 10 type outlier on the observed series, we
consider the 10 outlier model

Y =2Z + qu(B)ét(T’, tet
where Z, is the AR(1) model in (2.5), o is the outlier parameter and ?;lm is as
above. This model can be expressed as

Y =oyBXE" +0Z , +a, tet
which can alternatively be written as

0Zi t+ a, t<T
-
oY1 T9Zi1 + t>T (2.7)

where y; = ¢ for AR(1). ‘

In order to study the effect of outliers in the series on various estimators,
we generated 1000 outlier free AR(1) series for n= 100, ¢ = 0.6 and o,” = 1 using
the computer programs CP-1 and CP-2 as listed in Appendix C with the help of

IMSL (International Mathematical and Statistical Libraries) subroutines under the



29

Sun Operating System. An AO and an 10 with outlier parameter o = 0(1)10 was

introduced at t = §1.,

—e—Qulller free series
0 1
«..e...AO outlier att=51

\
\
-* — -a— |0 outlier at t=51

Vziue

Time

1 6 11 16 21 26 31 36 41 46 51 5 61 66 71 76 81 86 91 96

Figure 2.3: Generated AR(1) Series with an Outlier at t =31
(n=100,$=0.6,0,.2=1,0=10)

For each of the generated series, the parameters of interest, namely the time
series parameter ¢, the error variance o, and the lag-1 autocorrelation coefficient
p; were estimated ignoring the presence of outlier.

Figure 2.3 presents the plots of one particular generated outlier free series
along with the corresponding outlier contaminated series with AO and IO outlier
att =51 for @ = 10 and shows how the effect of AO is ‘local’ at t = 51 whereas 10

affects the observation at t = 51 and the succeeding observations as well.
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The estimates of parameters for these three series are as helow:

) ci: 0
Outlier free series 0.57 1.04 048
Series with an AQ 0.40 2.14 0.37
Series with an 10 0.67 1.91 0.61

1t can be seen that the estimate of ¢ is different from that of p,. Note that
the estimate of ¢ is using the nonlincar 1S estimator calculated iteratively where
the initial value given is p,, which is the Yule Walker estimate of ¢ .

It is clear that an outlicr of cither type in the serics has effect on the
estimates of all the parameters, but the effect is noticeable in case of the estimated

error variance G7.

In Tables 2.1 and 2.2, we present the averages of the estimates of ¢, g’
and p; for AO and IO respectively obtained from the 1000 simulated series for
values of @ = 0(1)10. In order to compare the changes in the estimates due to the

presence of outlier of either type, a column of Relative Change (RC) is also

presented for each estimate, where RC is defined as

Relative Change = ﬁ’fﬁx 100 (2.8)

0

where A,, is the average estimated value at ©>0 (series with an outlier) and A, is

the average estimated value of the same parameter at @ = 0 (outlier free series).
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Fable 2.1

Average Values of d\ G) and My AR(D) with an AO att - 5]
(n 100,46 0.6,06,” 1; 1000 replications)

¢ G, il ‘
Average RC Average RC Average RC

1 SR _ ; : il

o

0 | (5801 i 0.9897 i 0.5665 .
I 0.5911 0.33% | 1.0066 1.71% | 0.5674 0.15%
2 0577 | -197% | 1.0394 502% | 0.5546 | -2.11%

3 0.5547 ~5.84% | 1.1126 | 12.42% | 05331 | -5.90%
4 0.5343 -930% | 1.2003 | 21.28% | 0.5118 | -9.65%

S | 04995 | -15.22% | 1.3183 | 33.20% | 0.4783 | -15.57%
6 | 04764 | -19.13% | 1.4452 | 46.02% | 0.4556 | -19.57%
T | 04442 | -24.60% | 1.6139 | 63.07% | 0.4211 | -25.66%
8 | 04174 | —29.15% | 1.7947 | 8134% | 03945 | -30.36%
9 | 03789 | -35.69% | 1.9655 | 98.60% | 03587 | -36.68%

10 0.3525 | —40.16% | 2.2177 | 124.08% | 0.3322 | —41.35%
Note : RC=Relative Change

It can be seen from Tables 2.1 and 2.2 that with increasing magnitude of
outlier parameter, the estimates of all the parameters change, though the effect on
estimate of error variance is much more prominent and the error variance tends to
get overestimated with higher values of outlier parameter o, if the presence of
outlier is ignored. This change is irrespective of the type of outlier, though the

change is more prominent in case of AO. The relative change in the estimates of

error variance 62 is of higher absolute magnitude than that of time series
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parameter for both AO and 10, The estimated parameter ¢ does not change
significantly with change in o in case of 10 as compared to AQ). The pattern in the
decreasing values of estimated parameter ¢ and estimated lag-1 autocorrelation

Py is similar since these are identical in case of AR(1) series.

Table 2.2

Average Values of cf), 62 and p,: AR(1) withan IO at t =51

(n=100, ¢ = 0.6, o,” = 1; 1000 replications)

LYy

A

&

@ | Average : RC Average a RC Average T RC

0 0.5901 - 0.9870 - 0.5685 -

1 0.5897 -0.06% 1.0055 1.87% 0.5663 -0.40%
2 0.5846 -0.93% 1.0338 4.73% 0.5627 -1.02%
3 0.5855 -0.77% 1.0795 9.37% 0.5633 -0.93%
4 0.5869 -0.54% 1.1413 15.62% 0.5653 -0.57%
5 0.5863 -0.65% 1.2488 26.52% 0.5643 -0.74%
6 0.5920 0.34% 1.3498 36.75% 0.5713 0.47%
7 0.5900 -0.01% 1.4729 49.22% 0.5683 -0.04%
8 0.5862 -0.66% 1.6293 65.07% 0.5649 -0.65%
9 0.5890 -0.18% 1.8098 83.35% 0.5700 0.26%
10 0.5896 -0.08% 1.9971 102.33% | 0.5694 0.16%

Note : RC=Relative Change
We also present two plots of the absolute values of RC against « for all the
parameter estimates in case of an AO and an IO in Figures 2.4 and 2.5

respectively.
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Figure 2.5: Absolute Relative Changes of ¢, &2 and py: AR(1) with an 10

att=51(n=100, ¢ = 0.6, o2 =1; 1000 replications)

It is clear that the presence of a single outlier of either type significantly

overestimates the error variance. The finding provides empirical support to the

claims in the literature that “the presence of outlier affects the estimate of error
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variance more than that of time serics parameters” (for e¢g. Bruce and Martin,
1989; Ledolter, 1990, among others)

This also supports the justification for using estimate of error variance for
outlier detection procedure in addition to its usefulness in verifying model
adequacy. Also the empirical study shows that though the presence of AO affects
the estimate of error variance more than that of 10, the effect of IO on the estimate
is also high and needs to be taken into account, contrary to some of the claims in

the literature (Chang and Tiao, 1983; Bruce and Martin, 1989; Ljung, 1993).

MA(1) with One Outlier:

In this section, we consider the MA(1) model and discuss the effect of the
outlier on the estimates of parameters. Suppose that the observed series {Y,,
tet} follows MA(1) with a single AO type outlier at T, which is modeled as

Y= 7 + o&", tet (2.9)
where Z, = a, — 0a, is the MA(1) model for outlier free series, @ is the outlier
parameter, 0 is the moving average parameter, and a, is the error term with mean

(I} =

‘0’ and variance o, and ﬁtm =1ift=T and & 0 otherwise. We can rewrite

the model (2.9) as

Yt = (D&t(T) + B— eal—h tet
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It can be simplified to
o+ a,— 0a.y. t=T
vi-{
q _Oal—li e T (2'0)

Similarly, we consider the MA(1) model with an IO type outlier as

Y= mw(B)E,F’ + a,—0a., tet,
giving,
r al"eat_l, t<T
o +a,— Ba.y, t=T
Yi=A
oy, +a, — Ba., t=T+1
- a,—0a,_, t>T+1 (2.11)
where y; =-0.

Analogous to AR(1), we generated 1000 outlier free MA(1) series with n =
100, 6 = —0.6 and &,> = 1 using the computer programs CP-1 and CP-2 as listed in
Appendix C, and introduced an AO and an IO at time point t = 51 for the values
of outlier parameter @ = 0(1)10. For each of the generated series, we estimated
the parameters of interest namely the time series parameter 0, the error variance
o, and the lag-1 autocorrelation coefficient p; ignoring the presence of outlier.
One particular generated outlier free series and the corresponding outlier
contaminated series for AO and IO for @ = 10 are plotted in Figure 2.6.

Figure 2.6 shows that an AO outlier affects on the series {Z,, tet} at time

point t =51 onli'. An 10 affects the series at t = 51 and its decaying effect can be
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Figure 2.6: Generated MA(1) Series with an Outlier at t =51
(n=100,0=-0.6,0,"=1,0=10)

seen at t = 52 as well. Since the weighs y; of MA(1) are equal to zero when j>1,

there is no IO effect after t = 52. The estimated parameters for the three series are

as below:
0 &2 By
Outlier free series -0.59 0.93 0.39
Series with an AO -0.22 . 1.96 0.23
Series with an 10 -0.57 1.89 0.45

Analogous to the AR(1) case, the estimators 6 and P, do not satisfy the

- A

parametric equation (p, =T"67) since O is a nonlinear LS estimate calculated
+

iteratively with initial value p, where p, is the moment estimate.
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It is observed that the presence of AO affects the estimate of time series
parameter more than that of 10, and both types give overestimate of the error
variance.

Tables 2.3 and 2.4 present the averages of each estimated parameters along
with their respective RCs based on 1000 simulated series for both types of outliers

AO and 10 for the parameter o = 0(1)10 respectively.

Table 2.3

Average Values of 6, 62 and p;: MA(1) with an AO at t =51

(n=100, 86 =-0.6, oaz = 1; 1000 replications )

o p

@ Average RC Average a RC Average T RC

0 | -0.6097 - 1.0112 - 0.4217 -

1 -0.5993 | -1.71% | 1.0337 2.23% 0.4140 -1.82%
2 | -0.5722 | -6.15% | 1.0785 6.65% 0.4091 -2.98%
3 -0.5343 | -12.37% | 1.1597 | 14.69% | 03902 | -7.46%
4 | -0.4950 | -18.81% 1.25‘44 24.05% | 03789 | -10.15%
5 -0.4401 | -27.82% | 1.3564 | 34.14% | 03494 | -17.13%
6 | -0.4028 | —33.94% | 1.4871 | 47.06% | 0.3320 | -21.27%
7 -0.3676 | -39.71% | 1.6441 | 62.59% | 0.3088 | -26.76%
8 -0.3251 | -46.68% | 1.8139 | 79.38% | 0.2791 | -33.82%
9 -0.2966 | -51.36% | 2.0047 | 98.24% | 0.2572 | -39.01%
10 | -0.2632 | -56.83% | 2.1910 | 116.66% | 0.2327 | -44.83%

Note : RC=Relative Change
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Table 2.4

Average Values of (A), &: and py: MA(1) withan 1O att 51
(n=100,0 = -0.6, 5,” = 1; 1000 replications)

j 0 8 |
@ | Average | RC | Average | RC | Average | RC
0 | —0.6095 | - 10194 | - | os6 | .
1| -0.6082 | -021% | 10261 | 065% | 04221 | 0.13%
2 | -0.6075 | -0.32% | 10648 | 4.45% | 04262 | 1.09%
3| 06076 | -0.31% | 11003 | 7.93% | 04203 | -0.30%
4 | -06035 | -0.98% | L1814 | 15.89% | 0419 | -0.40%
5 | —0.6070 | -040% | 12748 | 25.06% | 04175 | -0.96%
6 | -0.6084 | -0.17% | 13992 | 3725% | 04217 | 0.02%
7 | -06011 | -1.37% | 15190 | 49.01% | 04214 | —0.04%
8 | -0.6046 | -0.80% | 16600 | 62.84% | 04243 | 0.64%
9 | —0.6050 | -0.58% | 18314 | 79.65% | 04238 | 0.53%
10 | —0.6067 | -045% | 20428 | 100.39% | 04243 | 0.65%

Note : RC=Relative Change

From Tables 2.3 and 2.4, it can be seen that the estimates of error variance
62 increase with the value of @ and are much higher for higher values of o,
irrespective of the type of outlier. Also, analogous to AR(1), AO shows higher
impact on &2 than I0. The estimated parameter, 0 and the cstimated lag-1

autocorrelation, p; do not significantly change with varying values of outlier

parameter ® in case of 10 but show significant change in case of AO. It is clear

from the simulated results that the effect of presence of outlier of either type on
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the estimate of error variance 62 is much more than that on the other estimates 0
and p,.

To get a clearer picture of the tables presented for MA(1), we plot the
absolute values of RC against o for all the estimated parameters in case of AO and

10 in Figures 2.7 and 2.8 respectively.

140% - n
- - - - -Estimated Parameter 0
120% o . )
—se—Estimated error variance &2
a
i 100% — -+— - Estimated Autocorrelation of Lag-1 P,
®
g 80%
£=
(8]
= 0% A
= ..--A"T
[+ L. - .
o 40% . [l -® - P - »
20% A
0% 7, ; . ' : ; ; ; ,
1 2 3 4 5 6 7 8 9 10

Qutlier Parameter

Figure 2.7: Absolute Relative Changes of 8, 62 and p,: MA(1) with an AO
at t=51 (n =100, 6 =-0.6, c2=1; 1000 replications)

Based on the results presented, it is clear that for both Ai{(l) as well as
MA(1), the estimate of error variance 63 which gets affected if the presence of
outlier in the series is ignored, irrespective of the type of outlier. The effect on the
estimates of time series parameters 6 and lag-1 autocorrelation coefficient p,,

however depends on both the type of series and the type of outlier.
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Figure 2.8: Absolute Relative Changes of 0, 6§ and p,: MA(1) with an [O
att=>51(n=100, 6 =-0.6, c-=1; 1000 replications)

The empirical study of a small number of generated AR(p) and MA(q) as
well as ARMA(p,q) series for selected values of p and ¢ also show analogous
behavioural pattern of various estimates. A systematic empirical investigation of
these series could not be carried out due to limited computational facilities and is
not presented here. It is well known that a thorough theoretical justification of
these facts is intractable due to a lack of close form expression of parameter
estimators.

Abraham and Chuang (1989) claim that in time series analysis, some
suspected outliers may have large residual but may not affect the parameter
estimates, whereas others may not only have large residuals but also may aftect
model specification and parameter estimation. While investigating the usefulness

of various estimators in outlier diagnostic procedures, Bruce and Martin (1989)



show that the diagnostics based on error variance has hetter properties than the
diagnostics based on time series parameters. The nse of error variance to detect the
presence of outlier in the time series has also been emphasized by Ledotler (1990).
Based on the empirical study presented here, it can be concluded that the error
variance 1s an appropriate statistic to investigate the presence of outlier of either
type. Henceforth, the present work focuses on studying the estimation of error
variance in the presence of outliers in time serics.

We now discuss the estimation of various parameters present in the model.

2.4 Estimation of Parameters

!
In addition to the time series parameters § = (¢',0') where ¢ =

(¢,,¢)2,...,¢p)'and 0= (8,,82,...,8q) and the error variance 0':, we have an

outlier parameter ® from models in (2.1). We first discuss the maximum
likelihood estimation of outlier parameter and error variance when the time series
parameters and outlier position are assumed to be known. The maximum

likelihood estimation of time series parameters for ARMA(p,q) is briefly

discussed subsequently.

2.4.1 Estimation of ® and o,”
Consider the observed series {Y,, tet} in (2.1). The outlier position T and

the parameters P of time series model are known. Chang et al. (1988) discussed
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least squares estimates of outlier patameters in ARIMA(p.d.q) model with A and
10 types of outliers (also see Box et al, 1994, p. 470-471). Ljung (1993) later
established that the derived estimators are maximum likelihood estimators. We
here briefly discuss the maximum likelihood estimation of @ and ,”.

Consider the residual series defined in (2.2). Using (2.4), it can be
expressed as

¢ = a + onB)ED, tet for AO

eq=at m§tm . tet forlO (2.12)
where a, t=1, 2, ..., nare i.i.d. normal with mean zero and variance 6,2 and o is

the outlier parameter. The joint probability density function of ay, ay, ...,a, is

& |
fla, 8y, ...\20| 0, 6,2 B) o (0,7)™ exp[-Q-Zaf ]. (2.13)

a l=l
For known B and T we express the likelihood function in terms of a,, which is

L(w, 5,2 B, T, ¢) o (0,2)™ exp[-SS(w)/20,’] (2.14)

n '
where SS(w) is the error sum of squares ) a’ and e = (¢;,€,,...,¢,) . The error
’ t=1

sum of squares will differ depending on the outlier type.

For AO model, from (2.12), the error sum of squares is
5Sa(@) = Y fe, —on@)e™ | 2.15)
=1

which gives the log likelihood function



n

" 2 s n
(00, BT, ¢) : In e, ; L i€, nm(li)””’ (2.16)

Z 20, 5
Thus, we get o 4 g, the maximum likelihood estimator of the outlier parameler m

under AO model when the outlicr position is T, given by

(OA.T = f}]—f—# (217)

-T .
where n(F) = Z- T; F, my=-1 and F is a forward-shift operator given by Fe, =
j=0

2

¢ Further the maximum likelihood estimator of error variance 67 is

&1 SS (mAT)

n.A

Z{ b, n(BED . (2.18)

L
n
We can analogously estimate the outlier parameter in the presence of an 10

at time T. The error sum of squares for IO model from (2.12) is

SSy(w) = iaf = i (e - kM) (2.19)

t=1 t=1

and the corresponding log likelihood function is

(0,0, |B,T,e) —Elnc - —Z 2o (er- o) (2.20)

Ua tzT 20-8

Hence, the maximum likelihood estimator of @ for IO model is

=n(B) Yr. (2.21)
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We can also get the maximum likelihood estimate of error variance for 10
model, which is

" SS, (@ ) 1 A
Oad = ”' a Z (e~ m4 giﬂ))Z_ (2.22)
=l

Thus, we can estimate the outlier parameter under both types of models
when the position of outlier and time series parameters are assumed to be known.
We use these estimates of o to appropriately adjust the series in accordance with

the assumed outlier model in Section 2.6.

2.4.2 Estimation of Parameters of ARMA(p,q)

As mention in Section 2.2 the series {Z,, tet} can be treated as a stationary
and invertible ARMA(p,q) process. We consider the parameter estimation of a
typical ARMA(p,q) process. Let {Z,, tet} be given by

¢(B)Z, = 6(B)a, tet
where {a,, tet} are i.i.d. normal with mean 0 and variance o, Letp= (¢',0) be
the parameter vector. The likelihood function for the parameters  and o, is given

by

L(B, 02| Z) o< (o)™ 2 exp {-— o7 LY 'Z} (2.23)

where Z = (ZI,ZZ,...,Z,,)' and cov(Z) = 0,2 Z, T a function of B.
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The maximization of likelihood function is achieved by two methods,
leading to conditional and unconditional likelihood function. The methods are
discussed in detail in literature (Abraham and Ledolter, 1983, Section 5.6; Wei,
1990, Section 7.2; Box et al., 1994, Chapter 7). We briefly sketch the two existing
methods here.

In the subsequent chapters and the package Statistical Time Series
Diagnostic Software (STDS) which is provided along, we use the unconditional
likelihood function for parameters estimation leading to unconditional least
squares estimates, which provides very close approximations to maximum
likelihood estimates (Box et al., 1994, p. 229).

For the estimation procedure under conditional likelihood function, we
assume the initial condition Z. for Z and a. for a which are also called the starting

values. Conditional on the choice of Z. and a. for a given data set Z, the log

likelihood associated with the parameters B and o is

0B, 62| Z., a0, Z) < - Eln(cs:)- Lzss.(ﬁ) (2.24)
2 20

where SS«(B) = Y. a; (B | Z«, as, Z) is the conditional error sum of squares.
t=1

The estimates B can now be obtained from minimizing the sum of squares (2.24)

by standard nonlinear least squares methods. These are known as conditional LS

estimators in the literature (Box et al., 1994, p. 227).
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In unconditional likelihood (exact likelihood) function approach, the

unconditional log likelihood function denoted by ¢(p, 67| Z) is

] 1Q
(B, 02| Z) < AP) - %m (6?)- 207 350 (2.25)

112

where f{B) is a function of parameters § which is In |Z]7", and the unconditional

sum of squares function is given by
SS(B) = Y [a| B ZI + [w] =7 [u]. (2.26)
= ¢

where [a,| B, Z] = E[a,| B, Z] is the conditional expectation of a given Z and p
and Us = (Zyp, +++rZ-1s Zo, 81gy -1 aD)T. Alternatively the sum of squares in

(2.26) can be expressed as

ss@)= 3 [l B, ZI"

{=—00
and, in practice, the sum of squares can be calculated approximately by using the

finite sum as

n

SS(B)= Y. [al B, ZJ’ Z [a]? (2.27)

t=1-Q t=1-Q
where Q is a sufficiently large integer. The parameter estimates are calculated by
minimizing the sum of squares (2.27). The estimates are called the unconditional
or exact LS e'stimates (Box et al., 1994, p. 229). In (2.24) and (2.27), the two sum
of squares SS+(B) and SS(B) are not quadratic functions of the parameters § when

the order of the moving average parameters q > 0. Hence, a nonlinear least squares
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estimation procedure must be used 1o pet the estimates by minimizing, the
corresponding sum ol squares. — As a resulty these estimators are also called
nonlincar 1S estimators or Box Jenkins (BJ) estimators in the literature (Bustos
and Yohai, 1986). We refer to Box et al. (1994, Chapter 7) for further details.

IFor an observed time scries, the LS estimates can be obtained using IMSI.
subroutines. For computations presented in the thesis, the subroutine NSPE is first
used to get the preliminary parameter estimates. These estimates are used as initial
values for the estimation subroutine NSLSE. The subroutine NSLSE may be used
to compute conditional or unconditional least-squares estimates of the parameters,
depending on the choice of the backcasting length. The algorithms of these
routines follow the approach of Box and Jenkins (1976, programs 2-4, pp. 498-

509) and are discussed in details in IMSL(1997, Chapter 8).

2.5 Critical View of Deletion Diagnostics

As mentioned in Sections 1.3 and 2.1, in deletion diagnostic methods for
detection of outliers, each observation is treated as missing in turn and is replaced
by its predicted value. The various methods used in deletion diagnostics for
computing the predicted value are least squares predictors by Brubacher and
Wilson (1976) (Pefia, 1987) and maximum likelihood predictors (Ljung, 1993).
Bruce and Martin (1989) used Kalman filter estimates of parameters with missing

values. These proposed deletion diagnostic methods do not take into account the
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(vpe of outlier and for both AO as well as 10, same diagnostic technique is
applied.

Various authors have raised doubts about deletion diagnostic methods in
time series. In particular, in a discussion on Bruce and Martin (1989), Tong and
I awrence questioned “Is there a simpler but equally effective way of detective
way of detecting outliers in time scrics without deletion?” and “Is deletion an
appropriate way to handle diagnostics for time series?” respectively. Tsay in the
same discussion was more forthright when he said “Delction of all aberrant
observations might not be the optimal way in time series ...”. A hypothetical
situation where an outlying observation (Figure 2.1) is treated as a missing value

and replaced with its predicted value is shown in Figure 2.9.

AO type [0 type
Replacing with
n predicted value m
O o i

=T,T+1,T+2,

._.
I,
e |

Figure 2.9: Treatment of Missing Value in {Y,, tet} Using Deletion
Diagnostic Methods
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We note two important points about the deletion diagnostic which
substitutes an obscrvation by its predictor,

Missing values estimation methods discussed above are so-called two-sided
predictor because a predictor is computed from past and future values (Schmid,
1996). Thus the predicted value is often a weighted sum of adjacent observations
as in case of least square predictors (Ledolter, 1990). Hence in the presence of an
10, the predicted value will be contaminated by the observations which are already
affected by an IO. In the presence of AO, such a predictor will not be
contaminated provided there is no outlier in the immediate neighborhood and the
deletion diagnostic may work satisfactorily. Secondly, as can be seen from Figure
2.9, substituting the predicted value does not take care of the carry over effect of
an 10 on the subsequent observations. The outlier effect on the observations at the
time points T+1, T+2, ..., etc still remains. Schmid (1996) also comments that “...
te..sting for the existence of innovation outliers, tests using a one-sided predictor
seem to be more appropriate.”

While commenting on the analysis of time series in the presence of outliers,
Chatfield (1989, p. 6) states “... the treatment of outliers is a complex subject in
which common sense is as important as theory ... the outlier needs to be adjusted
in some way before further analysis of the data”. Noting these points of deletion
diagnostics, it seems appropriate to adjust the effect of outlier in a proper way in

order to detect the outlier and carry out further analysis. We now propose the
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adjustment of the outlier effect according to the underlying model which leads to

an improved outlier detection procedure,

2.6 Series Adjustment to Handle the Outlier Effect
For the observed outlicr series {Y,, tet}, we consider the two single outlier

models given by (2.1)

Y =24+ co&lm, tet for AO

Y, =Z +oyB)D, tet forIO. (2.28)

We first consider the situation where the time series parameters of the
underlying process {Z,, tet} are assumed known.

If, in addition to the type of outlier, ® and the outliér position T is also
known, the unobserved outlier free series {Z,, tet} can easily be traced from the
observed series using (2.28). If @ is unknown but the outlier position T is known,
the maximum likelihood estimators of @ for both outlier types given by (2.17) and

(2.21) can be considered and the effect of outlier can be ‘removed’ from the

observed series by adjusting it using (2.28).

We extend this argument and consider the situation where both ® and T are
unknown. Since T is unknown, we consider each time point i€t in turn and
assume it to be the time point at which the outlier of one of the two types is

present. Using (2.17) and (2.21), we can analogously obtain the maximum
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likelihood estimators of @ under both AO and 10 outlier maodels for each iet,

given by

. e
m/\I = T:|(| )L_'l
-
L“i
j=0
and
(T),_, =€, (2.29)

respectively, where the notation @, stands for the maximum likelihood estimator

of the outlier parameter ® when the outlier of type S is present at time point ‘i’, S
= AO or 10, which we denote by A or I respectively and i e1.
Using the estimated outlier parameter, we propose to ‘remove’ the effect of

outlier by adjusting the observed series as follows.
Let {Ys, tet} be the adjusted series corresponding to the observed
series {Y,, tet} where i}l(i},S is the adjusted value of the original observation Y,,

adjusted by assuming that the outlier is present at i and is of the type S, where i

et and S = A or I. Henceforth i is called the adjustment position. For all tet,
Y\ is defined by

Yipa=Ye- o,,&" for AO,

Y=Y o, w(B)ELD for 10. (2.30)

Thus, corresponding to each time point i, we get the adjusted series {Yiya tet)

adjusted at position'i for an AO type of outlier. We call this series AO adjusted
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series at adjustment position 1. Analogously, {‘Y.,,,,,. tet}) is called the 10
adjusted series at adjustment position i.

Since all time points are considered in turn, for i = T we get the true
position of outlier, which lcads to correct adjustment position for the

corresponding type of outlier. We define, for all tet,

Za= Yna for AO,
Zu = Y for 10. (2.31)

Note that these adjustments lead to predicted outlier free series which are
denoted by {Zm, tet} and {2.,1, tet} for AO and IO respectively when the time
series parameters are known.

We now consider the two adjusted series { ¥ 4, tet} and {Y ), tet}
and illustrate how adjustment takes care of the effect of outlier in a stationary and
invertible ARMA(p,q) model for both types of outliers at the correct adjustment
position T. We consider the two models for two types of outliers separately

assuming for the present that the outlier type is known.

2.6.1 Series Adjusted for AO

Suppose the observed series contains an AO at time point T. Then the series
{?.(i,_A, tet} fori=T isthe AO adjusted series at adjustment position T, which

from (2.30) is,
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\'| l;\ Al f"". ( l
Y WA {

Y fort 21 (2.32)
where ®, 7 can be obtained from (2.29) using t = T. Thus the AO adjusted series
{ Y na tet) is the same as the observed series {Y, tet} atall time points t # T.
Consider the adjusted observation at time point T,

Yrma =Yr- @,

=Y n(lF)e;

n-T '

Since er=n(B)Yr,
n(F) n(B)Y

Zn

Ytma=Yr-—

Without loss of the generality, we rewrite the expression as
() n(B) Yy

w
xmo
=0

‘.YT(T)A = Wi (2.33)
Since F=B"" and the series is assumed to be stationary and invertible, we get,
n(F) n(B) = n(B™") n(B)
= (1-mB™'-m,B2-m3B - ... ) (1-m;B-mB*-m;B>- ...)
= (1 + w2 4+m 432+ ... ) B
+ (-my+ mmy + mma t L) B' +(-m + mmy + moms + L) B

F (-t Mg+ mmgt .. ) B (m t mmy + mome )B2+ ..
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\;-.' 1 1l Y = g
(.m0 (Ln‘n,,, ) (}_‘nln,,, m' (L“.“m '

1o \
=t P 0 in

TO I K. 1 R
-0

idk B

\

where dy = d = Y mw,,, and mo = -1, (2.34)

1=0
Hence, on substituting (2.34) in (2.33), the adjusted observation at time t =

T afler adjustment by AO is

(kzdkBk]YT

Yima =Yr-
dy
l [ ¢]
= E‘(do = deBkaT
0 k=-o

which can equivalently be written as

Yima = —do”! > dy Yru. (2.35)

kz0

The right hand side of (2.35) is the same as the least squares estimator of a
single missing value (Brubacher and Wilson, 1976) as well as maximum
likelihood estimator of a single missing value (Ljung, 1989). Thus in case of AO,

the series adjustment procedure leads to the deletion and missing value estimation
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at position T using least squares estimate when the time serics paramelters are
assumed known.

To illustrate, consider the observed series {Y, tet} which is the
contaminated version of an AR(1) series with an AO at T. Then on equating the
coefficient of B in n(3) = 1 - ¢B we get

=0

7 =0 forj>1.

Hence,

n-T

n(F) = 1-¢Fand Y -nl=1+¢".
j=0

Using the first expression of (2.29) for i = T, the estimated outlier parameter is

&A,T 2 (er —¢erv)

1+
where ¢, = t(B)Y, = Y, - mY.-,. Hence

" l
Opr = (Yr=0Yr =Yt ¢ Yo).
1+ ¢2

Therefore, the adjusted value at time point T is

?.[.(.”. A=Yr- G)A,'I'

(Yr1+ Yra) (2.36)

I+¢?
which is the missing value estimator (Brubacher and Wilson, 1976; Ljung 1993;

Box et al., 1994, p. 479).



Instead. 1t we consider any adjustment position i # T, analogous to the
argument above, the adjusted observation Y, of the adjusted ARMA(p.q) seres

can be expressed as

Yia= -do! Zd\ Yia

k=0
giving the missing value estimate at point i.
In general, we get the adjusted series { Y ;.4 tet) for all ict as

(Y, fort<i

Y = { -y Yd Yia  fort=i

k=0
Y, fort>i. (2.37)

Thus, we conclude that in the presence of AO, adjusting the series is

equivalent to deleting the observation and replacing it by its least square estimate.
As a result, the diagnostic method based on the adjusted series (Adjustment
Diagnostic) will be same as the diagnostic method based on the missing value
estimation (Deletion Diagnostic) when the outlier is AO.

The observed series {Y,, tet}, however, can have either an AO or 10 which
is unknown, say. In such a situation, suppose the series is adjusted considering

only the AO type of outlier, giving the adjusted series

Yan=[Z+0EP]-6,,8", tiet for AO (2.38)

Yin=[Z+oyBE"]- ,,8" tiet forlO. (2.39)
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where T is the correet outlier position and i is the adjustment position which may
or may not be correet, From (2.38), it can be seen that the AO adjustment leads to
the reduction of the effect of @ in AO model when i = T and estimated value of

M, ¢ is close to @y . When i # T, the adjustment may give rise to a ‘new’” AO at

time point i.

If instead, the outlier is 10, then as can be seen from (2.39), AO adjustment
does not necessarily reduce the outlier effect, even in case of the correct
adjustment position. - For correct adjustment position and known outlier parameter,
some ‘carry-over’ effect similar to a new 10 type of outlier with outlier parameter

o* = oy, at T+1 still remains and the effects on the succeeding observations are

m*iz_ m*h m*&

R TR R T RE Thus the deletion diagnostics and ‘missing value

estimation’ may not work well in case of 10.

2.6.2 Series Adjusted for IO

We now suppose that the observed series contains an IO at time point T.

The IO adjusted series obtained on using the correct adjustment position i = T is,

from (2.30),

Y, fort<T
Yau= { Yo dpr for t=T

Y{ - (I)LT Y-t fort>T (2.40)
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where (h”. ¢ ()Y, Hence,

Y= mYi t mYpp fmYeat .. (2.41)
and the right hand side of (2.41) is a lincar function of observations up to T-1,
which are not affected by the presence of an 10 at T. Further, it is same as the
“lead 1 minimum mean squares error (MMSE) forecast” at origin T-1 (Box et al.,
1994, pp. 148-149). Thus the adjusted observation at the correct time point T is
the same as the lead 1 MMSE forecast value of the observation, treating the
observation as missing. In addition, from (2.40) we get, for t>T

Y=Y~ Oy Ve,

Thus the subsequent observations also get adjusted. Further, for all t > T, the
adjusted observation at time point t is a linear function of the original observation
at t and the observations before T.

Even when the adjustment is not carried out at the correct position (i # T),
analogous conclusions can be drawn. Hence, in general, the series adjustment in
the presence of an IO is equivalent to replacing the value at the adjustment
position by its lag 1 MMSE forecast at the adjustment position and subsequent
values by appropriate linear functions obtained from (2.41) on replacing T by i. In
some sense, proposed series adjustment in the presence of an IO has a ‘smoothing’

effect on the observed series.
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In general, we get the adjusted serics {Yip), tet) forall iet as

[ Y, fort<i
ﬂ'rl(i” = Zl:ani_j fort=i
J&
(- Yotya)mY,  fort>i. (242)
j=0

We now consider the IO adjustment of the series at i for both types of outlier

models, which is for t,iet
Yiu=[Z+0&M]- 6 wB)E" for AO, (2.43)
Yau=[Z+oy®ET]- o wBED  forlO. (2.44)
1= [ Ze T @ Y(B)E, &, ; W(B)E

From (2.43) it can be seen that in the presence of AO at time point T, the
I0 adjustment at i=T removes the effect of outlier at T, but also adjusts subsequent
observations, which is not required. Thus the adjustment for IO in the presence of
AO may not work satisfactorily. This issue is investigated in details in Chapter 3.

Also, (2.44) is the predicted series defined in (2.31) and for an estimate of

o close to the actual value of the parameter, the predicted series will be close to

the unobserved outlier free series {Z,, tet}.

Based on Subsections 2.6.1 and 2.6.2, it can be concluded that the series
adjustment for a series with AO is equivalent to missing value estimation using
least squares predictor and the series adjustment for a series with IO is equivalent
to missing value estimation using lead 1 MMSE forecast, where the value at the

adjustment point is treated as missing. The later observation is consistent with the
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observation made by Chen and Liu (1993). Thus the proposed series adjustment
appropriately handles the two types of outliers separately.

However, in addition to lead 1 MMSE forecast, the subsequent
observations also get adjusted in the presence of 10 at time point i when the series
is adjusted for 10 (ref. (2.40)). As discussed in Section 2.5, in the presence of an
10 at i, the subsequent observations also get affected and the proposed adjustment
addresses this problem. The conclusions drawn here are under the assumption that
the time series parameters are known and appropriate parameter estimation needs
to be considered. Further investigations into the effect of series adjustment on the

parameter estimation are postponed to Chapter 3.
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Chapter 3

Adjustment Impact on Estimated Error Variance

3.1 Introduction

In the previous chapter, adjustment of the series is proposed to handlc the
presence of outliers. Since the position of outlier can rarely be assumed known,
the series adjustment is proposed to be carried out at all adjustment positions in
turn. In this chapter we investigate the impact of adjusted series on the estimate of

error variance. Section 3.2 gives the estimates of error variance c. based on the

predicted outlier free series for the given outlier position of AO and 10 types of

outliers. Further, it establishes the relationship between these estimates and the
estimate of o2 based on the observed outlier contaminated series when the
presence of outlier is ignored. Sections 3.3 and 3.4 investigate and comment on
the effect of adjustment on the estimate of error variance o due to correct and

incorrect adjustment positions. The impact of incorrect type adjustment is
discussed in Section 3.5. The simulation study is carried out to obtain the bias duc
to incorrect adjustment type. To illustrate these effects, an empirical study of

AR(1) and MA(1) is presented in Section 3.6.
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1.2 Estimate of Error Variance for Known Outlier Position
As discussed in Chapter 2, the presence of outlier significantly affects the
estimate of error variance, irrespective of the type of outlier present in the series.

Also, the impact of outlier on the time series parameters is not as serious and as

has been proposed in the literature, the estimation of time series parameters p =

(¢',0') can be carried out based on the observed series itself, treating it as an

outlier free series (Abraham and Ledolter, 1983, Section 8.2.2; Tsay, 1986; Chang
et al., 1988; Wei, 1990, Section 9.3; Box et al., 1994, Section 12.2). Hence in this
and the remaining sections we focus on the estimation of error variance o,

Consider the outlier free series {Z,, tet}, the corresponding error series

{a, tet} with error variance o,” and the observed series {Y, tet} where we

assume that an outlier occurs at a known position T. Thus we have from (2.3)

a =mnB)Z , tet
and from (2.2)
e, =n(B)Y,, tet.

(2.1) gives the following relationship between Z, and Y,

Z=Y, -0&", tet for AO

Z=Y, -0 yB)ED, tet forlO 3.1)
where T is the correct outlier position in the observed series {Y,, tet}. Also,
(2.4) gives

a,= ¢, — on(B)E", tetr for AO
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a=¢ -k, tet  forlO . (3.2)

We now consider the situation when the time series parameters, outlier
parameter and error variance arc unknown and T is known. Let (I)(B) and é(B) be
the maximum likelihood estimators of $(B) and 0(B) based on the qbscrved series
{Y,, tet} (Section 2.4.2). As mentioned above, we treat {Y,, tet} as an outlier
free series for these estimates.

We consider the estimates of 7(B) and y(B) given by (Chang et al., 1938)

a

= and
8(B)

5 é(B)
B)=-"% | 3.3
y(B) 5®) 3.3)

Corresponding to the residual series {e, tet}, we construct the predicted
residual series { €,, tet} where
e, =n(B)Y,, tet (3.4)

(Box et al, 1994, p. 472). Hence, using (2.17) and (2.21) we get the estimated

outlier parameters
by =)o for AO and
s
0
&, =¢; for 10 (3.5)
where #(F)=1- ft,F - A,F —...— # .7F" " and F is the forward-shift operator

givenby Fé,= ¢, .
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Using (3.1) and (3.5), we now define

Z:_,\-“- Y - (’h,\_.,. ‘ti.tm- tet  for AO and
Z, =Y, - &, §(B)ED, tetr  forlO (3.6)

where the series { Z:.A, tet} stands for the predicted outlier free series obtained by

adjusting the observed serics {Y,, tet} with an AO outlicr, at the correct
adjustment position of AO using the estimated outlier parameter &, ;. The series
{Z:_I , tet} stands for the predicted outlier free series obtained by adjusting the
observed series {Y,, tet} with an IO outlier, at the correct adjustment position of
IO using the estimated outlier parameter &,. The predicted error series {a,;,
tet} where S is either A or I is defined as

A, 4= 7(B) Zya> tet for AO,

ay = #(B) Z,, tetr forIO 3.7)
where #(B)is given in (3.3).

Hence, on substituting in (3.7) from (3.6) and (3.4), the predicted error

series can be expressed in terms of the predicted residual series as

d 4 = € — Dpr A(B) g, tet for AO

a = - dr& tet forlO. (3.8)
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Ly A2 et
= Ct +(DA 2 (” _I A A “} - L n a R

n T

n-
A2 A2 A2 % X n
Ze. T, an - 20,1 R(F)E,
=0

Il

=Z° +Ohr A2-20, ¢ A(F)S,

— . , T
where 7t (F) is as specified earlier and 7% = Y #? which is greater than 1. Using

j=0
(3.5), we get
22 a2 A2 a2
Zam = Zel —War M
1=l t=1
It gives
) l;.z )
GaA_c ——W@AN - (3.11)

n
. 1 x2 a2 . N " . ,
The term —@3 ./’ is the bias in the estimate of error variance (Ljung,
n L]

1993) if the presence of outlier is ignored and it is clear that the error variance gets
overestimated in the presence of an outlier of AO type, supporting the findings

presented in Table 2.1 and 2.3 for AR(1) and MA(1) respectively.
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or 10:
The second expression in (3.8) is
A = 6= @y L tet
using which and (3.5), the sum of squares of predicted errors based on the outlier

{ree series 1S

n n
-3 Y- A2 o] T A A
Zal.l . Z[ t +m|‘1.§f ’—2"’:3@5%.]

(3.12)

lag s s e it ; ;
In (3.12), the term —&; is the bias in estimate of error variance and it
n L

indicates that the error variance is overestimated due to the presence of an IO in
observed series at T. It also supports the findings of Tables 2.2 and 2.4 for AR(1)
and MA(1) respectively.

Based on (3.11) and (3.12), it can be concluded that irrespective of the type
outlier, bias in the estimate of error variance does not depend on the sign of the

estimate of outlier parameter ®, and increase in bias is proportional to the square

of the estimate of @. Also the bias is inversely proportional to the series length.
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Henee an outlier in smaller data set will affect the estimate of etror variance more
than that in a large data set, which has also been pointed out by Bruce and Martin

(1989) using the influence function.

3.3 Estimate of Error Variance for Unknown Outlier Position

It is clear from the above discussion that the adjustment of observed series
at the correct outlier position T is crucial to the analysis. In this section, we
investigate the adjustment effect of an outlier on the estimation of error variance
when T is unknown.

Since T is unknown, we consider the estimation of outlier parameter for

each time point in turn. Let for iet &,; and &; be the estimates of outlier

parameter @ based on the AO and IO model respectively, as given by (3.5), when
the position of outlier is fixed at T, which is unknown. Hence, from (3.5), we

analogously get the general expression for estimated outlier parameters at position

i,iet as
@y = Eng:)-g'— for AO and
2]
j=0
@y =¢, for IO. (3.13)

Further, suppose the observed series is adjusted based on the adjustment
position ‘i’, which may or may not be the correct position. In order to investigate

the relation between estimate of error variance based on the predicted outlier free

¢
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seres and estimate of error viriance based on adjisted series, we consider two
[N T

when 11, e the correct adjustment position

when i 7 T, e, the incorrect adjustment position
for both AO and 10 types.

Using (2.30), the two adjusted series { Yy, tet) and {Yy,, tet) with
adjustment position i for two types AO and 10 respectively are defined as

Yioa= Yi= i &% tetr  for AO

Y= Yo- oy 9 BE" ,  ter forlO. (3.14)

Note that since maximum likelihood estimates of parameters are used, the
obscrvations Yys are maximum likelihood estimates of adjusted observations
Y s defined in (2.30) for S = A, I. For the sake of brevity, we avoid using
notation ?.ﬁ,_s, S = A, I for Y to indicate the estimates of observations.

We define the two corresponding predicted residual series after adjustment
ati by

Cipa = T (B) Yia, tetr for AO

by = 7(B) Y ter forIO (3.15)

and the corresponding estimates of error variance based on the series adjusted at

i by
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n
A2 s _‘l_ A2 A I i A2
Tera = Ec'“)-f\ and 8., = n"z;,ct(i).l (3.16)

corresponding to AO and 10 respectively.

3.3.1 Correct Position (i=T)

Fori =T, we get the estimate of outlier parameter &g given by (3.13) for
S taking value A and I respectively.
AO Model:

Since i = T, on considering the presence of an additive outlier AO in time

series {Y,, tet} at T and the estimated outlier parameter @ ar for AO, the series

gets adjusted at the correct position T. Hence, (3.14) and (3.15) give us the
adjusted series

i tet

Yma= Yi- @418
which is same as .Z:, 4 given by (3.6) and the predicted residual series after the
adjustment for AO as

€ma = T(B)Yymya » tet

which is same as 4,,given by (3.7) for AO. Hence, from (3.9) we get the

estimated error variance based on the AO adjusted series, at adjustment position T,
given by

A

Ol a =654 (3.17)



—_—

71

6:“), A is called the “AO adjusted at T” estimate of error variance.

10 Model:

On the analogous lines, for the observed series with an IO at T, and i = T,
from (3.14) and (3.15), we have the adjusted series

Y= Yi— 03[.1‘ W (B)éam ) tet
which is same as Z;, given by (3.6) and the predicted residual series based on
adjusted series for IO

Ery = B (B) Yyn,, tet
which is also same as a,; in (3.7) for I0. Hence, the estimated error variance
based on the IO adjusted series, at adjustment position T, is given by

63('0,1 = 6:,[- (3.18)

63m.| is called the “IO adjusted at T” estimate of error variance.

From (3.17) and (3.18), we can see that the adjusted estimates of error

" variance at T are same as the estimated error variances based on predicted outlier

free series for both AO and IO.

3.3.2 Incorrect Position (i# T)

Let ®,; and @,; be the estimated outlier parameter of ® given by (3.13)

based on the AO and IO model respectively, where 1=T.
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AO Model:
The AO adjusted series at adjustment position i, from (3.14)
Yipa = Yi— Qu Qm \ tetandi#T (3.19)
and the predicted residual series based on the AO adjusted series given by (3.15)is

€yipa= T (B) Yia, tetandi=T. (3.20)

On substituting (3.19) in (3.20), we get

I\ ~

Ciya™ €t A,i 7(B) é:m, tetandi#T.

Using (3.13) and #(B) = ) —#,B’ where o= -1 we get the sum of

=0
squares of €, ,is

n
Zéfl)A Z —G)Al i ? i#T
t=I

t=I

n-T
where i” = )" #? which is greater than 1. It gives
i=0

G egipa =G, _l&i.‘ﬁz J 12T (3.21)
oA

Note that the expression holds for i = T as well, as can be seen from (3.17) and

(3.11). On substituting 62 from (3.11), we have

Geipn =G +l(6’i.r - @} )ﬁz, izT. (3.22)
n

From (3.22), it is clear that the “AO adjusted at i” estimate of error variance

depends on the adjustment position. For c?)i_T greater than d‘)f\'i, the estimate of
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error variance based on adjusted series using incorrect adjustment position i3
expected to be larger than that based on adjusted series using correct adjustment
position, i.c., (‘15“,”‘\\ Slnafor all i 7 T. Though @y ; cannot necessarily he
greater than chf\’,. we expecet it to be larger than (?)fu for large absolute values of

the outlier parameter which will lead to an estimate of error variance being that
could be relatively smaller when it is based on the scrics adjusted at the correct
adjustment position. We can also expect that the effect of an AO outlier will not

be satisfactorily removed with AO adjustment at incorrect position i # T.

10 Mode!l:

The 10 adjusted series with adjustment position i given by (3.14) is

Y= (s Cb],i III (B) gt(i) , tetandi=T (3.23)

and the corresponding adjusted residual series given by (3.15) is

€= T (B) Y, tetandi=T (3.24)

On substituting (3.23) in (3.24), we get

A — A A T .
Cipg = €1 — Oy, ﬁz( ), tetandiz T

the sum of squares of which is

n
a2 . a? A2 .
Zet(i),l a Zet —Q;. izT



It gives

> |
i) =0 - ” LM iz (3.25)

which from (3.18) and (3.12) is the expression for i = T as well.

On substituting the value of 63 from (3.12), we have

& _62 +](~2 .2) a2 T
e()l — Val E m]_‘[‘ ﬁml_i 1# 1, (326)

Analogous to (3.22), we can conclude from (3.26) that for &/ greater that

@y;, the estimate of error variance based on an adjusted serics which is adjusted at

correct position will be larger than that based on an adjusted series which is

adjusted at correct position. For a large absolute.of outlier parameter ®, @;, is

expected to be greater than &?,.

In conclusion, the estimated error variance based on adjusted series will

still be biased if the adjustment is at an incorrect position.

3.4 Comments on Estimates of Error Variance

We have derived various estimates of error variance o based on different
series adjustment in the earlier sections and established the relationships between
them. In this section, we list these relationships for comparison. For the sake of
completion, we first list all the estimates and then compare them for each type of

outlier separately.
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the estimated error variance based on observed series (residual variance)

0,
al the estimated error variance based on outlier free series (unavailable)
5 i . =the estimated error variance based on predicted AO outlier free series

62, = the estimated error variance based on predicted 10 outlier free series

6iya = the “AO adjusted at i” estimate of error variance, i€t

2
e

&fm‘, =the “10 adjusted at i” estimate of error variance, i€t

AO Model:

From (3.11), (3.17), and (3.22), we can see the changes in the estimates of
error variance o, in case of AO adjustment of the series at the correct and

incorrect adjustment positions. The various estimates are —

: . £ _ 3 1., .
Estimate based on observed series S; =6, , +—0h A’
(ignoring the outlier) n
Estimate based on adjusted series
Adjustment at T Terra, =85
; . i 3 1 ¢ R
Adjustment at 1 T oz(im = of’A + —( i,r - mi‘,)qz
n

In these expressions, &:_A, 63{T).A and 65“)',\ are the estimated error

variance based on predicted AO outlier free series and the “AO adjusted at i”

estimates of error variance at correct adjustment position T and incorrect



1
. 1 . . ) . ) .
adstment position 17 1 respectively. 1t can be seen that the ¢, 4 15 same as the

" ~ R ’ T e . [ ¥ . a ) ¢
estimated crror vanance based on predicted AO outlier free series, e, , since the

adjustment is at the correct position in the observed series.  The adjustment at

correct position T s expected to give us the minimum variance among the AO
adjusted estimates of error variance for all ie 1, provided @) , > @}, which can
be expected to hold true for large values of || For small values of |ol, however

22 R 22
G )4 May be smaller than 6 q,) 4.

JO Model:

From (3.12), (3.18), and (3.26), the changes in the estimates of error
variance o in case of IO adjustment of the series at the correct and incorrect

adjustment positions can be represented as follow.

- . ~ -~ l -~
Estimate based on observed series & = o‘ﬁ,, + —cof,T
(ignoring the outlier) L
Estimate based on adjusted series
Adjustment at T Gqny =05
. . al Al l A2 a2
Ad_]llslmcnl atliT U!(i)l 20‘“ +_((DIT —Cl)“)
, (Riboe o :

]

Notice that the IO adjusted estimate of error variance at T, &f(m, is same

as the estimated error variance based on predicted IO outlier free series, 6;,. We

can expect the 10 adjusted estimate of error variance to be minimum when the



eNMect ol outher s adsted at the correct posttion i the 10) series | he empirical
study investigating the adjustment impact on estimates of rr: due to correct and

incorrect adjustment positions is presented in Section 3.6.

1.5 Adjustment Using Incorrect Type of Outlier

In this section, we investigate the impact on the estimate of error variance
when the series is adjusted for an incorrect type of outlier. In particular, we
consider two situations: when a serics is contaminated by an AO but the series
adjustment is carried out under the assumption of an [0 and when the series is
contaminated by an IO but the scries adjustment is carried out under the
assumption of an AO. We restrict the discussion to the correct adjustment position
only and study the impact of incorrect type adjustment at correct position.

Suppose {Y,, tet} is the observed series contaminated with a single outlier
at T. For any given series we can construct an AO adjusted series and an [0
adjusted series, adjusted at i™ position and obtain the “AO adjusted at i” and “I0
adjusted at i” estimates of error variance which from (3.21) and (3.25) with i =T

arc

~ - al 1 Al A
Tema =0 "H‘DA.T“ ’

1
~ _A 2 al
Oyt = Oe _HmlT'

1)



Suppose the series s contaminated by an AO at | In this case, from (1 17)

.? s )
nnll*\ : nn’\

which is likely to be the smallest estimate of error variance. Hence, using (3.11),

- .? 1 .
WC CXPIess O 4y, 1N lerms of 03,,”-’1“

-2 - .?
Oyt = Ogmya * ball) (3.27)

where the term
Vi sm.
ba(l) = ;(mi_m’ - dfy) (3.28)

can be interpreted as the bias in estimate of error variance due to adjustment for [0
type when the correct outlier type is AO.

On the same lines, if the outlier present in the series at time point T is an 10

type, we get
63(T).A = 63(T).I +bi(A) (3.29)
where
} o ok i
bi(A) = E(m:{.r -0% A7) (3.30)

is the bias due to adjusting an AO when IO is the correct type.

(3.27) and (3.29) give the relation between estimates of error variance
based on correct and incorrect type of series adjustment. The expressions do not
lead to any conclusive evidence to say whether the incorrect type of series
adjustment leads to an estimate of error variance larger than that based on correct

type of series adjustment. The bias in both the expressions depends on the
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estimates of outlier parameter o under the assumption of the presence of an AO
type and an 10 type of outlier. For further investigations, we carried out a
simulation study of 1000 replications on an AR(1) and MA(I) series with
parameters ¢ = 0.6 and 0 = -0.6 respectively for n = 100 and o = 1(1)5. The
average of empirical values of two biases by(I) and bj(A) given in (3.28) and
(3.30), due to incorrect type adjustments arc computed using computer program

CP-3 listed in Appendix C and are presented in Table 3.1.

Table 3.1

Average Bias x 10% of Incorrect Type Adjustment for Outlier Series
with an Outlier at t =51

(n=100, ¢ = 1; 1000 replications)

AR(1) Series MA(1) Series
0 b(A) baD b(A)
| 0.2555 0.3470 0.3824 0.6165
2 0.9966 1.4580 1.2645 1.6744
3 2.3392 2.8228 2.8084 3.2606
4 4.0145 4.0855 5.3474 4.6704
5 6.3481 6.0859 9.1037 5.7481

From Table 3.1, it can be seen that the adjustment of incorrect type results
in the larger estimated error variance than the correct type adjustment at position T

since all biases are positive for both types in both series. We also observe that the
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10 adjustment for AO series gives more bias than the AO adjustment for 10 series
patticularly for MA(1).

Based on the theoretical and numerical results presented above, we can
conclude that the adjustment of correct type and correct position is expected to
give the smallest estimate of error variance among all adjusted estimates of error
variance. Further exploration of this issuc is postponed to Chapter 4 and Chapter

5 where simulation based study is presented.

3.6 Numerical Study of Adjustment Impact

In this section, we present the numerical study of adjustment impact on
estimate of error variance discussed in the earlier section. The study presented
uses generated AR(1) and MA(1) series of length n = 100 with a single outlier of
AO or IO type at t = 51 for the value of outlier parameter o = 4. The outlier free
series, which are used to generate the outlier series, are the same as in Figures 2.3
and 2.6 of Section 2.3 for AR(1) and MA(1) respectively. Thus for each generated
series, we have two additional contaminated series corresponding to an AO and an
I0 outlier at t = 51. From each of these contaminated series on AO adjusted series
and an IO adjusted series is obtained for every adjustment position i in turn, i = I,
2, ..., n and the estimates of error variance based on adjusted series are calculated.

We postpone the detailed simulation study to Chapter 4, where some

additional issues will also be covered. The software STDS (Statistical Time Series
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Diagnostic Software) which is developed during this study and is attached along is

used for computations as well as plots which are presented in this section.

AR(1) with an AO:

We now consider the generated AR(1) series with an AO at t = 51 forn =

100, ¢ = 0.6, 6," = 1, and ® = 4. The plots of AO and 10 adjusted estimates of

error variance for AO series are presented in Figure 3.1.

Estimated Error Variance

o :
116 4
114
112
.10 -
1.08 -
1.06 -
104 Gan
102
0 A ———
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 B1 86 91 96
AO Adjustment - = - - - - 10 Adjustment e

Figure 3.1: Adjusted Estimates of Error Variance: AR(1) with an AO at t =51

(n=100,¢=0.6,0,"=1,0=4)

The estimated error variance based on predicted outlier free series 6; , and

the residual variance G are also shown as the straight lines in the figure.

In Figure 3.1, all estimated error variances based on each adjusted series are

less than or equal to the residual variance 62=1.1730 which is shown in the figure
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as the upper straight line. The estimated error variance based on the predicted A
; o TR T v A , . ] .

outlier free series 1s o, , — 10316 as shown in the lower horizontal straight line in

the figure. 1t is close to the estimated error variance r'ri = 1.0389 obtained using

the original outlicr free series, as well as true error variance o) = 1.

From Figure 3.1, the two estimated error variances based on the adjusted
series at adjustment position t = 51 are markedly different from others. Hence, t =

51 can be treated as the position of outlier in the series. The two estimates
63(5,M=l.0316 and 65(5,)_,= 1.0491 are the adjusted estimates of error variance
based on each adjusted series at position t = 51. Since &S(SI,_A is less than &gy, |

it indicates that an AO outlier occurs at t = 51 in the generated AR(1) series.

AR(1) with an 10:

Next we consider a generated AR(1) series with an IO at t=51 for n=100, ¢

= 0.6, 0, =1, and w=4. The adjusted estimates of error variance along with 6:,

and 67 are plotted in Figure 3.2,
From Figure 3.2, it can be seen that all the estimated error variances based

on each adjusted series are less than or equal to the residual variance 2= 1.1543.
The lower straight line for ;= 1.0405 in the figure shows the estimated error

variance based on predicted 10 outlier free series, It is close to the estimated error
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variance 6, — 1.0389 based on the original outlier free series as well as the true

5 5 -
crror variance o, = .

1.18 -
al
GC
h
c
]
®
> L]
b = o
: t ;
w ‘
k=) 108 “ (1
1] 1
ﬁ "
E 1.06 - :
@ 2 A2
ul 1.04 Ga,l
1.02 +
'.00 Ll L] T T L] T 1 L L T T L L] T L] L] T L] L] L}
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 B1 86 91 96
AO Adjustment - - - - - - 10 Adjustment Time

Figure 3.2: Adjusted Estimates of Error Variance: AR(1) with an IO at t =51
(n=100,0=0.6,0.=1,0=4)
From the graph, it can be seen that all of the adjusted estimates of error
variance are greater than 1.06 except for the IO adjustment at t = 51. It indicates

that an IO outlier occurs at t = 51 with the IO adjusted estimate of error variance at
51,675, = 1.0308.
In Table 3.2, we summarize the values of adjusted estimates of error

variance of the generated AR(1) series when the adjustment is made at correct or

incorrect position and correct or incorrect type.
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Table 3.2

Adjusted Estimates of Error Variance 65“1 : AR(1) with an Outlier at t = 51
(n=100,¢=06,0,"=1,0=4)

Series with an AQ Series with an [0
Adjustment type Adjusted Adjusted Adjusted Adjusted
for AO for IO for AO for IO

Adjustmentati=T | 1.0316(51) | 1.0491(51) | 1.0924 (51) | 1.0348 (51)

Adjustment ati=T
Minimum value | 1.0896(90) | 1.1028 (83) | 1.0685(90) | 1.0832(83)
Maximum value | 1.1730 (41) | 1.1730(62) | 1.1543(19) | 1.1543 (62)
Average value 1.1618 1.1622 1.1425 1.1436

Note: The adjustment positions are shown in parentheses.

It can be seen from the table that the estimated error variance based on the
adjusted series is minimum with the correct adjustment position and correct type
adjustment (the shaded cells in the table). It can be seen that when the adjustment
is not at the correct position, i.e., i # T, the average adjusted estimates of error
variance are quite close to the maximum value of the adjusted estimate of error
variance for i # T, and are close to the residual variance 62=1.1730 and 1.1543 for
AO and 10 respectively. It is clear that the adjustment at incorrect position cannot
reduce the effect of an outlier in the observed series even when the adjustment is
made for the correct outlier type.

Also, as can be seen from the table, when AO adjustment is carried out for

a series with an IO type outlier, the smallest value among the adjusted estimates of

error variance is 63(90)'A= 1.0685, which leads to the identification of incorrect
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ier position. This indicates
outlier positl Phis indicates that AQ adjustment may not work well for an 10

contaminated series.

Table 3.3 shows that the adjustment impact on all the estimated parameters

of AR(1) series. The correct type adjustment and correct adjustment position

gives us the estimated error variances that are close {0 the cstimated error variance

of outlier free series.

Table 3.3

Adjustment Impact on Estimated Parameters: AR(1) with an Outlier att =51
(n= 100,4}=0_6,0a2 =l,0=4)

Estimated OI?:S:I . Series \-‘Vith an A(? . Series with an 10

Parameter Series Without Adj. | AO Adj. at T | Without Adj. | 10 Adj.atT
¢ 05679 | 0.57% 0.5805 0.6433 0.5994
62 [1.0389| 1.1730 1.0316 1.1543 1.0405
Or - - 3.2529 - 3.4653

Hence, the adjustment at correct position with correct type can reduce the bias of

estimated error variance in the presence of an outlier in time series. Although the
estimates of ¢ show bias in comparison with the estimates based on original outlier
free series, nothing can be said in general. The outlier parameters are

underestimated compared to the true parameter © = 4.
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MA(D) with an AO:
On analogous lines, we consider the MA(1) series of length n = 100 with 0
= - 0.6, 0,>= 1 and an AO with ® = 4 at t = 51 and calculate the estimated error

variances based on AO and 10 adjusted series. The results are displayed in Figure

3.3
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AO Adjustment = = - - - - 10 Adjustment Time

Figure 3.3: Adjusted Estimates of Error Variance: MA(1) with an AO at t =51
(n=100,0=-0.6,0,=1,0=4)

The estimated error variance based on predicted outlier free series and the
residual variance are 62 ,=0.9334 and 6; = 1.1107 respectively. The estimated
error variance based on the outlier free series &f is 0.9342. From Figure 3.3, it
can be seen that the minimum value of adjusted estimates of error variance over all

iis 63(5,),A= 0.9334 which is close to the estimated error variance based on the
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outlier free series. It indicates that an AO outlier occurs at t ~ 51 in the

contaminated MA(1) series.

MA(L) with an 10:

Now we consider the MA(1) series with an 10 at t = 51for n = 100, 0 = -
0.6. and © = 4. We get AO and 10 adjusted the estimates of error variance for i =

1. 2..... 100 as shown in Figure 3.4.

1.13 4
1114
1.09 4
1.07 A
1.05 1
1.03 -
1.01 4
0.99 -
0.97 4
0.95 -
0.93 -

Estimated Error Variance

D 91 T T L] 1 T T L L] L) T L] 1 L] T 1 Ll T T L] L]
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
AO Adjustment - = = = = 10 Adjustment Time

Figure 3.4: Adjusted Estimates of Error Variance: MA(1) with an 10 at t =51
(n=100,6 =-0.6,0," =1,0=4)

In Figure 3.4, all the adjusted estimates of error variance are greater than

0.99, except at t = 51. The adjusted estimates of error variance at t = 51 are

8254 = 0.9973 and &2, = 0.9348 for AO and 10 adjustment respectively. The

10 adjusted estimate of error variance 63(5,]‘, is less than 63{5”’ A and is close to the
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cginmlcd error variance based on outlier free series 67 = 0.9342, indicating the

Imssihi“‘.\' of an 10 outlier at t = 51 in the contaminated MA(1) serics.
Table 3.4 shows the summary of estimates of error variance of MA(I)

serics based on adjustment at various positions and adjustment for different types

of outliers.

Table 3.4

Adjusted Estimates of Error Variance &2 : MA(1) with an Outlier at t= 51
(n=100,0=-0.6,0,"=1,0=4)

Series with an AO Series with an 10
Adjustment type Adjusted Adjusted Adjusted Adjusted
“ for AO | forlO for AO for 10

Adjustment ati=T 09334(51) 0.9677 (51) | 0.9973(51) 09348 (51)
Adjustment at i # T '

Minimum value | 1.0283 (50) | 1.0486 (13) 1.0177 (50) | 1.0081(13)

Maximum value | 1.1107(67) | 1.1107 (78) | 1.0777(85) | 1.0777 (1)

Average value 1.1006 1.1007 1.0672 1.0681

Note: The adjustment positions are shown in parentheses.

As in case of Table 3.2, Table 3.4 shows the estimates of error variance of
the generated MA(1) series when the adjustment is made at correct or incorrect
position and is of correct and incorrect type. The optimum values are obtained for
AO and 10O series with the adjustment of correct position and correct type (the

shaded cells in the table). It can be seen that the average adjusted estimates of

error variance for i # T are close to the maximum values of corresponding adjusted
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estimates ol error variance for i # T, These cstimates are also close to the residual

variances d'f = 1.1107 and 1.0777 for AO and 10 respectively.

Adjustment Impact on Estimated Parameter: MA(1) with an Outlier at t =51
(n=100,0=-0.6,0, =1,0=4)

Table 3.5

. QOutlier Series with an AO SEries with an [0
Estimated E -
Parameter S I | Without Adj. | AO Adj. at T | Without Adj. | 10 Adj.at T
Crics
0 -0.5915| -0.4388 -0.5795 -0.5730 -0.5993
62 09342 1.1107 0.9566 1.0777 0.9373
@7 ’ . 3.6938 . 3.8048

Table 3.5 presents the estimates of all parameters involved using various

series. It can be seen that after the adjustment of correct type and correct position

is made, the estimated error variances are close to that of the original outlier free

series. Hence, the adjustment method can be used to reduce the bias in estimated

error variance and to detect the outlier position.

From Figures 3.1-3.4, we can notice that the bias in estimate of error

variance can be substantially reduced by the adjustment not only at correct

position but also at incorrect positions. It can mislead into selecting the incorrect

outlier position when the outlier parameter is small. For instance, from Figure 3.2

and Table 3.2, the AO adjustment cannot properly indicate the position of the

outlier when the observed series has an IO outlier. The IO adjustment seems to

indicate the position of outlier even when there is an AO in observed scries.
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Though a detailed empirical study is postponed to later chapter, we
conclude that the adjustment at correct position with correct type gives the
minimum estimate of error variance for both types of outliers in time series. It
agrees with the theoretical results in the previous sections and the estimates of
error variance using adjuslment method can be used for detection of outlier.

In the next chapter, we propose outlier detection method based on

adjustment diagnostics.
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Chapter 4

Adjustment Diagnostic for Qutliers

4.1 Introduction

As mentioned in Sections 1.3 and 2.1, the existing diagnostic procedures in
time serics analysis are adapted from regression diagnostics and used in deletion
diagnostic approach (Pefia, 1987; Bruce and Martin, 1989; Abraham and Chuang,
1989; Ledolter, 1990). In previous chapters, we proposed series adjustment as a
possible method to handle the diagnosis of outliers.

In this chapter we propose a diagnostic procedure for detection of outliers
in ARMA(p, g) series which is based on the estimates of error variance using the
observed series and the adjusted series. The procedure is derived in Section 4.2
using the likelihood displacement criterion proposed by Cook (1986, 1987). The
proposed procedure is called Adjustment Diagnostic based on Variance (ADV).

Section 4.3 investigates the performance of ADV using ML estimator of 8
based on simulation study. As pointed out in Sections 1.4 ‘and 2.5, most of the
existing deletion diagnostic procedures do not distinguish between the types of
outliers. It is shown that the proposed procedure performs better than the existing
procedures in the presence of an IO and satisfactorily identifies the outlier type.

Section 4.4 presents the performance of the proposed procedure in the

presence of a single outlier in a series using robust estimator of B and compares it
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with that using ML estimator. The simulation study shows marginal improvement
in the performance of correct type identification using robust estimator only when
an additive outlier is present in the serics.

In Section 4.5, an iterative procedure for detection of multiple outliers is
proposed. The performance of the proposed procedure in the presence of multiple
outliers is presented in Section 4.6 where the contaminated series is assumed to
have isolated or patch outliers. We critically evaluate the iterative procedure in

Section 4.7 and suggest possible alternatives.

4.2 Adjustment Diagnostic Based on Likelihood Displacement
Cook (1986, 1987) introduced a general measure of model perturbation on

parameter estimates using contours of log likelihood function. For any model M
with parameter vector A, let £(A) be the log likelihood function and A is the
maximum likelihood estimator of A. Suppose we have a perturbation model M(w)
and let £,(A) and A, be the log likelihood function of the perturbation model and
the associated maximum likelihood estimator respectively. Thus we have two
estimators A and A, corresponding to the basic model and perturbation model
respectively. The likelihood displacement or likelihood distance LD,(A) proposed
by Cook is

LD,(A) =2[ &%) - £(Ao) ] @.1)
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which measures the changes in the log likelihood function due to the influence of
perturbation on the parameter estimates.  The likelihood displacement provides a
theoretical foundation for a general measure (o assess the influence of perturbation
on the estimates of model parameters.

Cook also proposed modification of likelihood displacement in situation

where 2 subset of parameters is of interest. In particular, let A be the parameters

U

of interest when % = (1,13) and let &,, - (L,.1%,) . Further. let X (&) be the

maximum likelihood estimate of A, obtained on maximizing {(Ay. A;) when Ay is
fixed. Hence

{10, A2 (A1) = max €(h .. A))

and the proposed likelihood displacement lor A, is
LD() =2 [{(A) = {(h 1. X (1)) (4.2)
The likelihood displacement measurc is ofien used in regression diagnostics
(Cook and Weisberg, 1982, p. 181-188). In the regression sctup, the model
considered is Yo = Xaxk Oix1 * € aa and (he model perturbation is the deletion of
i~ case from the observations. Cook and Weisberg also established that in case of
regression model where the parameter © is ol interest, the likelihood displacement

is a monotone function of Cook’s D statistic.
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In casc of time series obscrvations, the likelihood displacement diagnostic
measure is derived by Ledolter (1990) where a stationary and invertible ARMA
(», @) model

¢(B) Y =0(B) a,

is considered. The model perturbation considered by Ledolter is the deletion of i
observation following deletion diagnostics proposed by Pefia (1987) and Bruce
and Martin (1989). The deleted observation is treated as an unknown paramecter
and its estimate is substituted in the observed series to estimate the parameters of
interest. ‘The estimate of deleted observation used by Ledolter is the weighted sum
of adjacent observations which is the Brubacher and Wilson (1976) estimator
discussed in Section 2.6. Based on the discussion presented in Section 2.6, the
perturbation of model considered by Ledolter is similar to the proposed scrics
adjustment under the presence of an AO type of outlier.

We investigate Cook’s likelihood displacement in a more general setup
where the model perturbation is the series adjustment and derive the diagnostic
measure in the presence of outlier of AO and IO type. Alternatively, Akaike
Information Criterion (AIC, Akaike, 1974) can also be considered.

Consider a stationary and invertible ARMA(p, q) process given by

¢(B) Y, =06(B) a
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where {Y,. tet} is the observed serics and a, are i.i.d. normal with mean 0 and

variance o.. We treat this as the original model M for the likelihood

displacement. Let B denotes the time serics parameter vector (¢',B')’ :

We consider two perturbation models M, (o) and M;(0) corresponding to
AO and 10 type respectively. In the presence of an AQO, the adjusted series based
on an AO adjustmentati=1,2, ..., nis

Yoa=Y:- Dy £, i, tet.

From (2.37), we get the adjusted series { ¥ 4, te1} where

(Y, fort<i

?t(i),A = J —do_l de Yin fort=i

k=0

\ Y, fort>1. 4.3)
Thus, under the perturbation model M, j(®), observation at time point t =i is a
weighted sum of adjacent observations, where the weights depend on the unknown
time series parameters of the model. Hence the value of the observation at t = i
needs to be estimated appropriately, using (3.14).

In case of the adjustment of the series with an IO type of outlier, for the

adjustment position i in turn, i =1, 2, ...., n, the proposed adjusted series is
¥ = Yi- 01 w(B) £, iter

where, from (2.42),
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(Y, fort <i,

"\'r Wl = J anYi—j fort= i,
=

\ Yt*“l’t-iznﬁ’w fort>i (4.4)
j<0

and the mi’s and y;’s are the unknown model parameters. Thus, under the
perturbation model Myj(w), forallt>1i, the observation Y, at time point t is the
weighted sum of the original observation at t and the observations prior to time
point i. Since the weights depend on the unknown time series coefficients, we

treat the series adjustment as estimation of adjusted observations ‘I’[(i,‘,, t>iand

obtain the estimates Y1 appropriately, using (3.14). For both the adjustment

models discussed above, we consider an iterative procedure to determine the

estimates of the adjusted values, the time series parameters and the error variance.
We now obtain the likelihood displacement for the adjustment diagnostic in

the presence of outlier in time series, using conditional log likelihood functions for

simplicity. Suppose that the observed series {Y,, tet} follows model M. The

conditional log likelihood function, denoted by (B, c2), is given by (See (2.24))

£(p, %) - 3 In(o) - ﬁz—ssim 4.5)

[

where B is a set of parameters (¢',0') , o} is the error variance and SS(p) = Y ai.
=
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Then, under the model M, the maximum likelihood estimates f§ can be

obtained by minimizing the conditional sum of squares function SS(B) of (4.5) as
shown in Section 2.4.2,

We also obtain the maximum likelihood estimate of error variance, based

on the observed series {Y, tet}. Using B = (¢',0’)' we obtain the estimated sum

of squares function
$S(B)= Y. (R(B)Y,)’
t=1

where 7 (B) can be obtained by equating the coefficients of B in $(B) =0 (B) 7 (B)

and the maximum likelihood estimate of error variance is given by

SS(B).

AZ_
0.~

= | —

This is the residual variance introduced in (3.10). Thus, the log likelihood

function required for likelihood displacement in (4.1) is obtained by substituting

the values p = p and o® = & in (4.5), which gives,

& adyo. . Broraty. 1 A
{(p,s.) zlﬂ(ﬁe) 25 SS(B)

and it reduces to
E(B.&z)oc--g-ln(&z)--‘zl. (4.6)

To get the likelihood displacement under perturbation model, we need to

obtain the maximum likelihood estimates of parameters B and the error variance
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o‘: under cach of the perturbation models M, (o) and Mi(w) based on the
corresponding adjusted series given by (4.3) and (4.4) respectively fori = 1,2, ...,
n. As mentioned carlier, an ilcrative procedurc must be used to obtain the
maximum likelihood estimates of the adjusted observations Y, and those of the
parameters of interest. We denote the estimates of parameters as ﬁ(i)'s and the

= . a2 . .
estimated error variances as Gy, for S = A, I. The estimates of error variance,

&2)s» are obtained by replacing the original observations in the serics by their

"

estimates given in (3.14) and using B s .
In particular, for Ma (@), we iteratively obtain the maximum likelihood

estimates of parameter vector [, fin (@);l,_ﬁ,é'm_,\)', based on estimates of

adjusted series Yy and the estimates of time series parameters B. The estimated

error sum of squares is
$SaBow) = XYl
t=l

where 7 ,can be obtained by equating the coefficients of B in &)(i,.A(B) =
0 ¢)a(B) iy (B). Hence, the maximum likelihood estimate of error variance, is
given by

Ss(i)(ﬁ(i),A)-

1
a2 -
Oeida™ 7
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Similarly, for My(w), we iteratively get the maximum likelihood estimates
of parameters and crror variance based on the estimated adjusted series Yy,
given by
ﬁ(i).l = (‘i’;.-u !6;0.1 )
and |

1

™ 2 =1 L]
Ceti) — o SSa (B

For the sake of simplicity, we suppress the notation denoting two types of
perturbations corresponding to AO and IO type of outliers and introduce a general

notation to denote the maximum likelihood estimates under the perturbation model
Mi(®) by B for B and By, and &7 for &7 , and &2, given by
B(i) = (q),(i),e.(i}); s

and

n 1 -
oy = —SSp(Bw)
n

where SS(;,(ﬁm) is the sum of squares function which uses ﬁ(i, and is based on

observations where the original observations are replaced by their estimates as per

the suggested adjustments. We further introduce an additional estimate of error

variance, denoted by szm, given by

SS(B )

? =
Sei) ~

=

where



100
A “ A 2
$S(B) = . fra Y,
(=l
which is based on the original observed scries without any adjustment of any
obscrvations, and using f .

When the time series parameters B and error variance . are both of

interest, the aim is to obtain the likelihood displacement introduced in (4.1), which

reduces to

LD(B,0;) =2 {&(B.55) - 6B 6%y) ), ier
where E(ﬁ,&f) is given by (4.6) and f,’(ﬁ(i), 630}) is obtained on substituting the
estimates ﬁ(i} and 6'3“) in the log likelihood function (4.5) which gives

2
nSe(i)

A n
E(B(i],éf- )OC— —ln(c"s : )- e T
(i e(i) a2
2 "7 264

Thus, the measure of interest LD;(p, o) reduces to
2 Doy A B, e ﬂsﬁu)
LDi(B,o;)= 2 (_Eln(oc)_i ~ 'Eln(ce(i))-ags‘(;

52 Seq
=-nln] = [|+n 7;(#)—1 ; €T,
Oei) O

In order to obtain likelihood displacement for the error variance o’ of

interest, the modified likelihood displacement introduced in (4.2) with M=o

reduces to
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LD(o7) =2 { €(,57) - (B, 6%,) )
where ((B,62) is as in (4.6) and E(ﬁ,ég(,,) is obtained on substituting the

estimates  and 6fm in (4.5). The substitution gives
nG’
a2

(B,6%) « -2 (6%,)-
o) 5 (Oeqiy) s

e(i)
Thus the measure of interest can be simplified to

LD(o3)=2 { &(B,56%) - &B,6%;) )
PICTOE, | s Py L B . T _nc’i:
LD(o?) 2{( 2111(0,) 2} [ 2ln(cem) 25fu)]}

a2 a2
G .
=-n In f;‘ +n ,2‘ —1} iet. 4.7)
Cei) Ge(i)

As expected, the expression for the likelihood displacement is same as that

derived by Ledolter (1990), except for the difference in the estimates, which in
this casc is based on adjusted series. Ledolter showed that this likelihood

displacement is equivalent to the deletion diagnostic based on error variance (DV)

)
developed by Bruce and Martin (1989). For x = f;‘ —1, using the identity
Ce(i)

2
In(1 +x)=x —%, it was shown that (4.7) can be approximately expressed as
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2 5 1| 62 2 22
LD{(o,)= -n —=-1|-= —-=1| t4n f’; 1
Seir ) 2 Geqy Ge

« 2 8 12 =pV :
7 6:“) i (=34 (4.8)

It is clear from the derivations that the diagnostics based on likelihood
displacement will agree with the diagnostic proposed by Ledolter based on
deletion. Further, since the series adjustment in the presence of AO is similar to
deletion diagnostic, the procedures will coincidé when the adjustment is carried

out for AO type of outliers.
Before formally proposing the diagnostic procedure, we briefly discuss the

situation when the parameter f is alone of interest. The likelihood displacement in

this case reduces to
LD;(B) =2 { f(ﬁ,ﬁf)"f(li(i)asim) ) iet
where E(ﬁ,&i) is as before and f(ﬁm,sz(i}) is given by substituting the estimates
ﬁ(i) and Sf(i, in (4.5), which reduces to
2 n n
f(B(i)asf(i)) o - '5 1!1 (Si(i)) ™ E

Hence, we get

LD(B)=2 {(— g*ln(&:) - PZ_J = (“ %l"(sfﬁ) )= %)}
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"2
LDi(B) = -n ll{ (:c J, ict.

Se(i)

As claimed in Chapters 2 and 3, since the estimate of error variance is more
sensitive than the estimates of the time series parameters in the presence of
outliers (Bruce and Martiﬁ, 1989; Ledolter,1989, 1990), we return to the
likelihood displécement diagnostic for the error variance o2, given by (4.7). Based

on (4.7) and (4.8) and following Ledolter (1990) we consider the quantity

~2
O

2

G . : : .
n[———lJ as the diagnostic measure based on error variance for outliers in time
series. The displacement is equal to n times the influence on scale D,(i) proposed
by Peiia (1987).

Since we have two adjusted series for AO type and IO type of outlier, we

introduce adjustment diagnostic measure based on error variance for both series.

~2
Let ADVg; = n[ L I 1], et 4.9)
Oe(i)s

where S is either A or I, 67 is the estimated error variance based on the observed
series, and &f(i) s is the estimated error variance based on adjusted series with

adjustment position i, by outlier type S, S = A 1.
The two measures introduced in (4.9) can be used for obtaining diagnostic

plots. We propose two diagnostic plots of ADVs; against i to get an initial idea
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about the contamination present in the available observations. The possible
position of outliers will be denoted by the large values of ADVy;.

Hence, for diagnosing the presence of an AO or an [0 type of outlier,

respectively, in the observed series at an unknown position, we propose the criteria

n2

) '
Qa = max ADV, ; = max n[ Je —l], iet for AO

: Oei)a
— ADV,\’T and
62
(Q; = max ADV}; = max n[ —-1]|, iet forlO
: ' Oe(i)l
= ADVLT. (4 10)

The position Iof the outlier is given by the time point T at which the
proposed statistic achieves the maximum provided the computed statistic Q4 or Q;
is significantly large.

Based on likelihood displacement criterion, we have two test statistics Q,
and Q) for testing the possibility of an AO or an 10 respectively. The type of
outlier, however, is rarely known in practice and it is difficult to decide which

"detection test is more appropriate for a given.situation. Also, as shown in Chapter
3, the series adjustment at correct adjustment position by correct type is crucial as
it is more likely to yield the smallest adjusted estimate of error variance. Thus,
even after detecting the presence of an outlier in the series, a criterion to

distinguish between an AO from an IO is needed. One possible way is to compare
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the two statistics Q4 and Q; at any suspected time point T. In particular, at any
suspected time point T, the possible outlier is classified as an [0 if Q4 < Q; and it
is classified as an AO if Q5 > Q.

Alternatively, a comprehensive likelihood displacement based criterion
involving both th;3 statistics can be proposed on the lines of available literature
(Abraham 1987; Wei, 1990, p. 199). The derivations and the discussions
presented so far lead us to propose the criterion

Q' =max {max ADV,;, max ADV); }

=max (Qa, Q) 4.11)
We thus propose the following comprehensive outlier detection procedure:
If Q' >Cand
Q' =04 =ADV, 1 then an AO type of outlier at time point T is identified;
Q' =0, =ADV,y then an IO type of outlier at time point T is identified,
where C is a predetermined positive constant.
We refer to the proposed procedure based on Q" by Adjustment Diagnostic

based on Variance (ADV) procedure.

Remarks:
A few remarks on the proposed procedure follow.
a) The proposed test statistic Q' is a function of Q4 and Q; where Q, and Q; (eqn

(4.10)) are derived using likelihood displacement criteria under the perturbation
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models Mai (@) and M;(0) using the adjusted time series defined in (4.3) and
(4.4) respectively, fori=1, 2, ..., n. The perturbation models considered in the
derivation are the models which use adjusted time series (eqns (4.3) and (4.4)).
These are not the deletion models considered in the literature so far (Ledolter,
1990).

The two statistics Q4 and € are functions of 6Zand &2, for S = A, L
Alternatively, it is possible to propose a procedure based on the maximum normed

Cii)s

6’2

residual test statistic max This statistic, however, is different from that

c

proposed and studied in the literature (Barnett and Lewis, 1994) since €, , and
¢,y involved in the expression are based on adjustment diagnostic and not
deletion diagnostic. Note that €, (&,,,) here is the residuals at t computed after

adjusting the entire series under the assumption that AO (IO) type of outlier is
present at position i (refer eqn (3.15)). As shown in Section 2.6, the series
adjustment leads to adjusting the observations starting from i in the presence of
10. The proposed procedures available in the literature (Pefia, 1987; Ledolter,
1990; Ljung, 1993) use the residual at t computed after deleting the i® observation
and substituting it by its least squares predictor. The motivation behind adjustment
and the advantage in adjusting the series is presented in Sections 2.2 and 2.5 and

Chapter 3.
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b) The proposed procedure requires adjustment of the series at all time points t
1, 2, ..., nsince the position of the outlier is unknown. If knowledge of a few
suspected positions is available, the computations can be significantly reduced by
forming a lesser number of adjusted series corresponding to only the suspected
posilioﬁs. While such an approach will be cost effective, a difficulty in its
implementation is the lack of such knowledge. As mentioned in Section 1.2, an
outlier in a time series is not necessarily an extreme value (Barnett and Lewis.
1994, p. 395). As a result, for a given time series it is difficult to select the
positions for adjustment while making sure that the actual outlier positions are not
missed.
¢) On the same lines, if the type of outlier present in the observed time series is
known, the test procedure can be reduced to that based on Q4 or € depending on
whether it is an AO or 10 respectively. In the presence of any additional
knowledge of the outlier type, the procedure based on Q4 or € will have better
performance than that based on Q' since in this case there will not be any
possibility of a wrong identification of outlier type. In case it is known that only
an AO type of outlier is present in the series, the procedure will be similar to that
proposed by Ledolter (1990) as anticipated in Section 2.6.1. In the next section a
comparison of performance of the proposed procedure with that by Ledolter

(1990) is presented. However, the type of outlier present in a contaminated data is
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rarcly known in practice. Thus it is difficult to decide which detection test is more
appropriate for a given situation.

The emphasis here is to provide a comprehensive test procedure which can
be carried out even in the absence of any additional information and investigate its

performance when the outlier type and its position is unknown.

Critical Values of Proposed Procedure

To obtain the cut-off point C for the proposed adjustment diagnostic
procedure, the finite sample distribution of the statistic Q" in the null case is
required. The theoretical derivation of the distribution is intractable due to the
correlation between ADVg;'s since the test statistic depends on their maximum.
The problems involved in the theoretical derivations here are similar to those
discussed in the literature (Abraham, 1987; Ljung, 1993). Abraham and Chuang
(1989), Chang et al. (1988), Ledolter (1990) used Monte Carlo simulation to
determine suitable critical values C for their procedures. In the present study we
follow the same approach and compute the critical values based on extensive
Monte Carlo simulations. In addition to the critical values of Q', the critical values
of Q4 and Q, are also provided for the situation when the type of outlier is known.

We carried out simulation study based on 5000 replications using IMSL
subroutines to compute the critical values. The complete computer program CP-4

which can be used to compute the critical value is provided in the attached CD and
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is listed in Appendix C. For the series length n = 100(25)300 and percentiles 10%
and 5%, AR(1), AR(2), MA(1), MA(2) and ARMA(1,1) series were considered
for various values of parameters covering a wide range. The series considered are
a) AR(1) with ¢ =0.2(0.1)0.9, 0.3 and 0.6; 0,° =1, 3, 5
b) AR(2) with (¢, ¢ ) = (0.3,-0.3), (0.3, -0.6), (0.3, -0.9), (0.6, -0.3),

(0.6,-0.6), (0.6,-0.9), (0.9, -0.3), (0.9, -0.6), (0.3, 0.6) and (-0.6, 0.3); 5, =1
¢) MA(1) with 6 = 0.2(0.1)0.9, -0.3 and -0.6; 5," = 1, 3, 5
d) MA(2) with (8,, 8,) = (0.3, -0.3), (0.3, -0.6), (0.3, -0.9), (0.6, -0.3),

(0.6,-0.6), (0.6, -0.9), (0.9, -0.3), (0.9, -0.6), (-0.3, 0.6) and (~0.6, 0.3); 5, =

e¢) ARMA(1,1) with (¢, 8) = (0.3, -0.3), (0.3, -0.6), (0.3, -0.8), (0.6, -0.3),
(0.6, -0.6), (0.6,-0.8), (0.9, -0.3), (0.9, -0.6), (0.3, 0.6) and (-0.6, 0.3); o. =1,

Tables Al to A9 in Appendix A (pp. 229 - 237) provide the critical values
for the series mentioned above. Below, we present the percentiles of Q', Q, and
Q, in Table 4.1 for selected values of parameters for AR(1) and MA(1) of selected
lengths n.

As expected, the percentiles of Q' are larger than those of Q4 and Q. The
percentiles differ depending on the length of the series and the value of the
parameter. Also the critical values are invariant under error variance o, (see
Appendix A, Tables A1-A3 of AR(1) and A5-A7 of MA(1)). As anticipated (Fox,

1972: Bustos and Yohai 1986), the critical values and the performance of the



Estimated Percentiles of Q' Q, and O

Table 4.1

(o2 =1, 5000 replications)
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I

%
Series

n=100

n=150

Q

Qp

QO

AR(1) |10
$=03 | 5

12.27
14.12

11.55
13.43

12.58
14.22

11.80
13.40

11.96
13.64

13.09
14.65

1239
13.80

12.38
13.86

AR(1) |10
$=-06| 5

12.57
14.46

11.57
13.39

12.93
14.53

11.68
13.14

11.86
13.71

13.32
14.80

12.09
13.60

12.34
13.97

AR(1) |10
$=06 | 5

12.46
14.36

11.52
13.18

12.86
14.62

11.61
13.19

11.90
13.39

13.16
14.69

12.11
13.45

13,35
13.66

AR(1) |10
$=09 | 5

12.68
14.52

11.49
13.42

12.95
14.48

11.41
12.91

12.00
13.47

13.18
14.53

11.97
13.19

12.30
13.54

MA(1) | 10
0=-03 | 5

12.45
14.49

11.62
13.49

12.68
14.35

11.89
13.44

11.83
13.47

12.98
14.41

12.32
13.72

12.21
13.67

MA(I) | 10
0=-0.6

wh

13.76
16.23

11.75
13.66

13.45
15.39

12.31
14.21

11.94
13.67

13.47
15.19

12.50
14.03

12.25
13.85

MA(I) | 10
0=0.6

wn

13.88
16.35

11.67
13.86

13.54
15.37

12.24
14.14

12.23
13.94

13.78
15.60

12.46
14.13

12.56
14.29

MA(I) | 10
=-09 |5

16.15
18.54

12.06
14.18

16.53
19.30

15.73
18.86

12.35
14.19

17.02
20.44

16.37
20.01

12.86
14.71

procedure do not depend on the sign of the time series parameter, particularly for

AR(1) and MA(1). In the next two sections we report the performance evaluation




111

for positive values of ¢ for AR(1) and negative values of ® for MA(1) since in case
of MA(1) the negative values yield positive lag-one correlation.

Alternatively, Ledolter (1990) suggested that rather than comparing with an
upper percentile of the reference distribution, a warning value can be considered
for outlier detection. For instance, for AR(1) of length 100, a warning value of
14.5 seems suitable as a 95% percentile. The wamning value can be used to
indicate a particular observation which needs to be scrutinized.

We adapt the suggestion of Ledolter to use warning line or warning limit in
ADV plots where both ADV, ;and ADV/; are plotted against i to get an ir{itial idea
about the type and level of contamination of the given series. The software STDS
which is presented along has the ADV plot as one of the menus. The ADV plots
are used for the data analysis presented in Chapter 5.

To estimate significance level of the proposed ADV procedure using a
general reference value, we computed simulation based estimates of the significant
level of Q'. The empirical estimates are based on 1000 replications using
computer program CP-5 in attached CD and cited in the list of Appendix C. The
two series AR(1) and MA(1) of length n = 50(50)150 were generated. For both
the series the values of parameter considered are 0.9, —0.6,-0.3, 0.3, 0.6 and 0.9.
For AR(1), the waming value is taken to be 14.5, and for MA(1), it is 15.0. The

empirical estimates are presented in Table 4.2.

As can be expected from the percentile values presented in Table 4.1, the

estimated significance levels of AR(1) do not vary much with the value of
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parameters whereas for MA(1) the estimated significant level increases with
increase in the length of the series, analogous to that of likelihood ratio test
proposed by Chang et al. (1988). Based on the Table 4.2, it is clear that a
common warning value for different MA(1) series with different parameter values

is not satisfactory.

Table 4.2

Estimated Level of Significance of Q' for a Series
(o? =1; 1000 replications)

I AR(1) Series using C=14.5 | MA(1) Series using C = 15.0
n=50 | n=100 | n=150 | n=50 [ n=100 | n=150
-0.9 4.2 5.6 6.3 74 9.7 1.9
-0.6 5.7 4.7 5.1 5.7 6.4 4.7
-0.3 4.2 4.6 6.6 4.2 3.3 4.7
0.3 4.3 4.1 5.7 4.2 3.7 3.6
0.6 4.8 6.2 5.3 6.8 6.3 3.3
0.9 4.8 44 52 6.5 10.3 11.6

4.3 Performance Evaluation of Adjustment Diagnostic Using MLE

In this and the next section, we present a detailed empirical study of the
performance of the proposed ADV procedure in the presence of a single outlier in
time series. The procedure for multiple outliers and its evaluation in the presence

of multiple outliers is postponed to Sections 4.5 to 4.7. We consider contaminated
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AR(1) and MA(1) series with a single outlier of either type for various values of
time series parameters and series length n = 50, 100(25)300.

In this section, the performance of the proposed procedure is evaluated
using the ML estimates of the time series parameters p based on the contaminated
series. As mentioned in Section 2.4, following Box et al. (1994) these are
nonlinear least squares (LS) estimates and for the computations presented here,
IMSL subroutine NSLSE is used to obtain the estimates based on a given series.

Alternatively robust estimate of the time series parameter B can be used
for the evaluation. In Section 4.4, we present the evaluation of the procedure using
robust estimate of B proposed by Bustos and Yohai (1986) for the contaminated
series. In addition, the comparison of the performance using LS estimates and

robust estimates is also presented.

The iterative procedure used for evaluation of the performance in the
presence of a single outlier is as follows.

1. At the initial stage, using the contaminated series, the estimate of § based on
iterative nonlinear LS procedure (IMSL subroutine NSLSE) and the estimate
the error variance (o?) is obtained. It is not possible to drop any time series
observation at the initial stage and estimate B since the dropped observation

needs to be imputed which in turn requires an estimate of 5.
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2. Bor i1=1 2, ... 10,
a) assume that the series is contaminated at a fixed time point i, and estimate the

outlier parameter (®) in the presence of AO as well as IO using the estimators

derived in Section 2.4;
b) the series is appropriately adjusted using  and &,;and &,;under

the assumption of AO and IO type of outlier respectively. The adjusted series

{ Y2} and {Y;, } (eqns (4.3) and (4.4)) are obtained at this stage depending

on AO or IO adjustment respectively;

c) estimate the parameters f§ and o, based on the series adjusted at i using

iterative IMSL subroutine NSLSE. These are the estimates ﬁ(m\(ﬁu).l) and
65(0.,\(630,.,) corresponding to the adjusted series which is adjusted under the

assumption of an AO (IO) outlier at i position;
d) compute the test statistics ADV,; and ADV,;;.
3. Using ADV,; and ADV,; foralli=1,2...,n, compute Q;and Q4.
4. Further compute Q" and carry out the outlier detection procedure.
Thus for the detection of a single outlier, the procedure uses n +1 estimates
of B based on the original contaminated series and n adjusted series. Since the

evaluation presented in this section is only for the single outlier case, for every
simulated series with one outlier, the procedure is terminated at step 4 and the

performance of the procedure is evaluated. For k outliers, steps 1 to 4 can be
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repeated k times with an appropriate modification in step 1. The steps are
presented in details in Section 4.5.

We report the performance evaluation for AR(1) and MA(1) series here.
The performance evaluation presented here is based on 1000 replications of each
contaminated series for values of outlier parameter @ = 0, 2(1)7. In order to
evaluate the performance, it is important to investigate the proportion of times the
procedure identifies correct outlier type and the proportion of times it indicates the
correct outlier position. Hence, while reporting the performance of Q', we also
report the percentage of times the correct outlier type is diagnosed and the
percentage of times the correct outlier position is identified.

It is crucial to compare the performance of the proposed adjustment
diagnostic procedure with that of the deletion diagnostic procedures available in
the literature which are based on estimates of error variance. The available
procedures are those by Pefia (1987), Bruce and Martin (1989) and Ledolter
(1990), which are of similar nature. Ledolter presented a detailed evaluation of
the performance of the procedure which is same as the deletion diagnostic for |
error variance proposed by Bruce and Martin. Hence, we present the comparison
of the performance of the proposed procedure with that of Ledolter.

All the simulations and computations presented here are carried out using
the computer programs CP-6 and CP-7 in the attached CD and given in the

programs’ list of Appendix C.
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outperform Ledolter’s procedure in the presence of 10, we scparately report the
performance of the procedures based on Q, and Q; in Tables 4.3 and 4.5
respectively and report the comprehensive performance of Q' in Table 4.6.

First, an additive outlier is introduced at t = 50 in the generated series.
Table 4.3 reports the percentage of times the adjustment diagnostic and deletion
diagnostic indicates the presence of outlier and identifies the correct position.

Columns 2 and 3 are based on performance of Q4 using the fact that the
type of outlier is known and hence are equal to the columns 6 and 7 based on
deletion diagnostic. The values are close to the values reported by Ledolter (1990)
which are reproduced in Table 4.4.

Table 4.4
Proportion of Qutlier Detection and Position Identification

for Deletion Diagnostics: AR(1) with an AO att =50
(C=13,n=100, ¢ =0.5, 5,>= 1; 1000 replications )

® Detection Position Identification
0 0.042 -

1 0.061 0.011

2 0.130 0.093

3 0.446 0.426

4 0.799 0.791

5 0.967 0.966

Source: Ledolter (1990).
The small differences in the values are possibly due to different estimation

method of procedures and sampling variation. Columns 4 and 5 of Table 4.3 report



118

the performance of Q; in the presence of an AO and as expected, the performance
based on Q4 is better. The correct picture of performance evaluation will emerge
from the use of Q" which is presented later.

Next, an innovational outlier was introduced at t = 50 in the generated
AR(1) series and the performance evaluation is presented in Table 4.5. The
proportion of times € identified the 10 type outliers and the proportion of times it
identified correct position is reported in columns 4 and 5 respectively. The
corresponding quantities based on Q, are reported in columns 2 and 3 which are
equivalent to those based on the available deletion diagnostic in columns 6 and 7

of the table.

Table 4.5

Proportion of Qutlier Detection and Position Identification for Adjustment
and Deletion Diagnostics: AR(1) with an IO at t = 50
(C=13,n=100,$=0.5, 5,>= 1; 1000 replications )

Ad_] ustment Diagnostic Deletion
® Qa Q Diagnostic
Detection| Position | Detection Position Bt Position
Q.>C |Identification| Q>C | Identification Identification

0 | 0.048 . 0.053 - 0.048 .

I | 0052 | 0002 | 0.062 0.008 | 0.052 | 0.002
0.090 | 0.048 | 0.131 0.080 | 0.090 | 0.048
0238 | 0.196 | 0321 0294 | 0238 | 0.196
0498 | 0470 | 0.669 0.655 0498 | 0.470
0.800 | 0768 | 0.909 0906 | 0.800 | 0.768

W s W N
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It is clear from the comparison of columns 2 and 3 with columns 4 and 5
respectively that the proposed adjustment diagnostic procedure outperforms the

deletion diagnostic procedure when the outlier present in the series is of IO type.
For instance, for @ = 4, the deletion diagnostic method fails to detect the presence
of an outlier more than 50% of the time. It supports the claim made in Chapter 2

that the deletion diagnostic method fails to satisfactorily handle the presence of 10

type of outliers.

We now present the performance of the proposed ADV based diagnostic
procedure which uses Q' given by (4.11). The procedure was carried out on two
contaminated AR(1) series, contaminated with an AO and an IO at t = 51. In
Tables 4.6 and 4.7, we present the performance of Q' in the presence of outlier of
AO and IO type respectively. The waming value is retained at 13 for these tables
and range of outlier parameter is increased to ® = 0, 2(1)7. Note that the value of
time series parameter ¢ is changed to 0.6 for the computations.

Columns 2 and 3 of Table 4.6 give the proportion of times Q' identifies the
outlier and proportion of times Q' identifies the outlier at correct position
respectively. As mentioned earlier, it is not surprising that the proportions
obtained for ® = 0 are much larger than 0.05 for C = 13, since Table 4.2 indicates
that a value close to 14.5 will be more appropriate. Column 4 presents the
proportion of times out of its corresponding proportions in column 2 the procedure

identifies the correct outlier type.
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Table 4.6

Performance Analysis of Adjustment Diagnostic Procedure:
AR(1) with an AO at t=51
(C=13,n=100, $=0.6, 5,>= 1 ; 1000 replications)

® Q AO Type (Q' =Qa) 10 Type (Q = Q)

Dctc:ction Po'sitiorf Detection Po.sitior} Detectisi Po;itioq
Q>C | Identification Identification Identification

0 0.080 - 0.525 - 0.475 -

2 0.197 0.137 0.670 0.715 0.330 0.285

3 0.532 0.475 0.791 0.838 0.209 0.162

4 0.865 0.845 0.879: 0.889 0.121 0.111

5 0.988 0.984 0.889 0.892 0.111 0.108

6 1.000 1.000 0.936 0.936 0.064 0.064

7 1.000 1.000 0.966 0.966 0.034 0.034

In this table, the figures in column 4 (5) look inflated compared to the figures in
column 2 (3) of Table 4.3 since they report the proportion out of the total
proportion given in column 2 (3). For instance, for ® = 4 out of 86.5% of times
Q' identifies an outlier, 87.9% of times it correctly identifies the type as AO. This
is because the proportion of times Q' > C and Q" =Q, out of 1000 replications is
0.76. As anticipated, this proportion is less than the proportion of times Q4> C
reported in Table 4.3. Plots of these actual proportio;ls are presented in Figure 4.1
later.

Column 5 gives proportion of times the AO is identified at correct position
out of the total proportion presented in column 3. For instance, for ® =4 out of

84.5% of times Q' identifies an outlier at correct position, 88.9% of times it
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identifics correct type at correct position. Columns 6 and 7 give the corresponding
proportions in case of wrong identification of the type of outlier.
Table 4.7 presents the analogous figures in case of a series contaminated
with an IO.
Table 4.7
Performance Analysis of Adjustment Diagnostic Procedure:

AR(1) with an IO at t=51
(C=13,n=100, ¢ =0.6, 5,2= 1 ; 1000 replications )

® Q'>C AO Type (Q" =Qq) 10 Type (Q =Q))
Detection Idei?ffiit(i:zzon Detection Idef:l(t)?iiit(i:zgon Detection Idef:l(:isfiilti:g?ion

0 [ 0.100 : 0.580 g 0.420 5

2 | 0.159 0.091 0.308 0.209 0.692 0.791
3 | 0351 0.307 0211 0.153 0.789 0.847
4 | 0714 0.679 0.140 0.110 0.860 0.890
5 | 0934 0.924 0.081 0.074 0.919 0.926
6 | 0.990 0.985 0.057 0.053 0.943 0.947
7 1 0.999 0.996 0.023 0.021 0.977 0.979

It is clear from Tables 4.6 and 4.7 that the identification of the correct
outlier type and the correct position are all significantly high for the proposed
procedure based on adjustment diagnostics in case of AR(1).

To get a clearer picture of the comparative performance of ADV in the
presence of AO and IO type of outlier, in Figure 4.1, the plots of percentage of

correct type identification at correct position are presented. Out of 1000
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replications, the proportion of times Q' >C, Q' = Q, and the outlier position is 51

when the series is contaminated with an AO is plotted against values of outlier
parameter ® in Figure 4.1 (a) by solid line (—). The dotted line (----) indicates
the proportion of times Q"> C, Q" = Q; and the outlier position is 51 for the same

series with an AO. The same percentages in case of the series with an IO are

presented in Figure 4.1 (b).

(a) Series with an AQ (b) Series with an IO

100 100
90 90 -
80 - 80 -
70 70 -
60 - 60 -
50 - 50
40 - 40 1
30 1 30 1
20 | 20 -
10 10 -

0 0

XY
w
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Correct type identification at correct position
------ - Incorrect type identification at correct position

Figure 4.1: Percentage of Correct Identification of Type and Position: AR(1) with
an Outlier at t =51 (C=13, n=100, ¢= 0.6, o,>=1; 1000 replications)
As can be seen from Figure 4.1, the percentages of times the correct types
are identified at true position for both type of series are significantly higher than
those for the incorrect type identification. The percentages of incorrect type
identification decreases after certain value of ©, whereas for small values of @ the
errors in type and position identification can be higher, as is expected. The

percentage of times in correct type identification at correct position significantly
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increases for values of w larger than 3. For AR(1), the correct identification rate

for AO type is higher than that for 10 type, particularly for small values of ®.

This is not surprising, considering the effect of AO on the estimates of error

variance (Table 2.1) in comparison with that of IO on the same estimates (Table

2.2).

We now present the performance of Q' using the warning value C = 14.5

based on two contaminated AR(1) series, contaminated by an AO and IO at t = 51.

The performance in the presence of AO and IO is presented together in Table 4.8.

Table 4.8

Performance Analysis of Adjustment Diagnostic Procedure:
AR(1) with an Outlier at t=51
(C =14.5,n=100, ¢=0.6, 0.’ =1; 1000 replications)

Series with an AO Series with an IO

Q' >C AO Type (Q'=Q4) Q' >C 10 Type (Q'=Q)

o | Dot | st | pets [ 5o, | et [ ot | ot [ Fosir
0 -tion Es -tion i -tion e -tion

01 0.062 . 0.468 . 0.065 v 0.554 ‘
2| 0134 | 0091 |0627| 0.692 | 0094 | 0055 | 0.638 | 0.764
3] 0442 | 0412 | 0799 | 0820 | 0.284 | 0255 | 0.845 | 0.875
41 0805 | 0796 | 0870 | 0873 | 0613 | 0.592 | 0.874 | 0.892
51 0976 | 0973 | 0899 | 0.899 | 0902 | 0.895 | 0915 | 0918
6| 1.000 | 1.000 |0937| 0937 | 0983 | 0983 | 0953 | 0953
7| 1000 | 1.000 |0955| 0955 | 0998 [ 0.998 | 0974 | 0974
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It can be seen that for @ = 0 the proportion is closer to 0.05 than that for C
= 13, though high. The figures in Table 4.8 can be interpreted analogous to
figures in Table 4.6 and 4.7. For instance, in case of an AR(1) contaminated by an
[0att=51foro=4,Q' in{_dicates an outlier at correct position 59.2% of times,
out of which 89.2% times correct type is identified at correct position.

We present the comparative performance of Q" in the presence of AO and

10 in Figure 4.2 by plotting percentage of times Q" > C against the value of o.

100 -
80 4

60

Percentage

40 1

20 +

2 3 4 5 6 7
——Serieswithan AO  ---a--- Series witn an |10

Figure 4.2: Plot of Percentage of Performance: AR(1) with an Outlier at t =51
(C =14.5,n=100, ¢ = 0.6, o>=1; 1000 replications)

It is clear from the figure that the performance of the Q" is better when the

outlier is of AO type than when it is of IO type. This is as anticipated since the
procedure is based on estimated error variance and it is shown in Tables 2.1 and

2.2 that the AO type of outlier affects the estimates of error variance more than IO

type of outlier.
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Analogous to Figure 4.1(a) and (b) we present the plot of percentage of
times the detected outlier is of correct type at correct position (reported by solid
line) and that of incorrect type at correct position (reported by dotted line) in
Figure 4.3(a) and (b) for AR(1) series with an AO and IO type of outlier

respectively, when the warning value C = 14.5.

(a) Series with an AQ (b) Series with an IO

Correct type identification at correct position
———-|ncorrect type identification at correct position

Figure 4.3: Percentage of Correct Identification of Type and Position: AR(1) with
an Qutlier at t = 51 (C=14.5, n=100,¢=0.6, 0,>=1 ; 1000 replications)

It can be seen that the conclusion similar to those in case of Figure 4.1 can be
drawn in this case also.

From the discussion presented so far, it can be concluded that the proposed
adjustment diagnostic satisfactorily identifies the presence of outlier, the type of
outlier and also the position of outlier, particularly for large magnitudes of outlier

parameter in case of AR(1) series. In addition, the adjustment diagnostic method is

more comprehensive than the deletion diagnostic since the deletion diagnostic
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does not work well for an IO type of outlier and does not identify the type of the

outlier.

The performance evaluation presented so far is for a fixed value of AR(1)
parameter ¢ = 0.6. In order to evaluate the performance for different values of ¢,
the evaluation was carried out for ¢ = -0.9, -0.6, -0.3, 0.3, 0.6, 0.9 fof series
length n =100 on identical lines for C = 14.5. The findings are similar to those in
Table 4.8. The detailed performance for each value of ¢ is not reported here.
Instead, we report the dependence of the performance of ADV on the time series
parameter ¢. In particular, we present plots of percentage of times Q' > C against
the value of parameter ¢ for values of outlier parameter = 3, 4, 5. The warning
vall;e of C is fixed at 14.5 for this evaluation. Figure 4.4 (a) and (b) give these

plots in the presence of AO and IO type of outlier at t = 51 respectively.

(a) Series with an AO (a) Series with an IO
120 120
" r.-." - —r'*::‘: @ e SRR S DR
X ._x' L]
o X
&0

Percentage
8 & 8 g
Percentage
8
[ x
L &
1 -~
x
x
|L x

— i

09 06 93 03 06 09 29 06 03 03 086 09

¢ ¢

—i——ﬂ=3"'l-- -:4—-.-‘.85 _.—.‘3.-“.'"‘:4_‘.—.“‘5

Figure 4.4: Plot of Percentage of Performance: AR(1) with different values of ¢
(C = 14.5,n =100, o;=1; 1000 replications)
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It can be seen that the performance of the diagnostic procedure depends on
the time series parameter and which significantly improve with increases in the
value of |¢p| when an AO type of outlier is present for moderate values of outlier
parameter ®. For large values of @ the performance of procedure is almost 100%.
Surprisingly, the perform%.mce of the procedure in the presence of an IO type of
outlier does not depend on the time series parameter ¢.

From the two plots, it is clear that the estimate of error variance in the
presence of AO type of outlier depends on the time series parameter ¢ in case of
AR(1). That does not seem to be the case in the presence of IO. The reason
behind this phenomenon is not clear and needs further investigations. However, it

not been carried out in this work.

MA(1) with One Outlier

We investigated the performance of the proposed procedure on a MA(I)
series with a single outlier an analogous lines. Initially MA(1) series with
parameter 0 = —0.6 and o, = 1 and of length n = 100 was considered. As in the
case of AR(1), the simulation was replicated 1000 times and from each series two
contaminated MA(1) series contaminated with an AO and an IO at time point t =
51 were generated. The values of outlier parameter were taken to be ® = 0, 2(1)7
as before. Considering the values for MA(1) presented in Table 4.2, a wamning

value of C = 15 was selected subjectively.
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On the lines of Table 4.8, Table 4.9 presents the performance of the
proposed ADV procedure in case of an MA(1) when the series is contaminated
with an AO and an IO. From the proportions reported for @ = 0, it is clear that a
smaller value of C would have been more appropriate. The figures in Table 4.9

can be interpreted on the same lines as those in Table 4.8.

Table 4.9

Performance Analysis of Adjustment Diagnostic Procedure:
MA(1) with an Qutlier at t=51
(C=15, n=100, 8 = -0.6, 5,>=1 ; 1000 replications)

Series with an AO Series with an [O
[ Q'>C AO Type (Q"=Q,) Q'>C 10 Type (Q'=Q)
® _ | Position Position Position Position
Detect- | 1qentifica | D% | Identifica | D€t | tdentifica | D™ | Identifica
ion . -lon o on " -10n ¢
-tion -tion -tion -tion
0| 0.034 - 0.529 . 0.058 - 0.552
2| 0.140 | 0096 | 0.629 | 0740 | 0.110 | 0.053 | 0.636 | 0.755
3] 0459 | 0421 | 0813 | 0.841 | 0261 | 0226 | 0.808 | 0.872
4] 0.825 | 0.805 |0.893| 0901 | 0597 | 0574 | 0.901 | 0918
510975 | 0963 |0929| 0931 | 0.866 | 0.854 | 0.940 | 0.951
6| 0999 | 0997 |0953| 0954 | 0973 [ 0.970 | 0.967 | 0.969
7| 1.000 | 1.000 | 0957 | 0957 | 0.996 | 0.996 | 0.985 [ 0.985

For instance, in case an AO is present in the series for » = 4, the percentage
of times Q' indicates an outlier is 82.5% out of which 89.3% times the procedure
correctly identifies the outlier type as AO. Further, it correctly identifies the

outlier type and position 90.1% of times out of 80.5% of times Q' identifies the
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outlier position correctly. In the presence of an 10, the percentage identification
of an outlier based on Q' for ® =4 is 59.7%, much less than that in the presence of

AO. The percentage of correct identification of outlier type, however, is 90.1%

close to that in the presence of AO.
Analogoﬁs to Figure 4.2, we present the comparative performance of Q" for

MA(1) series in the presence of AO and 1O type of outlier in Figure 4.5.

100 -

Percentage

40 1

20 4

—e—SerieswithanAQ -+ e+« Series witn an 10

Figure 4.5: Plot of Percentage of Performance: MA(1) with an Outlier at t = 51
(C=15,n=100, 8 =-0.6, o>=1; 1000 replications)

The figure clearly shows that the procedure has significantly better performance in
the presence of AO than in the presence of I0. As in case of AR(l), this is as
anticipated in view of Tables 2.3 and 2.4 where it is shown that presence of an AO

type of outlier affects the estimate of error variance more than the presence of an

10 type.
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Analogous to Figure 4.3 (a) and (b), we present the comparative

performance of Q" in the presence of AO and 10 type of outlier in Figure 4.6 (a)

and (b) below.

(a) Series with an AO
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— Correct type identification at correct position
- Incorrect type identification at correct position

Figure 4.6: Percentage of Type Identification at Correct Position: MA(1) with an
Outlier at t=51 ( C = 15, n = 100, 0= -0.6, a,>=1 ; 1000 replications)

The plots are of percentages of type identification at correct position against

the value of outlier parameter . The two plots are comparable to the plots

presented in Figure 4.1 for AR(1) and the conclusions for MA(1) based on them

are similar to those of AR(1). Comparing Figure 4.6 with Figure 4.3 of AR(1), the

detection of a wrong type of outlier or wrong position of an outlier seems slightly

less in a MA(1) series than an AR(1) series. In the presence of an IO in the series,

the chances of wrong identification of the outlier type reduce considerably for a

moderately large value of ®.



131

We now present the performance of Q' in case of MA(1) series when the
series parameter O takes different values. The chosen values of 6 are 6 = —0.9,
-0.6, -0.3, 0.3, 0.6, 0.9, keeping the values of other factors same. The plots of

performance of Q' against the values of 0 is shown in Figure 4.7 below.

(a) Series with an AO (a) Series with an [0
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Figure 4.7: Plot of Percentage of Performance: MA(1) with different values of 6
(C = 14.5,n=100, ?=1; 1000 replications)

The plots can be interpreted analogous to those in Figure 4.4 for AR(1). It

can be seen that in the presence of an AQ, the performance of Q" depends on the

values of 0 and increases with |0] for moderate values of . As in case of AR(1),
here too, the performance of the procedure in the presence of an IO type of outlier
does not depend on the time series parameter 0. Further investigations are needed
to understand the reasons behind it.

In conclusion, the adjustment diagnostic based procedure (ADV)
outperforms the deletion diagnostic based procedure since it works

comprehensively in the presence of both AO and IO type of outliers unlike
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deletion diagnostics which satisfactorily handles only the AO type of outliers. In

addition, ADV satisfactorily handles both the problem of identification of outlier
type and outlier position. The evaluation here is based on ML estimator of B and in
Section 4.4 we present the performance evaluation using robust estimator of p.

Applications of ADV to simulated data sets and some numerical examples

available in the literature are presented in Chapter 5.

4.4 Performance Evaluation of Adjustment Diagnostic Using Robust

Estimator

We evaluate the performance of the proposed procedure in the presence of
a single outlier in an AR(1) and MA(1) series using robust estimator of f in this
section. Further, we compare the performance with that presented so far using ML
estimator.

As mentioned earlier, the ML estimate of f in the simulation study is
obtained with the help of IMSL subroutine NSLSE. This uses an iterative
nonlinear least squares (LS) estimator (Box et al., 1994, Chapter 7) and we refer it
7by BJ (Box-Jenkins) estimator in this section (Bustos and Yohai, 1986).

It is well known that the LS estimators are asymptotically efficient when
the errors are i.i.d. normal with mean 0 and variance o, (Box et al., 1994, Chapter
7). On the other hand, these are not necessarily robust when the series has a few
outliers or abnormal observations (Barnett and Lewis, 1994; Maddala and Yin,

1997). The fact that the LS estimators are not robust in the presence of AO type of
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outliers has been well documented in the literature (Denby and Martin, 1979;
Bamett and Lewis, 1994, p. 404) and can also be seen from the discussion
presented in Section 2.3 for AR(1) and MA(1) (Tables 2.1, 2.3 and Figures 2.4,
2.7) for BJ estimators.

The LS estimators are consistent in the presence of IO outliers under the
assumption of Gaussian errors (Li, 2004, Chapter 4). Further, based on Monte
Carlo results and asymptotic variance, Denby and Martin (Concluding Comments,
1979) claim that for AR(I) "... no great loss will be suffered in case of
innovations outlier" using LS. This claim is further supported by the study
presented in Bustos and Yohai (1986) and Martin and Yohai (1985) (also see
Barnett and Lewis, 1994, pp. 403-405). The simulation study of BJ estimators
presented in Section 2.3 in the presence of one 10 outlier (Tables 2.2, 2.4 and
Figures 2.5 and 2.8) shows that BJ estimators are fairly robust in the presence of
10 for AR(1) as well as MA(1).

Some of the robust estimators for time series parameters proposed in the
literature are M-estimators, GM-eslimalors (Denby and Martin, 1979), RA
(Residual Autocovariances) and TRA (Truncated Residual Auto-covariances)
estimators proposed by Bustos and Yohai (1986).

Bustos and Yohai (1986) show that RA estimator is better than M, GM and
LS estimators in AR(1) as well as MA(1) with an AO type of outlier. In particular,

based on Monte Carlo studies, they claim that "RA ...behave robustly in terms of

efficiency for the MA(1) model”. They also report that in the presence of AO, the
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RA-estimates are qualitatively robust for autoregressive process and behave
robustly in terms of efficiency when the order g of MA model is greater than 0.
Goodness-of-fit tests for ARMA(p,q) series using RA estimates are also proposed
in the literature (Li, 2004, Chapter 4).

Here, we consider the Mallows type RA-estimator proposed by Bustos and
Yohai (1986) with n(u,v) = y(u) y(v), where y(.) is the redescending function

from a bisquare family proposed by Beaton and Tukey (1974), given by

u(l-u?/c?)? for|ulgc 4.12)
0 forlul>c¢ '

Yp(u) ={

where c is a tuning constant.

Following the Monte Carlo study of asymptotic relative efficiency
presented in Bustos and Yohai (1986) for the above mentioned Mallow's Bisquare
type RA estimator (RAMB), the tuning constant ¢ is set at 5.58. This choice of
tuning constant achieved 95% asymptotic relative efficiency with respect to the LS
estimator under Gaussian errors in the simulation study presented by Bustos and
Yohai (1986).

The iterative algorithm used for RA estimates for a stationary and invertible
ARMA(p,q) is as follows (Martin and Yohai, 1985).

Suppose we have the LS estimates of P =(¢’,0")"and scale estimate of o

given by B and 6 respectively for the i” iteration. For the estimates for the

(i+ l)th iteration,
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(i) Compute the residuals r, (3“") for p+1< t < n where () = 67(B) $(B)Y. .
(ii) Modify the residuals by applying the y-function,
r, = 8Vy(r,(8")/6“) where y(.) is given by (4.12) .
(iii) Calculate a new "pseudo-observations" process {Y,'} using p® and r;’,
given by
Y= 4"'®) 6 ®)r.
(iv) Compute BV as the least squares estimate of p for Y, .

(v) Compute the scale estimate ",

In the computations presented, we consider the median of the absolute
values of the residuals divided by 0.6745 as a robust scale estimate of residuals in
step (v). The computer program CP-7 used for the computations of RA is provided
in the attached CD and listed in Appendix C.

As in case of Section 4.3, the performance evaluation was carried out for
AR(1) and MA(1) with series length n = 100 for various values of time series
parameters. The evaluation is based on 1000 replications of each contaminated
series with outlier parameter © = 0, 2(1)7 for AO and IO type. We report the
performance of the proposed procedure using both BJ and RA estimates of f§ for

comparison.
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Initially, we report the performance of the proposed procedure for AR(1)

with ¢ and o,” same as in Section 4.3 (¢ = 0.6, o,’=1). The critical value is taken

same as that in Tables 4.8 (C = 14.5). We first consider the situation when the

series is contaminated with an AO at the same position t = 51.

Table 4.10

Performance Evaluation Using BJ and Robust Estimates:
AR(1) with an AO at t=51
(C=14.5,n=100, $=0.6, 6,2=1; 1000 replications)

Using BJ estimate Using RA estimate
Q'>C AO Type (Q"=Q4) Q'>C AO Type (Q=Qp)
o | Do | oo, [ Dt | o, | e | onion, | e | skl
-tion -lion -tion -tion
01 0.043 . 0.349 : 0.043 . 0.349 :
210123 | 0099 | 0691 | 0747 | 0.119 | 009 | 0.748 | 0.802
3] 0446 | 0428 | 0787 | 0794 | 0445 [ 0429 | 0818 | 0.823
410812 | 0811 |0853 | 0852 | 0811 | 0810 | 0.882 | 0.880
500978 | 0977 | 0908 | 0906 | 0978 | 0977 | 0929 | 0927
61099 | 0999 |[0952| 0952 | 0999 | 0999 | 0.969 | 0.969
7] 1000 | 1000 | 0956 | 0956 | 1.000 | 1.000 | 0.981 | 0.981

Analogous to tables in Section 4.3, columns 2 and 3 (6 and 7) of Table 4.10

give the proportion of times Q" detects the outlier and the proportion of times Q'

indicates the outlier at correct position using BJ (RA) estimate. Column 4(8) gives

the proportion of times the procedure identifies the correct outlier type AO out of
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its corresponding proportion in column 2(6) using BJ (RA) estimate. Further,
column 5(9) gives the proportion of times the AO is detected at the correct
position using BJ (RA) estimate.

It can be seen from the table (columns 2,3 and 6,7) that the percentages of
outlier detection and position identification based on Q using BJ and RA
estimates of ¢ are almost identical. The procedure using RA estimate of ¢ however
performs marginally better than that using BJ estimate for identification of correct
outlier type. For instance for @ = 5, out of 97.8% of times Q* detects an outlier,
the procedure correctly identifies the type as AO 92.9% of times using RA
estimate whereas the procedure identifies the type as AO 90.8% of times using BJ
estimate. Based on the discussion presented at the beginning of this section, the
procedure using RA estimate is expected to perform better than LS estimator in
the presence of an AO. However, based on the simulation study presented here, it
can be seen that on the whole only the pcrccmagt‘: performance of correct type
identification and position detection of the correct type marginally improves by
about 2 to 3 units for ¢ = 0.6. The performance of outlier detection and position
identification remains the same.
However, the simulation study in the presence of an IO type of outlier
showed that the performance of the proposed procedure using BJ estimator of ¢ in

AR(1) is marginally better than that using RA estimator which is discussed below.
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In Table 4.11 we report the performance evaluation of the proposed

procedure using BJ and RA estimates of time series parameters of an AR(1) with

$=0.6, which is contaminated by an IO at t =51.

Table 4.11

Performance Evaluation Using BJ and Robust Estimates:
AR(1) with an IO at t=51
(C = 14.5, n=100, $=0.6, 5,"=1; 1000 replications)

Using BJ estimate Using RA estimate

Q'>C 10 Type (Q =0 Q' >C 10 Type (Q=Q)

@ | Detect- Ig:::?:a Detect IZ::'&?:: Datoct- xﬂi’ili'ﬁc"a Detet nﬁfilfif.’fa
=l -tion e -tion - -tion - -tion

0 0059 | 0003 | 0492 | 0333 | 0058 | 0002 | 0483 | 0.000
2| 0094 | 0054 | 0702 | 079 | 0091 | 0053 | 0670 | 0.755
300270 | 0249 | 0793 | 0811 | 0266 | 0244 | 0771 | 0.795
41 0628 | 0616 | 0876 | 0875 | 0621 | 0610 | 0857 | 0.857
5/ 089 | 0890 | 0924 | 0925 | 0888 | 0883 | 089 | 0.897
6| 0989 | 0989 | 0958 | 0958 | 0988 | 0988 | 0943 | 0943
71099 | 0999 | 0980 | 0980 | 0999 | 0999 | 0963 | 0963

The figures in Table 4.11 can be interpreted on the same lines as those in

Table 4.10 above. As can be seen from the table, Q" performs almost identically in
detection of outlier and identification of correct position of outlier whether BJ
estimate or RA estimate of ¢ is used. For instance, for ® = 5 it detects the outlier
89.4 % (88.8%) of times and identifies the correct position 89.0% (88.3%) of

times using B) (RA) estimate of ¢. However, there is difference between the
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performances of the procedure using BJ and RA estimates in identification of
correct outlier ty-pe (columns 4, 5 and 8, 9). For instance for @ = 5, the proposed
procedure identified the correct outlier type 92.4% (89.6%) of times and identified
the correct position 92.5% (89.7%) of times using BJ (RA) estimate of ¢.

Based on the simulation study it can be claimed that the procedure using BJ
estimate performs marginally better than that using RA estimate in correctly
identifying the type of outlier for moderate values of @ when the outlier is of I0
type. For large values of o the procedure achieves high accuracy irrespective of
the choice of either of the estimates. The difference in the percentage performance .
of two procedures however is small, about 2 to 3 as in the case of AO, thought the
procedure based on BJ performs better in the presence of 10.

As illustrated in Section 4.3, the performance of the proposed procedure

using BJ estimate depends on the time series parameter ¢ and improves with
increase in the value of |¢| in the presence of an AO type of outlier. A study of the

performance using BJ and RA estimates for various values of ¢ was carried out
in the presenc.e of AO and IO outlier in a contaminated AR(1) and similar
phenomenon was observed.

Table 4.12 presents the performance evaluation using BJ and RA estimates
for ¢ = 0.9 in the presence of an AO where the figures can be interpreted

analogous to those in Table 4.10.
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Table 4.12

Performance Evaluation Using BJ and Robust Estimates:
AR(1) with an AQ at t=51
(C=14.5,n=100, ¢=0.9, 5,2=1; 1000 replications)

Using BJ estimate Using RA estimate
Q' >C AO Type (Q'=0) Q'>C AO Type (Q'=Q4)
o Pt i | P | s | e i 2| e
-tion -tion -tion -tion
0f 0058 [ - 0.517 : 0.057 - 0.526 -
210192 | 0149 | 0729 | 0772 | 0.192 | 0.50 | 0.745 | 0.787
31 0614 | 059 | 088 | 0897 | 0612 | 0589 | 0.904 | 0.908
410943 | 0938 | 0954 | 0952 | 0943 | 0938 | 0.965 | 0.963
510995 | 0995 | 0980 [ 0980 | 0995 | 0995 | 0.986 | 0.986
6| 1.000 | 1.000 | 0996 [ 0996 | 1.000 [ 1.000 | 0.998 | 0.998
71 1.000 | 1000 | 0997 | 0997 | 1.000 | 1.000 [ 0999 [ 0.999

It can be seen that the performance of the procedure to detect the outlier
and identify its position is same (columns 2,3 and 6,7), whether BJ or RA estimate
is used in the presence of AO. Further the difference between the peréentage
performances of the procedure to identify the outlier type and its correct position
using BJ and RA estimates is reduced to less than 1.

For the values of ¢ used for simulations, it was seen that the performances
to detect the outlier and its correct position was same using EBJ and RA estimators

of ¢. For small values of ¢, the procedure using RA estimator identified the type

and its correct position with marginally better accuracy than BJ estimator in the
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presence of AO, For instance, for ¢ 0.3 the difference between columns 4 and 4

is about Sto 7,

Analogous o the AO case, the performance of the proposed procedure was

evaluated for various values of ¢ in the presence of 10, We present the evaluation

based on 1000 simulations for AR(1) with ¢ = 0.9 contaminated at t = 51 with an

10 in Table 4.13.

Table 4.13

Performance Evaluation Using BJ and Robust Estimates:
AR(1) with an IO at t=51
(C=14.5,n=100, ¢=0.9, o,.2=1; 1000 replications)

Using BJ estimate Using RA estimate

) Q'>C 10 Type (Q'=0Y) a'>C 10 Type (Q'= Q)
O | Dot | i, | Dot | s, | Dt | onie, | Detet | e

i -tion o -tion - -tion i -tion
01 0.047 0.001 0.532 - 0.045 0.001 0.511 -
2| 0.108 0.060 | 0.630 0.733 0.106 0.060 0.623 0.733
31 027 0.250 | 0.838 0.852 0.257 0.239 0.825 0.841
41 0623 0.606 | 0.904 0.916 0.610 0.593 0.892 0.906
51 0.888 0.885 0.956 0.957 0.884 0.881 0.948 0.949
6| 0989 0.988 [ 0.982 0.983 0.988 0.988 0.977 0.977
71 0999 0.999 | 0.996 0.996 0.999 0.999 0.990 0.990

It can be seen from the table that the difference in the performances of the

proposed procedure using BJ and RA estimates of ¢ is much less for ¢ = 0.9 and is

almost negligible for large values of o.
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Based on the simulation study it can be claimed that the performance of the
procedure to detect the outlier and identify its position remained same using the
two difference estimators, but the performance to identify the type and its position
was marginally better using BJ estimator in the presence of 10. For small values of
¢' the difference is slightly larger, for instance, for ¢ = 0.3 the difference in the
percentages is about 5 to 7 and the procedure using BJ performs better when IO is
present.

In conclusion, for a contaminated AR(1) series, it can be claimed that no
loss in accuracy of detection and identification of outlier is incurred by using BJ
estimate in the proposed procedure based on Q' irrespective of whether the outlier
is an AO or IO in an AR(1) series. Further, the percentage identification of correct
type of outlier is marginally less using BJ estimate as against a robust RA estimate
when the outlier is of AO type. A reverse trend is observed when the outlier is of
10 type and the percentage identification of the correct type is again marginally
better using BJ estimate as against RA estimate. This is not surprising considering
the discussion and references presented at the beginning of this section claiming

that LS estimators are not very sensitive to the presence of 10 type of outlier.

MA(1) with One Outlier

We now present the performance evaluation of the procedure for a

contaminated MA(1) series of length 100 with parameters 6 = -0.6 and d=1
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The critical value is taken to be the same as in Table 4.9, namely C = 15. Table
4.14 reports the performance evaluation when the series is contaminated with a

single AO at t =5].

Table 4.14

Performance Evaluation Using BJ and Robust Estimates:
MA(1) with an AQ att =51
(C=15,n=100,0 = -0.6, 5, =1; 1000 replications)

Using BJ estimate Using RA estimate
il 0>C AO Type (Q"=Q,) Q'>C AO Type (Q'=Q,)
Position Position Position Position
® Dglcct Identifica Dglcct [dentifica D?lw' [dentifica D§tect Identifica
ion ; -ion . ion : -ion :
-lion -tion -tion -tion

0] 0.037 - 0.541 . 0.037 s 0.568 -

2010130 | 0099 | 0746 | 0747 | 0.127 | 0.097 | 0.787 | 0.784
310476 | 0451 | 0847 | 0854 | 0470 | 0448 | 0.872 | 0.875
41 0849 | 0846 | 0921 | 0911 | 0849 | 0846 | 0947 | 0.936
5010972 | 0971 | 0942 | 0940 | 0974 | 0973 | 0961 | 0.959
61 1.000 | 0999 | 0966 | 0966 | 1.000 | 0999 | 0981 [ 0.981
7 1.000 | 1.000 | 0961 | 0.961 1.000 | 1.000 | 0988 | 0.988

The figures in the table can be interpreted on the lines of Tables 4.10-4.13
presented earlier. For instance, for @ = 5, 97.2% (97.4%) of times the proposed
procedure based on Q' using BJ (RA) estimate of the time series parameter 0
detects an outlier, out of which it detects the correct position of the outlier 97.1%
(97.39%) of times. Further, the procedure using BJ estimate identifies the correct

outlier (AO) 94.2% of times out of which 94.0% of times it correctly identifies its
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position. The procedure using RA estimate identifics the correct outlier (AO)
96.1% of times out of which 95.9% of times it correctly identifies its position.

It can be seen from the table presented above that analogous to the study for
AR(1), the performances of the procedure based on Q' to correctly identify the
outlier and its position are almost the same in the presence of AO, irrespective of
using BJ or RA estimate of 6. The correct identification of outlier type, however,
is marginally better using RA estimate of 0, for moderate to large values of @. The
percentaée difference in the performances is however not more than 3. Also, the
procedure using BJ estimate itself gives highly accurate results, for instance, the
correct type and position identification is 91.1% of times out of total number of
times the procedure detects an outlier in the series for w = 4.

Next we present the performance evaluation of the proposed procedure
using BJ and RA estimates for MA(1) with a single IO type of outlier. Table 4.15
reports the simulations based result for 6 = -0.6.

It can be seen from Table 4.15 that the columns 2(3) and 6(7) are very
close. Thus, anaiogous to the AR(1) study, the performance of the procedure to
detect the outlier and its position does not depend on which of the BJ and RA
estimates is used. Also, as in case of AR(l) with an IO, the percentage
performance of the proposed procedure to identify the outlier type and detect its
position correctly improves by about 2 to 3 when BJ estimate is used instead of

RA estimate.
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Table 4.15

Performance Evaluation Using BJ and Robust Estimates:
MA(1) withan IO at t = 51 '
(C=15,n=100, 0 =-0.6, 5,2=1; 1000 replications)

[ Using BJ estimate Using RA estimate
1>t 10 Type (Q'=Q) Q'>C [0 Type (Q'=0)
o | P2t | i | Pt gt | et | Gon | bt | Gl
-tion -tion -tion -tion
0] 0.050 - 0.500 - 0.050 - 0.500 -
21 0085 | 0048 | 0635 | 0750 | 0.082 | 0.047 | 0.610 [ 0.723
300252 | 0230 | 0829 | 0.843 | 0245 | 0224 | 0.804 | 0.821
41 0592 | 0581 | 0900 [ 0905 | 0.584 | 0.574 | 0.887 [ 0.890
50082 | 0890 | 090 [ 0960 | 0.891 [ 0.889 | 0941 [ 0.940
60985 | 0985 | 0982 | 0982 | 0985 | 0985 | 0971 | 0971
_7_ 1000 | 1.000 | 0992 | 0992 | 1.000 | 1.000 | 0.981 | 0981

Simulation study was carried out for various values of MA(1) parameter 0

in the presence of AO and 10 type of outlier. The conclusions based on the

simulation study were similar to those for AR(l) and for the case 0 = -0.6

reported above in Tables 4.14 and 4.15.

In Table 4.16 we report the evaluation for MA(1) with 6 = -0.9 in the

presence of AO at position t = 51.

The observations based on this table are similar to those based on Table

4.14. It is clear that the difference between performances of the procedure using

BJ and RA estimates reduces for larger absolute values of 8. For all the values of 0

for which the simulations were carried out, it was observed that the performance



Table 4.16

Performance Evaluation Using BJ and Robust Estimates:
MA(1) with an AO att =51
(C=15,n= 100,08 =-0.9, 5,2=1; 1000 replications)

146

e

Using BJ estimate Using RA estimate
Q' >C AO Type (Q'=Q4) @i »C AO Type (Q';@\T
[P | [ e o s | 0, T o | i
-tion -tion -tion -tion___|
(0| 0000 | 0.001 | 0744 . 0089 | 0.001 | 0.753 .
21 0465 0.343 0.923 0.889 0.463 0.338 0.940 0.911
3| 0.890 0.793 0.988 0.953 0.892 0.794 0.993 0.965
41 0.992 0.957 0.995 0.977 0.993 0.955 0.998 0.982
51 0.999 0.991 0.998 0.993 1.000 0.992 0.999 0.995
6| 1.000 1.000 0.997 0.994 1.000 1.000 0.999 0.996
71 1.000 1.000 0.997 0.997 1.000 1.000 1.000 1.000

of the procedure to detect the outlier and identify its position is satisfactory and

does not depend on which of the BJ or RA estimate of 0 is used. The procedure

using RA estimate performed slightly better in identifying the outlier type AO. For

instance the difference in the percentage of identification of the outlier type was

about4 to 5 for 6 =-0.3 and ® = 5.

In Table 4.17, we report the simulation study for 6 = -0.9 in the presence of

10. It can once again be seen that there is no difference in the performances using

BJ and RA estimates when outlier detection and position identification is

attempted. The procedure using BJ performs marginally better than that using RA

to identify the outlier type as 10 and detect its correct position.
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Table 4.17

Performance Evaluation Using BJ and Robust Estimates:
MA(1) withan IO att =51
(C=15,n=100,0=-0.9, 5, =1; 1000 replications)

Using BJ estimate Using RA estimate
B Q>C 10 Type (Q"=Q) 0 >C 10 Type (Q'=Q)
o| P2 | deniia | P | i | PS5t | it | P9 | i

-tion -tion -tion -tion
01 0.079 - 0.278 - 0.080 | 0.001 .| 0.263 -
2| 0116 | 0049 | 0440 | 0.694 | 0.113 | 0.047 | 0398 | 0.681
310274 | 0239 | 0807 | 0870 | 0260 | 0225 | 0.796 | 0.876
410611 | 0597 | 0938 | 0951 | 0598 [ 0.583 | 0935 [ 0.949
5/ 0878 | 0874 | 0985 | 0987 | 0.867 | 0.864 | 0.987 | 0.988
60979 | 0977 | 0994 [ 099 | 0979 | 0977 | 0994 | 0.99
7010997 | 0997 | 0998 | 0998 | 0997 | 0997 | 0998 | 0.998

Similar phenomenon was observed for various other values of 0. The
difference in the percentage performances using BJ and RA estimates to identify
the outlier type when it is 10 was more for smaller values of 0. For instance, for 0
= -0.3 and @ = 5, the procedure using BJ estimate identified the correct outlier
type 79% of times out of 88% of times an outlier was detected. The percentages

for the procedure using RA were 75.63% and 87.8% respectively.

Remarks:

Based on the simulation study presented in this section, following remarks

can be made.
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a) The performance of the proposed procedure based on Q' to detect the outlier
and identify its correct position in AR(1) or MA(1) is same whether BJ or RA
estimate of time series parameter is used. This is irrespective of whether AO or
IO outlier type is present in the series. A wide range of values of time series
parameters (¢ = 0.1(0.1)0.9 and 6 = -0.1(-0.1)-0.9) was used for simulations
and the claim holds for all the values considered.

b) There is marginal difference in the performances using BJ and RA estimates of
time series parameter to identify the outlier type and its correct position.

c) The performance of.the procedure to identify the correct type of outlier and its
correct position improves in the presence of AO when RA estimate is used. The
difference between the performances, however is marginal even for small
values of time series parameter and is almost negligible for large values of time
series parameter.

d) The performance of the procedure to identify the correct type of outlier and its
correct position improves in the presence of [0 when BJ estimate is used. The
difference between the performances is again not significantly large even for
small values of time series parameter and is almost negligible for large values
of time series parametcr.'

¢) The simulation study using RA estimator took longer than that using BJ
estimator even in the simplest possible case of AR(1), thus making use of RA

estimate computationally more expensive.
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In conclusion, the performance of the procedure using RA estimate cannot
be claimed to be uniformly better than that using BJ estimate when the outlier type
is unknown. The use of robust estimator of time series parameter entails only a
marginal gain in efficiency of the proposed procedure in the presence of AO. Also
the gain is in case of the correct detection and position identification only if the
unknown outlier type is an AQ at the expense of heavier computations. If the
unknown type of outlier is IO, the procedure using BJ estimate performs better
than that using RA estimate in identifying the outlier type.

Often in a contaminated time series both AO and IO type of outliers are
present (Chapter 5, Section 5.4). If the type of outlier is unknown, the adjustment
diagnostic procedure using BJ estimates seems to be a reasonable way for outlier
detection as well as type identification, except that it may miss the correct type
identification of AO outlier by a small margin in comparison with the procedure
using RA estimator in some cases. Hence for the remaining discussion, only the

BJ estimator of time series parameters is used in the proposed procedure.

4.5 Diagnostic for Multiple Outliers

In practice, the number of outliers which might be present in an observed
series is rarely known and a procedure which detects the presence of multiple
outliers is needed. Identification of multiple outliers is a challenging problem,

particularly due to the masking and swamping effects (Barnett and Lewis, 1994).
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In many practical situations, however, most of the jointly influential
observations are detected by employing the single case diagnostic procedures
iteratively (Chatterjec and Hadi, 1988, pp. 185-186). In time series analysis as
well, most of the existing multiple outliers detection procedures are based on
iterative use of the single outlier detection procedure (Chang and Tfao, 1983;
Abraham, 1987; Chang et al. 1988).

We propose the iterative procedure based on ADV for identification of
multiple outliers here. The performance evaluation and the drawbacks of the

proposed procedure are postponed to next sections.

Step 1.
Compute the maximum likelihood estimates of the model parameters ¢, 0 and

error variance based on the series where it is assumed to be outlier free.

Hence, the estimates are f§ = (&)',é') and

The y weights and n weights are recursively computed as,

"

;= 0~ a2 == 00 -, for j>0
where o =1, §; =0 forj\<0, and éj =0for j>q, and
T =éiﬁj—1 +ézﬁj-z +”.+éqﬁj-q +@,— for j>0

where #, =-1, #t; =0 for j<0, and ¢ j=0forj>p respectively.
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Step 2-

For i=1,2, ..., nin turn, calculate the estimated outlier parameters at g i

: n(F)e.
(DA,i = n_..i . ]
a2
Z"j
0
fbl,i = éi:

and adjust the series for all tet by using the estimated observations given by

Ypa= Yi- G)A,i :m

Yiga = Y- &; ¢ (B)EY.
Compute the adjustment diagnostic measure,

6_2

ADVS,;=H( . —1] forS=Aandl

"

Ocli)s

a l s - . ~ . . .
where Uﬁms = *Zcf(,-,s is obtained based on adjusted series Y55, Sis A or I,
'y n lzl '

and €, is the residual using the estimated parameters s = ((é'mls,();i,.s)' for the

adjusted series { Y\, tet}.

Step 3.

Define Q' = max (Qa, Q) where Q4 = ADV,1 = max ADV,; and Q; = ADV,y =
max ADVy;, T is the time point where the maximum occurs.

If Q<C where C is the predefined positive value, go to Step 4.



152

1fQ >Cand
if Q= Qy, then there is an AO at time T with its effect & AT

Take the adjusted series with observation Y, replaced by Yyma

for all tet; and go to Step 1.
if Q" = Q, then there is an IO at time T with its effect, @7

Take the adjusted series with observation Y, replaced by Yy
for all tet, and go to Step 1.
Step 4.
Suppose ‘m’ number of outliers are identified with the positions Tj, for j =

1,2, ..., m. The model now is

o 0(B
v~ Sop @0 + ;{—B; W tew

where D{(B) = 1 for AO type and D(B) = g-zg—; for 10 type at t = T;. The

simultaneous estimation is carried out to get the final estimates for a set of
parameters [} = (m',¢',6')' where o'= (0, ©, ...,0,) and error variance G: using
the maximum likelihood estimation procedure in Section 2.4.

In the procedure proposed above, a robust estimator of the time series
parameter B can be used in Step 1 instead of the maximum likelihood estimator

analogous to the single outlier procedure discussed in Section 4.4. However, from

the performance evaluation presented therein, it can be seen that the performance
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of the proposed adjustment diagnostic procedure does not improve significantly or
uniformly using a robust estimator. Also, as is well accepted, a robust estimation
procedure is computationally more expensive. Hence only the BJ estimator of f is
considered for the further discussion.

The multiple outliers in time series can occur in isolation or in patch which
are called as isolated outliers or patch outliers respectively (Martin, 1979; Bruce
and Martin, 1989). The evaluation of the proposed procedure in the presence of
two isolated or patch outliers is presented in Section 4.6. Additional discussion is

deferred to Chapter 5, particularly Sections 5.2 and 5.3.

4.6 Performance Evaluation of Adjustment Diagnostic for Multiple Outliers
The performance of the diagnostic procedure for multiple outliers proposed

in the carlier section is presented here. We investigate the performance in the

presence of two outliers which may occur in isolation or in patch. In particular, we

consider contaminated AR(1) and MA(1) series, contaminated with two outliers

which are

i) both of AO type (2 AOs)

ii) both of 10 type (2 10s)

iii) an AO type followed by an 10 type (AO IO)

iv) an 10 type followed by an AO type (10 AO)

occuring at isolated time points and at consecutive time points. The outlier

parameter o is considered same for both the outliers and we consider the values of
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« in the range @ = 2(1)7. The study presented here is based on AR(1) with $=0.6
and 0,2 = 1 and MA(1) with 6 =-0.6 and 6,2 = 1.

We carried out 1000 simulations for each series with n = 100. The cut off
points considered are same as in case of single outlier (Section 4.4), namely C=
14.5 for AR(1) and C =15 for MA(1). The program CP-8 is given in the attached
CD and is listed in Appendix C. We consider the case of isolated outliers,

followed by the patch outliers.

(a) Isolated Outliers

For each series of length n = 100, the two isolated outliers are assumed to
be present at the well separated points chosen to be t = 34 and 67 which we refer
by “Ist outlier” for t = 34 and “2nd outlier” for t = 67. Tables 4.18 and 4.19 give
the performance evaluation for AR(1) and MA(1) respectively. The figures in the
tables give the frequency (out of 1000) of detection of correct position of both
outliers, Ist outlier and 2nd outlier-respectively, based on Q). The numbers within
the parentheses under each figure give the percentage of correct identification of
outlier types out of correct position identified. For instance, in Table 4.18 in the
presence of 2 AOs with © = 4, 65.1% of times Q' detects both the outliers at the
correct position, 75% of which correctly identifies both as AOs. Further, 79.9% of
times it correctly detects the position of the 1st outlier out of which 86% of times

the procedure detects the correct type AO.



Table 4.18

Frequency of Correct Detection of Outlier(s) position (percentage of correct
identification of type): AR(1) with Two Isolated Outliers at t = 34 and 67
(C=14.5,n=100, ¢ = 0.6, 5,” = 1; 1000 replications)

Qutliers’ ©
Type 2 3 4 5 6 7
2 A0'S 11 166 651 948 999 1000
(0.55)] (0.70)| (0.75)[ (0.81)| (0.81)| (0.86)
1st Outlier 79 347 799 970 1000 1000
(0.73)]  (0.83)| (0.86)] (0.90)| (0.90)| (0.92)
2nd Outlier 67 351 785 973 999 1000
(0.81)[ (0.84)] (0.86) (0.90)] (0.90)] (0.94)
210'S 4 75 412 795 974 995
(0.00)( (0.73)] (0.75)| (0.85)[ (0.90)| (0.95)
1st Outlier 60 232 591 885 990 997
(0.68)] (0.85)| (0.86) 091 (0.95)| (0.97)
2nd Outlier 49 238 613 883 983 998
(0.78)] (0.79)] (0.88)| (0.93)| (0.95)| (0.98)
AOIO 3 125 492 869 983 999
(033)| (0.72)| (0.76)] (0.86)| (0.89)| (0.95)
1st Outlier 92 361 774 969 997 1000
0.77)] (0.83)] (0.89) (0.92)| (0.94)| (0.97)
2nd Outlier 46 248 584 890 986 999
(0.80)] (0.85)] (0.88)[ (0.93)[ (0.95)| (0.98)
10 AO 10 122 481 873 990 997
(0.40)[ (0.75)] (0.79) (0.85)( (0.90)| (0.94)
Ist Outlier 49 242 579 885 992 998
(0.84)( (0.87)| (0.90)[ (0.93)| (0.95)| (C.98)
2nd Outlier 89 380 y i} 981 998 999
(0.69)[ (0.83)] (0.88)] (0.91)] (0.94) (0.97)

Based on Tables 4.18 and 4.19, it can be seen that the proposed ADV procedure
performs satisfactorily for AR(1) as well as MA(1) in the presence of two

outliers, particularly for large values of outlier parameter ®. Also, on comparing
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Frequency gf Correct Detection of Outlier(s) Position (percentage of correct
identification of types): MA(1) with Two Isolated Outliers at t = 34 and 67
(C=15,n=100, 0 =-0.6, 5,> = 1: 1000 replications)

Qutliers’ ©
Type 2 3 3 5 6 q
2 AO'S 14 157 657 942 995 1000
0.57)| (0.74)[ (0.79)| (0.81)| (0.82)| (0.84)
1st Outlier 68 330 757 964 996| 1000
(0.68)| (0.87)| (0.87)| (0.91)| (0.90)| (0.93)
2nd Outlier 84 333 768 971 998| 1000
(0.79)] (0.84)] (0.88)| (0.89)( (0.91) (0.91)
210'S 2 46 329 768 959 999
(0.50)| (0.76)| (0.86)| (0.91)| (0.96)| (0.97)
1st Outlier 40 174 559 870 978 999
(0.80)| (0.89)] (0.92)] (0.95)| (0.97)| (0.99)
2nd Outlier 45 187 525 860 979 1000
(087)]  (0.92)[ (0.93)| (0.96)| (0.99)| (0.99)
AO 10 8 104 475 858 980 997
(0.50)| (0.71)| (0.82)| (0.92)| (0.94)| (0.96)
Ist Outlier 90 408 783 976 998 999
(0.81)[ (0.89)| (0.91)] (0.96)| (0.96)| (0.97)
2nd Outlier 31 186 554 874 982 998
(0.87)| (0.87)| (0.91) (0.96) (0.98) (1.00)
10 AO 4 99 459 842 974 999
(0.50)| (0.76)| (0.84)[ (0.91)| (0.95)| (0.97)
Ist Outlier 27 180 539 866 977 999
(0.78)| (0.88)| (0.93;| (0.97)| (0.98)[ (0.99)
2nd Outlier 101 391 787 969 997| 1000
0.78)] (0.85)| (0.89)| (0.94) (0.97)| (0.98)

Tables 4,18 and 4.19 with Tables 4.8 and 4.9 respectively, it can be seen that the
performance of the procedure in case of two isolated outliers is comparable with

that in case of single outlier, irrespective of the outlier types.
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(b) Patch Outliers

For each series of length n=100, a patch of two outliers occurring at
consecutive time points t = 51 and 52 is considered for this study. As before the

outlier at t = 51 is referred by “1st outlier” and that at t =52 by “2nd outlier”.

Table 4.20

Frequency of Correct Detection of Outlier(s) Position (percentage of correct
identification of types): AR(1) with a Patch of Two Outliers at t =51
(C=14.5,n=100, ¢ = 0.6, 5,” = 1; 1000 replications)

Outliers’ o
Type 2 3 4 5 6 7
2 AO'S I 10 80 234 472 680
(0.00)| (0.00)| (0.01)] (0.01)] (0.01)[ (0.00)
st Outlier 55 229 542 859 974 998
(0.05)[ (0.01)| (0.00)| (0.00)[ (0.00)| (0.00)
2nd Outlier 7 31 113 253 479 682
(0.86)| (0.97)] (0.99) (0.99) (1.00)| (1.00)
210'S 3 35 301 727 942 993
(1.00)| (0.86)[ (0.83)| (0.87)[ (0.86)| (0.91)
Ist Outlier 36 213 570 872 983 998
(1.00)[ (1.00)] (1.00)| (1.00)| (1.00)| (1.00)
2nd Outlier 44 187 499 830 958 995
0.75)[ (0.79)| (0.84)] (0.88)| (0.87)| (0.91)
AOIO 0 3 8 30 69 93
-|  (0.00)[ (0.00)] (0.00)] (0.00)| (0.00)
Ist Outlier 47 246 590 879 989 999
0.04)| (0.0n| (0.00)] (0.00)| (0.00)| (0.00)
2nd Outlier 3 7 14 38 69 93
067 (0.86)] (0.57)| (0.68)] (0.59)| (0.61)
10 AO 1 102 488 870 982 999
(1.00)| (0.89)| (0.89) (0.92) (0.97)| (0.97)
Ist Outlier 33 208 592 888 984 999
(1.00)| (1.00)] (1.00)[ (1.00)| (1.00)| (1.00)
2nd Outlier 105 388 784 972 998 1000
0.72)] (0.84)] (089)] (0.92)] (0.97)| (0.97)




Table 4.21

Freguengy of .Correct Detection of Outlier(s) Position (percentage of correct
identification of types): MA(1) with a Patch of Two Outliers at t = 51
(C=15,n=100, 6 =-0.6, 5,” = 1; 1000 replications)
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Outliers’ o
| Type 2 3 4 5 6 7
2 AO'S 0 0 17 38 93 135
_ = -1 (0.00)[ (0.00)] (0.00)| (0.00)
1st Outlier 36 222 553 875 981 998
. (0.03)| (0.01)| (0.00) (0.00){ (0.00)[ (0.00)
2nd Outlier 2 9 28 48 94 135
[ (0.00)| (0.89)] (0.75) (0.81)] (0.79) (0.82)
210'S | 39 250 615 894 973
. (1.00){  (0.87)| (0.95) (0.96)| (0.98) (0.99)
1st Outlier 33 235 577 859 977 998
(097){ (1.00)| (1.00) (1.00)| (1.00)[ (1.00)
2nd Outlier 46 177 427 720 909 975
' (0.80)| (0.80)] (0.92) (0.96)| (0.98)| (0.99
AOIO 0 1 7 12 57 92
-1 (0.00)] (0.00)[ (0.08)] (0.11)[ (0.09)
Ist Outlier 40 201 551 829 973 997
(0.25)[  (0.08)( (0.08)] (0.03)[ (0.02)| (0.01)
2nd Outlier 3 3 16 16 57 92
(0.67)] (1.00)] (1.00)] (1.00)] (1.00)| (1.00)
10 AO 2 85 462 838 969 999
(0.50)] (0.93)] (0.93) (0.96)[ (0.98)| (0.99)
Ist Outlier 52 205 584 875 972 1000
(1.00)| (1.00)] (1.00)[ (1.00){ -(1.00)| (1.00)
2nd Outlier 82 425 805 961 997 999
(0.84)] (0.91)] (0.95)] (0.96)| (0.98)| (0.99)

Tables 4.20 and 4.21 give the performance evaluation for AR(l) and
MA(1) respectively. The figures in the tables can be interpreted analogous to those
in Tables 4.18 and 4.19. For instance, in Table 4.20, in the presence of a patch of

two AO outliers with ®@=4 in an AR(1), only 8.0% of times the procedure
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correctly detects and identifies the position of both the outliers and only 1.0% of
times it correctly identifies both as AOs. It identifics the st outlier 54.2% of times
but fails to identify it as an AO (0.0%) whereas the 2nd is detected 11.3% of

times, out of which it is correctly identified as an AO 99% of times.

It is clear that the performance of the proposed procedure is better in the
presence of isolated outliers as against patch outliers, a fact already pointed out in
the literature (Chen and Liu, 1993; Justel et al., 2001). Also, it can be seen from
the tables that the presence of the patch of two consecutive AOs misleads the
procedure into identifying the 1st outlier as an IO and hence not identifying the
second outlier at all. Similar situation occurs when the Ist outlier is an AO. The
fact that in case of a patch the procedure is highly likely to identify the 1st outlier
as an IO type can be seen from its performance in the presence of two consecutive
10s or when the Ist outlier is an IO in the presented tables.

More importantly, it can be seen from the tables that irrespective of the
type, in all four situations, the outlier detection of first outlier is quite satisfactory
and increases t0.100% as o increases. However, the identification of the 1st outlier

when it is an AO is significantly low. In any case, the proposed procedure detects
the Ist outlier with percentage which is comparable to that of single outlier
detection though it often fails to identify the outlier type when the 1st outlier is an
AO. Thus in case of patch outliers, the presence of 2nd outlier seems to be
‘masking’ the effect of 1st outlier when it is an AO irrespective of the type of 2nd

outlier. Significantly, the phenomenon seems to be restricted to 2 AOs and AO IO
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situations only. The procedure performs with high accuracy in the presence of 2
10s or 10 AO occurring in a patch.

We carried out further study to investigate the reasons behind the
performance of the proposed procedure in case of multiple outlicrs which is

presented in the next section,

4.7 Critical Evaluation of Diagnostic for Multiple Outliers

In this section, we aim to investigate the reasons behind the performance of
multiple outlier detection procedure. A theoretical understanding of effect of
multiple outliers on the series analysis seems intractable. Since the presence of
outliers affects the error variance which also depends on the order of the model,
type of outlier and whether they occur in isolation or in patch, simulation study
was undertaken to evaluate the effect on the estimates of time series parameter and

error variance. We considered AR(1) and MA(1) models with ‘m’ number of

outliers, n =100, o} =1 and @ = 5. The number of outliers ‘m" is varied from 2

to 8.

In this analysis, we assume that the isolated outliers occur in the series at
positions which are well separated, to avoid the masking effect. The patch outliers
are also assumed to be of the same type, i.e. either all AOs or all [Os. Firstly, ‘m’

isolated multiple outliers are introduced in each series at rounded integer value of

Kk x where n is the series length, m is the total number of outliers, and k = 2,

m+l
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3, ..., M. The average of estimated paramcters and estimated error variances for
1000 replications for cach ‘m’ is calculated using the Computer Program CP-9 in
the attached CD and in the programs’ list of Appendix C. The results are shown in
Table 4.22 and 4.23 for AR(1) and MA(1) series respectively.

Table 4.22

Average of ¢ and 6: for an AR(1) Series with ‘m’ Isolated Outliers
(n=100, ¢ =0.6,6> = 1, @ = 5; 1000 replications)

No of Outliers Series with Aos Series with [0s
m Avg.of § | Avg.of 62 | Avg.of § | Avg.of &;
E 0.4395 1.6249 0.5893 1.4879
: 0.3906 1.9276 0.5913 1.7380
4 0.3490 2.2047 0.5911 2.0001
5 0.3248 2.4891 0.5863 2.2470
6 0.2936 2.7699 0.5941 2.4900
L 02712 3.0287 0.5920 2.7626
8 0.2547 3.3292 0.5955 2.9982

From Tables 4.22 and 4.23, we observe that the estimated error variance
increases when the number of isolated outliers increases irrespective of series
considered and type of outliers. Also, consistent with single outlier situation, the
effect of multiple isolated AO outliers on the estimate of error variance is more
than those of 10 outliers for both models. The estimates of time series parameter

do not show such a marked effect, irrespective of type of outliers.
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Looking at the increase in the estimate of error variance, it does not seem
surprising that the proposed procedure works satisfactorily in case of multiple
isolated outliers. However it may be borne in mind that the number of isolated
outliers should not be too many to bring them closer to each other which could
provide the masking effect as in case of patch outliers, since ... subtler type of
masking occurs when moderate outliers lie close to one another” (Bruce and
Martin, 1989), thus rendering the usual outlier detection method ineffective
(Justel, et al., 2001).

Table 4.23

Average of 0 and & for an MA(1) Serics with ‘m’ Isolated Outliers
(n=100,0 =-0.6, o = 1, ® = 5; 1000 replications)

No of Outliers Series with Aos Series with I0s

L Avg.of 0 | Avg.of 67 | Avg.of 6 | Avg.of &
2 -0.3581 1.6487 -0.6106 1.5280
3 -0.3063 1.9228 -0.6081 1.7793
4 -0.2598 2.1898 -0.6025 2.0214
5 -0.2369 2.4864 -0.6031 2.2846

L6 -0.2123 2.7379 -0.6046 25237
7 -0.1934 2.9985 06022 | 27887
8 -0.1736 3.2664 -0.6141 3.0245

Since most of the available multiple outliers detection procedures do not
handle patch outliers satisfactorily, we investigated the change in the estimated

error variance due to the presence of multiple outliers in patch for the outlier
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Table 4,24

~ b ADd N
Average 0f(¢ and &; for ap AR(1) Series With a Patch Outliers at { = 51
n=

100, ¢ = 2=, 0=
¢ =04, % =L o=5 1000 replications)

Patch i i
—————-—____Smfs W-l_tllfig_s_____ Series with I0s
Length Ave. of A ~2 z
g.of ¢ ___V_g_-_‘}f_ga__ Avg.of ¢ | Avg. of 62
2 0.5623 1.3738 0.6845 1.4756
3 0.6133 1.4035 0.7621 1.6607
4 0.6459 1.4572 0.8149 1.7448
5 0.6805 1.4740 0.8504 1.8355
6 0.7074 1.4929 0.8763 1.8764
7 0.7300 1.5183 0.8949 1.9105
8 0.7462 1.5332 0.9097 1.9271

As can be seen from Table 4.24 and 4.25, the estimated error variance
shows consistent increase in its value for both models and for both outlier types
when the length of a patch for IOs increases.

It shows that the bias amount in estimated error variance is approximately
proportional to the length of patch outliers. At the same time, comparing Table

422 with Table 4.24, and Table 4.23 with Table 4.25, it is clear that for both AO
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and 10 type of outlicrs the over all effects of ‘m’ patch outliers on estimate of
error variance is much less compared to that of isolated outlicrs of cqual numbers,
This indicates the difficulty in handling patch outliers. As a result, any procedure
based on estimate of error variance will not be as effective in identifying patch
outliers as isolated outliers. Since the effect of patch of 10 outliers is higher on
the estimate, a patch of 10 outliers seems “more identifiable” using the proposed
procedure.

Table 4.25

Average of 6 and &7 for an MA(1) Series with a Patch Outliers at t = 51
(n=100,0=-0.6, > =1, ® = 5; 1000 replications)

Patch Series with an AQ Series with an IO
Length _;\vg. of @ | Avg.of 62 | Avg.of | Avg. of6?
' 2 06600 | 13309 | -0.7188 1.5412

3 0.5721 17252 -0.7295 1.8159

4 -0.6807 1.6232 -0.7725 2.0021

5 -0.6401 2.0505 -0.7726 2.2699

6 -0.6963 1.8364 -0.8037 24127

7 -0.6714 2.1950 -0.8059 2.6438

8 -0.7098 2.0533 -0.8218 2.8112

However, this nature does not show in the case of patch for AOs.
Especially in MA(1), the change of estimated error variance does not depend on
the length of patch. Hence, a patch of AOs can reduce the performance of many

outlier detection methods as well as the identification of their types.
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We discuss patch outliers heuristically using a patch length 2 for both
types. Consider presence of pulcl: outliers of length 2 which oceurs in the observed
serics { Y, tet} at time point t = T. Then the two outlier models can be expressed
as
Yi=Z+o D+ | ter  for AO (4.13)
Y,=Z+oy®B) (M +EMy | tet forlO (4.14)

More clearly, the models can be written as follows.

For AO patch model,
( Zy fort<T,
Zl +o fort= T,
¥i=4
Zi+o fort="T+I,
\ Z, fort> T+1. (4.15)

We can see that the patch of two AOs may look more like an IO at T.

Hence, an IO can be misidentified instead of AO at T point.

For 10 patch model,
r Z, fort<T,
Zto fort=T,
Y,= 1
Z,+ o {1+y,} fort=T+I,
\ Z,+ 0 {W1+1 Wi} fort> T+l1. (4.16)

It shows that the effect on Zg4; is larger than Zy when the sign of © and y,

is positive. Provided o is sufficiently large and there are no high fluctuation in the
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original outlier free serics, the proposed method is likely to indicate the presence
of 10 at T+1 initially. Then, the 10 at T may be detected as an outlier at the next

iteration. The misidentification of the outlier type may be a rare instance for a

patch of 10s.

We now consider the series adjustment analogous to Section 2.6 under the

assumption that the time series parameters are known.

Series Adjusted for AO
Suppose the series is adjusted using the estimated value of outlier

parameter @ based on an AO at ‘1", giving the adjusted series for t,iet

Yia = [Zi+o gD+ }1- @a; g for AO 4.17)

Vou (2t 0y®) (EP+ET0)] - 00,80, forl0 (4.18)
where T and T+1 are the correct outlier positions and ‘i’ is the adjusted outlier
position.

We can see that the adjustment leads to a reduction of effect ® for AO
patch in (4.17) when the adjusted (-Jutlier position is either i = T or T+1 and the
@ ;i for i =T or T+1 is close to the outlier parameter . One outlicr among two
still remains. But, in practice, the estimator @ »; may not be close to the outlier
parameter © because the effect of a neighboring outlier influences this estimate.

We also know that the AO adjustment replaces the value of the observed series at

‘i’ by its predicted value using least squares estimate. Consequently, the adjusted
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value of the observed scrics at i =T or T:1 is affected by the neighboring outlier

Jeading to the bias in estimated error variance.

Similarly, the AO adjustment for 10 patch model in (4.18) can reduce the
effect of outlier at time position cither i = T or T+1 only. One of these two
positions is still influenced by contaminants and carry-over effects of outlier
remains in the adjusted series. Hence the AO adjustment may not work well for

the presence of patch outliers for either types in the observed series.

Series Adjusted for 10
We now consider the IO adjustment using the estimated outlier parameter

ati, ®; for both models in (4.13) and (4.14) for t,iet, which gives
?t(i),!: [Z+® {gl(T) + gt(TH) +1- a)l,i \V(B) étm, for AO 4.19)
Vo ~ 12+ 0 y®B) £ +ETV )] - brwB)E™, forI0 (4.20)

When i =T, the adjusted series of (4.19) becomes
: n-T
Yt(i),l = Zl i ((D ' &I,T) {:nl(T) + (0) - 0T Wl) ét(TH) - c"\)[,T ZWJEEI .
j=2

We also know that @1 = &1 does not get affected by outlier @ at T+1.
Thus the adjustment replaces the observed value at T by its MMSE forecast which
also does not get affected by outlier o at T+1. Hence the IO adjustment leads to
reduction of the effect of ® on the observed series at T. The value of ® at T+1 may

be changed to (@ - @7 ;). Hence the IO adjustment has better chances of
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detection of a patch outlier position at T and can reduce the effect of o when the
sign of y, is positive. The outlier at T+1 may look more like an AO itself with
effect (0 - @1 rV;) and it may be identified by the AO adjustment.

When i = T+, the estimated parameter is @1+ = €1+ which is affected by
the outlier @ at T. Hence, the IO adjustment for i=T+1 does not lead to reduction
of outlier effect from the series at time point T in the presence of AO patch
outliers.

As a result, heuristically, an AQ patch of two outliers starting at T is likely
to get indicated as an IO at T and an AO at T+1 with a smaller estimate of outlier
parameter. One should carefully analyze the behavior of observed values and
estimated errors at these positions.

In (4.20), the IO adjustment for i = T or T+1 leads to reduction of the effect
of @ from the 10 patch series. Moreover, (4.16) shows that the outlier at T+1 can
be indicated as the first outlier, depending on the value of time series parameter.
Hence the 10 adjustment might work well for both AO and 1O patch outliers with
patch length 2. The diagnostic plots and identification of patch outliers in
numerical study are presented in Sections 5.2 and 5.3 of Chapter 5.

To overcome the drawback of patch outliers, various alternative procedures
can be suggested, which are not investigated in details in the present work. For
instance, the adjustment method can be extended to “block adjustment” where the

series can be modified by adjusting k consecutive observations, that is, the
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estimate of outlier parameter w; at ‘i’ is used for adjustment of observations at

time points i, i+l, ..., i+k-1 where k is a block size. It can be expressed for both

outliers AO and IO as

k

-] .
Yipa= Yt~ D g{;&?_’j ; tiet for AO block adjustment (4.21)

k-1
Ty = Ye- Oy w(B)%g?_‘j, tiet forIO block adjustment  (4.22)
J:

Suppose that the observed series {Y,, tet} follows the outlier models in
(4.13) and (4.14) for AO and IO respectively and suppose the block size k is 2.
The block adjustment for i = T of same outlier type gives the adjusted series as
follows.

The proposed AO block adjustment for AO patch Model is
|

Yira =[Z+a(EM+E™")]- dar Y&, tiet
j0

=7+ (©-0a7) B+ 0 ™V b1 "
Since &MV = £, we get
V™ 2+ (@-0ar) [E7+ &0 (423)
From (4.23), analogous to (2.38) it can be seen that the block a;ijustment
leads to reduction in contamination of the observed series when the estimated

outlier parameter @ 5y is close to the true parameter value ©.
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The 10 block adjustment for 10 patch Model is

V=2t 0 W) (EP+EM) 1 610 yB)YED,  gice
j=0

t=j »
since &MV = £, D, we get
Y = Lt (@- &rp) w(B) [ g™+ gMD]

which shows that the IO block adjustment reduces the effect of outlier in the

observed series when the estimated outlier parameter @7 is close to .

But the determination of the block size may be a problem in a case of patch
outliers, especially for AO patch outliers. One can use the estimated error variance
to decide the block size for IO patch because Tables 4.24 and 4.25 show that the
change in the estimated error variance is directly proportional to the patch length
of outliers. The proposed procedure needs to be appropriately modified for
satisfactorily handling the presence of patch outliers starting with AO., An
alternative way to handle multiple outliers is to use the diagnostics plots that are
developed in STDS which can help us to guess the position of outliers and nature

of the patch outliers.
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Chapter 5

Data Analysis Using Adjustment Diagnostic

5.1 Introduction

Understanding outliers is an important issue in time series data analysis. In
this chapter we illustrate how the proposed procedure helps us to diagnose the
outliers in simulated time series data sets as well as real life data sets. The data
sets considered are various types of AR(1) and MA(1) series with outliers ol
different types at different positions and some real life data sets available in the
literature.

The analysis presented here is carried out using the Statistical Time Serics
Diagnostic Software (STDS) developed as a part of this work. The software is
supplied along and apart from the analysis mentioned above, also provides a few
additional things such as basic statistics for time series, various diagnostic plots
such as residual plots and adjusted AIC etc, and the proposed iterative diagnostic
procedure ADV. The content page of STDS manual is presented in Appendix B.

Initially, the proposed outlier diagnostic procedure is illustrated using
various data sets consisting of single and multiple outliers of two types considered
so far. For a particular data set, it is suggested that initially the plot of residuals
and the ADV plot introduced in Section 4.2 be drawn. The plots give a fairly good

idea about the positions of the outliers and also their respective types.
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In Section 5.2, we discuss in details the ADV plots in case of AR(1) and
MA(1) in the presence of single and multiple outliers of either type. The value of
outlier parameter chosen is @ = 4. The performance of ADV procedure for these
series has already been presented in Section 4.3. Section 5.3 presents the
performance of the proposed diagnostic procedure where we consider various
series with different types of outliers at different positions.

Finally, in Section 5.4, we apply the proposed procedure to some real life
data sets available in the literature. The data sets considered are Truck Defects
Series by Wei (1990, p. 446) and Box and Jenkins’ Series C, Series A, Series D
and Series J (Box et al, 1994, pp.541-549). The proposed procedure is carried out
on all these series and the performance of the procedure is compared with the
analysis available in the literature. It is observed that there are differences in the
parameter estimates reported in the literature and the parameter estimates given by
STDS due to difference in the estimation procedures. In order to compare the
reduction in the estimate of error variance, we computed the estimate of error
variances using SPSS software for Windows. Improved analysis of outliers was
observed for those series which indicated the presence of 10 type of outliers. The

parsimony of the model was also taken into account while comparing.
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5.2 Adjustment Diagnostic of Variance (ADV) Plots
In this section, we present the diagnostic procedure based on ADV
(Adjustment Diagnostic based on Variance) plot which is the plot of estimated
error variance obtained on adjusting the series at all time points in turn. The plots
are expected to indicate the presence of outliers along with the number of outliers

and their position in the series. We present the study for AR(1) and MA(1) series

separately in the present section.

AR(1) Model:
We considered an AR(1) model and generated the series for n = 100, ¢ =
0.6and o’ =1.

AR(1) with one outlier

Using the generated AR(1) series, an outlier of an AO and an 1O type is
introduced at t=51 for the value of outlier parameter @ = 4. Before analyzing the
data using the adjustment diagnostic, the residuals of AO and IO contaminated
series are plotted in Figures 5.1 and 5.2 respectively.

Figure 5.1 shows that the residual value at t=51 is 3.5121. Since it is
slightly higher than others, the observation at t = 51 can be a possible outlier in
generated AR(1) series. Apart from this, the graph indicates that the possible

outliers can be expected at t = 69, 83, 90 and 91 and their residuals are -2.29,

2.64, 2.09, and —2.16 respectively.
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Figure 5.2 also shows the same pattern in residuals series except at the time
t = 51 and some succeeding values. The residual at t =51 is 3.37. It is clear that
the residuals plot cannot effectively show the outlier position when the outlier
parameter is not sufficiently large.

We also diagnose these series using the proposed ADV plot. The values,
ADV,;and ADVy;i=1,2, ..., 100 are calculated and plotted against i for series
with each type of outlier. The results are shown in Figures 5.3 and 5.4 for series
with AO and IO at t = 51 respectively.

In Figure 5.3, the values of ADV 5;=13.71 and ADV, 5, = 11.81 are higher
than those at other time points. The largest value is 13.71 which is given by AO

adjustment at t = 51. It indicates the possible presence of an AO outlier at t = 51

for the given series.

ADVi
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Figure 5.3: Plot of ADV : AR(l)wnthanAOatt*Sl
(n=100,$¢=0.6, o.=1,0=4)
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Figure 5.4: Plot of ADV : AR(1) with an 1O at t=51
(n=100,0=0.6,0,.=1,0=4)

In Figure 5.4, it can be seen that the value of ADV;s; = 11.55 is largest

value. Hence, we can suspect that an IO outlier occurs at t = 51 for the given

series.

In both Figures 5.3 and 5.4, we notice that the adjustment by correct outlier
type gives the largest value of ADV than the incorrect outlier type adjustment at
correct position. For example, in Figure 5.4, the ADVis; of IO adjustment is
11.55 and it is greater than ADV, 5, = 5.67 of AO adjﬁstment for IO outlier series
att=51 point. SinceitisanlO att=51, ADVyg is the largest value. But the AO
adjustment at t = 51 is not much larger than others. It shows that the AO
adjustment does not work well for IO series. Consequently, we can say that the
deletion diagnostic may not work well for series with an 1O outlier since the scries

adjustment for AO outlier and the deletion diagnostics are the same.
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AR(1) with multiple outliers

We now consider two outliers in AR(1) series and these outliers are
introduced with outlier parameter = 4 at isolated points and consecutive points
in the series. We also consider the situation where both type of outliers are

simultaneously present in the data at consecutive points to investigate the problem

of patch outliers mentioned in Chapter 4.

(a) Isolated outliers
Suppose two isolated outliers, either both AO or both IO occur in AR(1)
series for ©® = 4 at time points t = 34 and 67. The plot of ADV can be seen in

Figures 5.5 and 5.6 for AOs and IOs respectively.
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Figure 5.5: Plot of ADV : AR(I) with Two Isolated AOs at t = 34 and 67
(n=100,¢= 06,0,.=1,0=4)
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From Figure 5.5, the values ADV,, 3, = 22,97, ADV,34 = 19.64, ADV, ¢ =
22.87, and ADV, g = 19.71 indicate the position of outliers in time series at t = 34
and 67. Both adjustments clearly show the position of outliers at t = 34 and t = 67.
But AO adjustment values are larger than IO adjustment values for cach
point t = 34 and 67, indicating the possibility of two AO outliers at t = 34 and 67.
Thus, the adjustment diagnostic plot is helpful in guessing the positions of isolated
multiple outliers in AR(1) series as well as distinguishing their types.
In Figure 5.6, the ADV plot for AR(1) with two isolated IO outliers is
displayed. The values at t = 34 and 67 are larger than others for both types of
adjustment. These are - ADV 34 = 15.25, ADV}34 = 20.22, ADV, 67 = 15.52 and

ADV/4;=20.62. The large values of ADV show the position of outliers.
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Figure 5.6: Plot of ADV : AR(1) with Two Isolated IOs at t = 34 and 67
(n=100,$=06,0.=1,0=4)
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In addition, the 10 adjustment values are larger than AO adjustment values
for each of these two points. Based on Figure 5.6, the possibility of two 10 outliers

occurring in given time series at t =34 and 67 can be explored.

(b) Patch outliers

Let us consider presence of a patch of outliers starting at t = 51 with patch
length 2. The ADV plots of patch outliers are presented in Figures 5.7 and 5.8 for

both outliers of the type AO and IO respectively.
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Figure 5.7: Plot of ADV : AR(1) with a Patch of AOs at t =51
(n=100,¢=06,0,=1,0=4)
In Figure 5.7, the ADV5;=10.94 is the highest value indicating the
presence of an 10 at t = 51. The second largest value ADV, 5= 9.40 shows that it

can be an AO at t = 52. It does not show as the patch AO outliers at t = 51. This
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illustrates how ADV fails to identify a patch of two AO type of outlicrs,

supporting some of the observations made in Section 4.7.
The ADV values for a patch [Os are plotted in Figure 5.8. It can be seen
that the largest value is ADV, s, = 17.61. The second largest value is ADVy sy =

13.26. Both values are observed at the same time point t = 52. But ADVis, is

larger than ADV, s;. It indicates that the IO outlier occurs at t=52.
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Figure 5.8: Plot of ADV : AR(1) with a Patch of IOs at t = 51
(n=100,0=06,0.=1,0=4)

Except the values of the position t = 52, the ADVy5; = 9.85 is the largest

value. It also indicates that the 10 outlier occurs at t = 51. So, as expected, the
ADV may indicate the 10 at t= 52 first and IO at t=51 later. The plot helps in

indicating that possibly one patch of 10 outliers occurs at t=51 with patch length 2.
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MA(1) with one outlier

We introduced an outlier at t = 51 of AO and IO type in the generated

MA(1) series, resulting in two contaminated MA(1) series with an AO and an IO.
The plots of ADV,; and ADVy; against i=1,2, ..., 100 are presented in Figures

5.11 and 5.12 for the MA(1) series with AO and IO outlier respectively.
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Figure 5.11: Plot of ADV : MA(1) with an AO t = 51
(n=100,0=-0.6,0'=1,0=4)
Figure 5.11 indicates that the AO outlier may have occurred at =51 for AO
generated series as the value of ADV, 5, = 19 is larger than ADV 5, = 14.78.
From Figure 5.12, the value of ADV,5, = 15.28 is higher than ADV, 5 =
8.07 for an 10 contaminated series. The ADV value obtained after adjustment of

the series under the presence of an 10 at t = 51 is significantly larger than that at
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Figure 5.12: Plot of ADV : MA(1) with an [Q at t = 51
(n=100,0=-06,0'=1,0=4)
In both Figures 5.11 and 5.12 the adjustment diagnostic shows highly
significant values at time position t = 51. We can also see that the true outlier type

adjustment gives the large value of ADV at true position.

MA(1) with multiple outliers

We now study the ADV plot in the presence of two outliers that are

introduced in the generated MA(1) series with value of outlier parameter o = 4,

As in previous section, we analyze the plots of isolated outliers and patch outliers

separately.
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Figure 5.13: Plot of ADV : MA(1) with Two Isolated AOs at t=34 and 67
(n=100,0=-06,0"=1,0=4)

From Figure 5.13, it can be seen that the values at t = 34 and 67 are

ADV, 3 = 8.81, ADVy, = 10.02, ADV,46 = 2047 and ADV,g = 1031, Tt

indicates the true positions of both outliers. The plot indicates presence of [0 at t

=34 instead of the true type AO.

The ADV plot of series with two isolated 10s is presented in Figure 5.14.

The plot clearly indicates the positions of two isolated outliers at t = 34 and 67,
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Figure 5.14: Plot of ADV : MA(1) with Two Isolated IOs at t= 34 and 67
(n=100,0=-0.6,0,"=1,0=4)

(b) Patch outliers
We introduced a patch of two outliers of same type in MA(1) at points t =
51 and 52 resulting in two series with an AO patch and an IO patch with patch

length 2. The ADV plots for the two series are shown in Figures 5.15 and 5.16 for

AO and 10 respectively.
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Figure 5.15: Plot of ADV : MA(1) with a Patch of AOs at t = 51
(n=100,0=-0.6,0."=1,0=4)

Figure 5.15 indicates a patch of two IO outliers at t = 51 instead of the
actual patch of two AO since the largest value is ADV;s; = 15.16 and the second
largest value is ADV|s5; = 6.41.
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Figure 5.16: Plot of ADV : MA(1) with a Patch of [Os at t =51
(n=100,0=-0.6,0, =1,0=4)
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From Figure 5.16, it can be seen that two largest values are ADV;5,=14.03
and ADV;s; = 21.77 and the plot indicates the presence of a patch of two 10
outliers att=51.

In conclusion, the ADV plots give a fair idea about the total number of
outliers, their types and positions. In addition, the ADV plot can also help in
selecting the warning line suggested by Ledolter (1990), since getting exact cut-off

points for all types of time series of different lengths is not possible.

5.3 Analysis of Simulated Data with Outliers

In this section we study the diagnosis of outliers in simulated data using the
proposed adjustment diagnostic measure ADV introduced in Section 4.2. For
various generated series, to be specified later, at most two outliers are introduced
and ADV is applied. For all types of outliers, the value of the outlier parameter ©
is kept at 4. For each series, the parameters based on the observed contaminated
series and adjusted series in case an outlier is indicated are computed. The
indication of outlier may not be of correct type or at correct position and hence, for
all the series the final model suggested by the analysis is specified at the end. The
outlier diagnostic plots discussed in the earlier section are not shown in this study.

For AR(1), using ¢ = 0.6, 6,>= 1, o= 4, we simulated n = 100 observations
on each of the seven different models specified below:

1. AR(1) Model without outlier
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Using the adjustment diagnostic method, various outlier types and
positions were indicated. The estimated parameters and the estimates after
deleting the indicated outliers are summarized in Table 5.1 for the seven series

specified above.



Table 5.1

A Summary Analysis of AR(1) Series
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Model Out}i'er & ; %st. I\)/::luﬁ Indicated Outlier | Est. Value Reduce
e H A
Position (Before Detection) (After Detection) | oy of G:
_ o = 0.5681
1 No outlier 2 = - -
62 = 1.0389
b=05790 | Dao,s1=32529 b =
2 |1AOatsI ?2 ¢ , 03805 | 12 06%
g, = 11730 G, =1.0316
, |240 b =04544 | DA034=4.9557 $ =0.5719 :
; . - 36.71%
at 34 & 67 62=16370 | ®A0,67=49916 G2 =1.0360 °
. |2n0 $=06162 | Di051=3567* | § 05544 i
51852 | glo1p | Daos2=2961 | glojoyme|
p=06433 | Dios51=34653 | §-
5 |110ats1 ?z 432 R o0
G; = 1.1543 o, = 1.0405
6 |20 b=o0ssn | Oo3= ST | §=0543s 33.81%
at 34 & 67 §2=15m |Giog=50925 | &=r0109|
. 20 $=07002 | @i0s1= 35082 | ¢ =05813 -
at 51 & 52 Gl =13500 | @052 49489 62 =1.0292 o

The first row of Table 5.1 gives the estimated values ¢ = 0.5679 and 6=

1.0389 which are the maximum likelihood estimates for the parameter and error

variance of outlier free AR(1) series which is generated from ¢ = 0.6 , o= 1and

n = 100. We can see that the estimated values are close to the true value. When

we introduced the outlier(s) in the series, the estimated results mostly depart from

the estimated values of the outlier free series due to the effects of outliers and their

positions. From the table, the series with outliers overestimate the error variance.
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Using the ADV, the outliers are mostly indicated by correct types of outlier at
their correct positions except for one patch of AO outlier with patch length 2
(indicated by * in Table 5.1). In this case, the diagnostic indicates presence of the
10 and AO outliers instead of two AOs at t = 51 and 52. It can be possible in
practice because the first outlier of consecutive AO outliers may have an effect

more like an 10. However, the estimated error variance 6= 1.0379 is close to the

estimated error variance based on the outlier free series.

The estimated values for time series parameter and error variance after
deleting the suspected observation are approximately the same as the estimated
values of outlier free series. The last column of the table shows the reduced
percentages of the estimated error variances. The reduced percentages are high
especially for two isolated outliers because the presence of isolated outliers
significantly increases the variance (see Table 4.22 and 4.23).

At the end, the corresponding fitted AR(1) models with the estimated
parameters are as follows:

1

1. Y=
' 1-0.57B

a,

1
2. Y= a, +3.25 OV

1-0.58B
Y, = +4.06 £09 4 4.99 £ 67
3. VT atA6EM AL
4 Vi — (35TES +a,) +2955

1-0.55B
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_ 1
5. Y o B8 a)

|
6. Y= Togap OOBE 4509 M 4 a)

s Y, = {3.51 gt(sn +4.95 F:tm) +a}

1-0.58B
Similarly for MA(1) series, using 8 = -0.6, 6, = 1, and o = 4, we
generated n = 100 observations on each of the following models:
1. MA(1) Model without outlier
Y, = (1-6B)a,
2. MA(1) Model with AO att=51
Y,= (1-6B)a, + 0 £
3. MA(1) Model with two AOs at t = 34 and 67
Y, =(1-0B)a + {0 £V + 0 7 )
4, MA(1) Model with two AOs at t =51 and 52
Y, = (1-0B)a, + {0 £°V + 0 ££?)
5. MA(1) Model with IO at t = 51
Y,=(1-6B){ 0 £°" + )
6. MA(1) Model with two IOs at t =34 and 67
Y,=(1-0B){ 0 £%" + 0 " + 2}
7. MA(1) Model with two 10s att =51 and 52

Y,= (1-0B) {0 £ +0 £ + &}
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Table 5.2 presents consolidated results on analysing these series using
ADV, analogous to Table 5.1.

Table 5.2
A Summary Analysis of MA(1) Series

Model | Outlier & Est. Value Indicated Qutlier | Est. Value Reduce
iti Before Detecti fter Detecti 52
Position (Before Detection) (After Detection) | oz ¢ G.
§ =
1 No outlier o5 03915 = - -
62 = 09342
Bl = D a0 51=3.6938 |
5 |4 atasi (?2 04388 | @A0,51 Ejz 0575 | p oo
&= 11107 &2= 09566
, |240 0 =—04222 | Dr034=28029 | §=_g6llI i
at 34 & 67 6= 12398 |Bpoer=41331 | &=oo116|
., |240 0 =-06137 | Dros1=38460* | §=_06376 —
at 51 & 52 6 = 11313 &= 09913 |
§ =-05730 | Dro51= 38048 | § =_0.5993
5 |110ats] ?, ?2 ~12.84%
&= 1.0 2= 09393
o0 0 =-06123 | Dro34 =34104 | §=_0.644 —
at 34 & 67 62 = 11406 | Bpger=27101%| &2=o09198 | "
. |20 0 =-06955 | @051 = 38026 | 6 =-05983 .
at 51 & 52 62=12959 | o5y = 49466 | &2=o0951| "

In Table 5.2, the estimated values of MA(1) model without outlier are 0 =

-0.5915 and 62 = 0.9342. The estimated values of outlier free series are

approximately the same as the true values. When we introduced the outlier(s) in
the series, the estimated parameters clearly get affected due to outliers and the
error variance gets overestimated due to the presence of outliers. In particular, it

can be seen that for multiple outlier models the minimum reduction percentage is
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12%. In Model (4), the procedure diagnosed 10 at't = 51 instead of true outliers
9AOs at t = 51 and 52 since a patch of two AOs is identified as a single 10. In
Model (6), the 10 at = 67 is indicated as an AO at the same position which is due
to the natural fluctuations in the series as the magnitude of the outlier is not very
Jarge since o is taken to be 4.

The corresponding seven fitted models at the end of analysis are

1. Y= (1+0.59B)a,

2. Y,= (140.58B)a, + 3.69 £

3. Y, =(1+0.61B)a + {2.80 £59 + 4.13 £}

4,  Y,=(1+0.64B){3.85 £V + a,}

5. Y,=(1+0.60B){3.81 5V +a,}

6.  Y,=(1+0.64B){3.41 £PY +a,} +2.71 £

8. Y,=(10.60B) {3.80 £" +4.95 £*? + a, )

Generally, the adjustment diagnostic method can indicate the correct type
of outliers and their positions.

An attempt was made to study the effect of presence of different types of
outliers in an ARMA(l,1) series on the lines of study of AR(1) and MA(1)
presented in the thesis. The diagnostic plots as well as the procedure for outlier

detection give similar results.
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5.4 Analysis of Outliers in Real Life Data Sets

In this section, we consider some numerical examples selected from the
available literature to illustrate the application of the proposed procedure ADV
using the STDS software. The resulting analysis of possible outliers in the serics is
compared with the existing analysis for each of the data sets available in the
literature. Since the estimates depend on the estimation procedure used, the
estimated parameters using STDS may be different from those presented in the
literature. In order to compare the reduction in the estimate of error variance after
the identification of outliers, we use the percentage of reduction rate instead of the
reduced estimates. In addition, we used the software SPSS for Windows to
compare the two estimates of error variance for those series for which ADV based
outlier analysis was significantly different from the available analysis. Apart from
reduction in the estimate of error variance, parsimony was also considered to be an
important criterion of analysis.

The data sets considered are

1. Daily Average Number of Truck Manufacturing Defects Series
(Wei, 1990, p. 446)

2. Series C (Chemical Process Temperature Readings: Every Minute)
(Box et al., 1994, p. 544)

3. Series A (Chemical Process Concentration Readings: Every 2 Hours)
(Box et al., 1994, p. 542)

4. Series D (Chemical Process Viscosity Readings: Every Hour)
(Box et al., 1994, p. 545)
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5. Serics J (Gas Furnace Data: 9 second intervals on input gas feed rate)
(Box ct al., 1994, p. 548)

1. Truck | Defects Series

The first example considered is the Daily Average Number of Truck
Manufacturing Defects series of n = 45 (Wei, 1990, p. 446). The series is shown
in Figure 5.17.

In the figure, the values at t =4, 7, 17 and 36 look like the possible outliers.
But the question is whether all are the outliers or not and what are the types of
outliers. It may be difficult to get the right answer by visualization from the time

sequence plot and the detection of outliers is an important issue in such a case.
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Day

Figure 5.17: Plot of Daily Average Number of Truck Manufacturing Defects
Series

The model suggested by Wei (1990) for this data is AR(1) specified by

(1-¢B)Z= 8o+, (.1
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where 0g is the over all constant in the model. The fitted model is
(1-043B)Z;=0.89 + a, (5.2)
with 67 =0.21. Under the model (5.1), Wei (1990, p. 201) applied the likelihood
ratio test (LRT) proposed by Chang et al. (1988) to detect the outliers. Based on

the observed series, the software STDS gives us the results for the parameters as 0

=0.43(0.14) and 63 =(0.21. These values are same as those estimated by Wei.

Before carrying out the adjustment diagnostic on the series, we look at the
residual plot (Figure 5.18) and the ADV plot (Figure 5.19). The residual plots
shows unusual jumps at time points t = 4, 7 and 36 leading to the suspicion of

presence of multiple outliers in the data.
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1.5 4
1.0 4
0.5 4
0.0 -

0.5 1
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Figure 5.18: Plot of Residuals from AR(1) Model fitted to Daily Average
Number of Truck Manufacturing Defects Series

The ADV plot in Figure 5.19 shows clear peaks at points t = 4, 7, 35, 36

indicating presence of outliers.
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Figure 5.19: Plot of ADV from AR(1) Model fitted to Daily Average
Number of Truck Manufacturing Defects Series

The suspected value at t = 17 in Figure 5.17 for the original series does not
show any unusual behaviour in both these plots. The values of ADV statistic

based on AO and IO adjustment at these peak points are as shown below.

t ADVy, ADVy,
4 S d2tl 5.5824
7 1.5793 12.7433
9 1.4444 1.2332
5 11.0388 3.7541
6 13.9348 12.8517

The ADV plot also gives a guideline on selection of warning value. If we
choose the warning value 11 for this data of size 45, it is clear that the value at t =
36 will be indicated as an AO at the first step of iteration. But, the value of
ADV, 55 also shows the possible outlier at t= 35 and it is possible that it affects the
observation at t = 36. We now carry out the proposed iterative diagnostic

procedure using STDS on the data with the reference value 11 which is obtained

from ADV plot.
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C is chosen. But in any case, the ADV procedure will not indicate the observation
at t =9 as an outlicr.
Taking into account the outliers diagnosed by the two procedures, the

following two outlier models emerge:

Z, =0, +0 £ +0,E" + (0,69 +0,£9 +a,} for LRT (53)

. b
(1-4B)
.80 +a,}

Using these models, the simultaneous estimation of parameters was carried

Z,=0,+0,E>7 + o, + for ADV (5.4)

2
(1-¢B)

out for both the models to obtain the final estimates. The estimated parameters
and their standard error (SE) for corresponding models (5.3) and (5.4) are shown

in Table 5.4.

Table 5.4

Estimated Parameters of AR(1) with outliers for Truck Defects Series

mrameter . LRI ADY

Estimate SE Estimate SE

0o 1.14 - 0.83 as

) 0.28 0.11 0.51 0.11
o) 1.39 0.11 1.39 0.30
) -0.61 0.19 1.41 0.33
3 0.99 0.37 0.99 0.29

W4 0.66 0.31 - -

o) 0.11 - 0.10 -
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In Table 5.4, the values of second and third columns are from Wei (1990),

and the last two columns are given by ADV method. Both the models reduce the

&, from 0.21 10 0.11 and 0.10 respectively. The estimated parameter d) is reduced

from 0.43 to 0.28 by LRT method whereas it is increased to 0.51 by ADV method.

To compare the estimates using the two methods, the percentage reduction in
estimated error variance is calculated as shown in Table 5.5.

Table 5.5

The Reduction Percentage in Error Variance for Truck Defects Scries

e

Model Estimated Variance | Reduction Percent | Method
AR(1) with 4 outliers 0.11(0.21) 47.62 % LRT
AR(1) with 3 outliers 0.10 (0.21) 52.38 % ADV

Note: The italic values within the parentheses are the estimated error variances
&? when the outliers are ignored.

F'rom Table 5.5, it can be seen that the estimated error variances &} arc

0.11 and 0,10 for 4 outliers model by LRT and 3 outliers model by ADV
respectively, — According to the reduction percentages of estimated residual

variances, the ADV method gives less variance than LRT as well as less number

of outliers. But the estimate 6 depends on the estimation method. Hence we use

the SPSS software to get the estimates 67 for two models (5.3) and (5.4) proposed

by LRT and ADV methods respectively.
To estimate the parameters of the outlier models using the available

intervention analysis of SPSS, we need to define the independent variables (input
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variables) X, (51,2, ..., 45 where j stands for the outlier. For model (5.3), the

value Xy arc

I

Xul

X = o if 129, otherwise 0),

X3 = Lif t=7, and otherwise 0,

Xea = W, if 124, otherwise 0.

whereas, for model (5.4) the values are

Xy = lif t=36, and otherwise 0,

L1f €= 36, and otherwisc 0,

X2 =, if t>7, and otherwise 0, and

X3 =1 ift=4, otherwise 0,

(5.3)

where ; = ¢":j = (0.4322y forj=0, 1, ... and ¢ is estimate based on the

observed series. The estimated error variances obtained from SPSS are presented

in Table 5.6.

Table 5.6

Comparison of the Reduction Percentage on &> for Truck Defects Series

Model Estimated Variance | Reduction Percent | Method
AR(1) with 4 outliers 0.1136 48.76 % LRT
AR(1) with 3 outliers 0.1055 5241 % ADV

Note: 62 =0.2217 and ¢ = 0.43 where the outliers are ignored.

It can be seen that the reduction percentages by LRT and ADV methods

are 48.76% and 52.47% respectively and the proposed ADV method gives 3.65%
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more reduction in the estimate of error variance. It also indicates less number of
outliers in the series and the types of outliers indicated by ADV are justifiable
Ihus ADV seems (o be giving a more satisfactory analysis of the data than the

1 R method.

2, Series C
b LT AN LA . ARl " ‘1"t| \ '] 1
Ihe second example considered is Series C (Box et al., 1994, p. 544) which
represents 226 uncontrolled temperature readings every minute in a chemical

process. First 100 observations of the series VZ, are plotted in Figure 5.20.
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Figure 5.20: Plot of First 100 observations of series VZ, for Series C

For Series C, the suggested model by Box and Jenkins (Box et al,, 1994, p.

255) is ARIMA(1, 1, 0) given by

(1-¢B)(1-B) Z =1, (5.6)
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and the fitted model is
(1-0.82B) (1 M7, a .

with the variance ¢, = 0.018 using the unconditional least squares estimation

procedure. Using the software STDS, we get the estimates ¢ =0.8072 and 6. -

0.0185. The results are approximately same as those in (5.7) reported by Box et
al. (1994).

Under the ARIMA(1,1,0) model, the analysis presented by Box et al.
shows three innovational outliers at time points 58, 59, and 60 identified by the
LRT method with the critical value 3.5 alﬁng with the conditional least squares

estimation method. The suggested outlier model is

1 58 59 60
(1—B)Z,=m{ml§$ )+ 0,88 + 05! )+at}. (5.8)
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Figure 5.21: Plot of First 100 Values of ADV from ARIMA(1,1,0) Model
fitted to Series C
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We now apply the ADV plot to this series treating the first difference series
as AR(1). The ADV plot for first 100 observations presented in Figure 5.21 shows
significant peak at time point = 58.

The values of the ADV statistics at time points t = 58, 59, 60 are

t  ADV,  ADV,
58  55.2538 34.7907
59 -0.2429 15.1374
60 1.0589 10.6395

The values and the ADV plot indicates that the observation at t = 58 is a
possible outlier of an AO type. Though in Figure 5.20 the plot of the data set
shows some pattern of observations between time points 66 to 68, the observations
do not show any contamination in the analysis. Based on the ADV plot, we select
the warning value to be 13. The results obtained on carrying out the proposed
iterative procedure, and the results of the outlier detection analysis presented by

Box et al. is summarized in Table 5.7 below.

Table 5.7

Outlier Detection for Series C

LRT' " ADV
Iteration -
Position Type Position Type
1 58 10 58 AO
2 59 10 60 10
3 60 10 - -

Source: 1. Box et al., 1994, p. 473.




206

The proposed procedure diagnoses an AO at t = 58 and an 10 at t = 60.

Hence, the suggested model becomes
1
(1-B)Z, =& +q§{ngﬁﬁﬂ) 'H‘t} (5.9)

To investigate the reasons behind the difference between the two analyses,
we scrutinize the first difference series plotted in Figure 5.20. The peak at t = 58
in Figure 5.20 indicates the presence of an AO at t =58 with positive value of o.
The observation at 59 does not look contaminated. Box et al. (1994, p. 474) claim
that the presence of three innovational outliers at time points 58, 59 and 60 is
apparent based on the residual plot of original observations, which is presented in
Figure 5.22.
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Figure 5.22: Plot of First 100 Residuals from ARIMA(1,1,0) Model
fitted to Series C
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In the presence of an 10 at time point { = 58, the residuals at the successive

time points t = 59, 60,... arc not expected to show any unusual behaviour.
However, in the presence of an AO type of outlier at t = 58, the impact on the

residuals at successive time points t 2 59 is expected to be of the type

a +onB)EXY,  fort> 58,
(Box et al., 1994, p 471; also see Section 2.2). In particular, for this data set, we
expect the residual at t = 59 to be of the type

€59 = as9 — QT
where @ =0.76 and 7, = 1.813 are both positive based on the ARIMA(1,1,0)
model fitted by Box et al. (1994, p. 473). This offers a more plausible explanation
of the sudden drop in the residual plot at the time point t = 59. As a result, the
analysis presented by the proposed ADV procedure, which concludes that the
outlier at time point t = 58 is an AO type of outlier seems acceptable.

Table 5.8

Estimated Parameters of ARI(1,1) with outliers for Series C

LRT' ADV
Parameter
Estimate SE Estimate SE
) 0.851 0.035 0.854 0.035
| * 0.745 0.116 0.705 0.092
®> -0.551 0.120 -0.456 0.119
03 —0.455 0.116 = -
Gaz 0.0132 - 0.0139 _

Source: 1.Box, etal., 1994, p. 473.
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The parameter estimation based on the models (5.8) and (5.9) is given in

Table 5.8. From the last row of the table, though both the estimates 6> based on

the two models show reduction in comparison with the estimate obtained on

ignoring the outliers, their values differ and model (5.8) gives a smaller estimate.

The reduction percentages in error variances for Series C are shown in Table 5.9.

Table 5.9

The Reduction Percentage in Error Variance for Series C

Model Estimated Variance | Reduction Percent | Method
ARI(1,1) with 3 outliers 0.0132(0.0179) 26.26 % LRT
ARI(1,1) with 2 outliers 0.0139 (0.0185) 24.86 % ADV

Note: The italic values within the parentheses are the estimated variances
62 when the outliers are ignored.

In Table 5.9, the difference between the reduction percentages is only 1.40%.
Since the estimation methods are not the same, we use the SPSS software for the
comparison of error variance. For SPSS, we define the independent variables
(input variables) x, t=1,2, . . ., 226 analogous to (5.5). The estimated variances
given by SPSS can be seen in Table 5.10.

Table 5.10

Comparison of The Reduction Percentage on &, for Series C

Model Estimated Variance | Reduction Percent | Method
ARI(1,1) with 3 outliers 0.0135 25.82 % LRT
ARI(1,1) with 2 outliers 0.0140 23.08 % ADV

Note: 62 =0.0182 and ¢ = 0.8202 where the outliers are ignored.
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In Table 5.10, the reduction percentages are calculated based on (,3 = (182,

It can be scen that the reduction percentages for LRT method and ADV method
differ by about 2.74%. At the same time, by detecting less number of outliers,

ADV procedure proposes a more parsimonious model.

3. Series A

The third data set considered is Series A (Uncontrolled concentration
readings of a chemical process recorded at every two hour interval) from Box et
al. (1994, p. 542). The first 70 observations of this series Z; and first difference

series VZ, are shown in Figures 5.23 and 5.24 respectively.
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Figure 5.23: Plot of First 70 observations of Series A
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Figure 5.24: Plot of First 70 of first differences VZ, for Series A

For this series, two models were suggested by Box and Jenkins, namely
ARIMA (1,0,1) and ARIMA (0,1,1), which are

1-6B

Z, =09+
0T -¢B

a; ,

(1-B)Z,=(1-6B)a, ,

respectively and the respective fitted models are (Box et al. 1994, p. 256),
Z,-092Z_,=145+2a,-058a_, with 6;=0.097,
(1-B)Z,=a,- 0.7 a., with 62=0.101.

The LRT method with C = 3.5 was applied for the outlier detection by

Chang et al., (1988) and it is reported that there are two outliers in this series, 10 at
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¢ = o4 and AO at t = 43 for both the models, The two models with these outliers

ave respectively
1-08
Zy=0g +- = %nﬁ,}m +a, ]+ 0,8 | (5.10)
(1-B)Z, = (1-0B)| ) +a, J+ 8, 5.11)

The proposed method ADV with reference value 11 diagnoses the same
outliers and positions under ARIMA (1,0,1) in (5.10). But it indicates the
Jifferent outlier type at position t = 64 under the assumed model ARIMA (0,1,1)

i (3.11). The residuals plot and ADV plot are shown in Figures 5.25 and 5.26

respectively.
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Figure 5.25: Plot of First 70 Residuals from ARIMA(0,1,1) Model fitted to
Series A
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Figures 5.25 and 5.26 clearly indicate that the two IO outliers occur at t =
43 and 64. Considering the possible impact of an IO on the time series, it is hard
to accept the observation at t = 43 as an AO type of outlier and the existing
analysis using LTR may have misidentified the outlier type.
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Figure 5.26: Plot of First 70 Values of ADV from ARIMA(0,1,1) Model fitted to
Series A

Under the model ARIMA(0,1,1), the ADV method is applied for the

diagnosis of outliers. The results are shown in Table 5.11.

Table 5.11
Qutlier Detection for Series A
LRT' ADV
Iteration : -
Position Type Position Type
1 64 10 64 (0]
2 43 AO 43 I0

Source: 1. Chang et al, 1988.



213

Though the number of outliers diagnosed is same, there is difference in the

identification of type of outlier. Looking at the first difference plot of

observations presented in Figure 5.24, the observation at t = 44 is shown a sudden

increase in its value. The diagnostic indicates presence of an IO at t =43 which is
expected to affect the observation at t = 44 by an amount ey, (ref (2.1)). The

estimates given by Chang et al. are ®= -0.98 and {,= 0.63, which offers a

possible explanation of sudden increase in the value of Yy Since the first
difference process is MA(1), the observation at t = 45 does not get affected by the

presence of 10 at t = 43, Thus based on the ADV diagnostics, the suggested

model is

(1-B)Z,= (1-6B){0,t® +,t ™ +a,}. (5.12)

The estimated parameters based on the models (5.11) and (5.12) are given

in Table 5.12.

Table 5.12

Estimated Parameters of ARIMA(0,1,1) with outliers for Series A

LRT' ADV
Parameter
Estimate SE Estimate SE
0 0.63 0.05 0.60 0.06
o 1.13 - 1.18 0.30
©, -0.98 - -1.07 0.30
o, 0.0880 _ 0.0910 _

Source: 1. Chang et al., 1988.
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The reduction percentages in residual variances for Series A are shown in

Tables 5.13 and 5.14.
Table 5.13

The Reduction Percentage in 62 for Series A

Model Estimated Variance | Reduction Percent | Method
[IMA(1,1) with 2 outliers 0.0880 (0.1007) 12.61 % LRT
IMA(1,1) with 2 outliers 0.0910 (0.1009) 9.81% ADV

Note: The italic values within the parentheses are the estimated error variance of
the series assuming that there is no outlier.

Analogous to comparative analysis of earlier data sets, the reduction

percentage in estimate of o’ using SPSS are presented in Table 5.14.
Table 5.14

Comparison of The Reduction Percentage in 67 for Series A

[ Model Estimated Variance | Reduction Percent | Method
"IMA(1,1) with 2 outliers 0.0841 16.98 % LRT
IMA(1,1) with 2 outliers 0.0844 16.68 % ADV

Note: 62 =0.1013 and $ =0.6990 where the outliers are ignored.

The reduction percentages are calculated based on 62 = 0.1013. It can be seen

that there is not much difference in the reduction percentages of LRT method and
ADV method. However, the ADV method gives a more appropriate type of

outlier at t = 43.
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4. Series D

The example we consider here is Series D (Un-controlled viscosity readings
every hour from a chemical process, Box et al., 1994, p. 545) for which an AR(1)
model is suggested. The suggested model and fitted models are, respectively,

(1-¢B)Z, =6+ 2,
and

(1- 0.862B)Z, = 1.269 +a,

with 67 =0.089 (Box et al, 1994, p. 473).

An 10 outlier is identified at t=217 by likelihood ratio test (LRT) under this
model. Using the adjustment diagnostic method ADV, an IO outlier is also
identified at t=217. Thus the outlier analysis using the proposed method is in

agreement with the existing outlier analysis of the data.
Table 5.15

Estimated Parameters of AR(1) with an outlier for Series D

LRT' ADV
Parameter
Estimate SE Estimate SE
0 1.181 - 1.160 -
W) 0.872 0.027 0.871 0.028
0 -1.296 0.292 -1.272 0.298
o, 0.0841 - 0.0881 .

Source: 1. Box et al., 1994, p. 473.
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In conclusion, the fitted outlier model is

Zl B eei—— + mg“l?) +al

giving the same estimates of parameters, except for the slight difference due to

difference in estimation procedure. The estimates are presented in Table 5.1 5

5. SeriesJ

We now apply the proposed procedure to the gas furnace data for n = 296
which is taken at 9 seconds intervals on input gas feed rate (Box et al., 1994, p.
548,549). Tiao (1985) suggested ARMA(2,3) model for this series using the
extended autocorrelation function (ESACF). The suggested model and fitted

model (Tiao, 1985) respectively are
(1 - ;B - $2B%) Z, = 0y + (1- 0,B - 0,B% - 0,8%) a,
and
(1 - 1.29B +0.43B?) Z, = -0.0082 + (1+ 0.63B +0.50 B? +0.36B") a
with 62 = 0.0341.
Using the suggested model ARMA (2,3) both LRT and ADV methods detect the
outliers at t = 43, 55, and 113. The diagnosis is shown in Table 5.16
Hence, the suggested model is
Z,= 00+ 05+ 08" + 0! +N,
where

(1 - ;B - §;BY) N, =0 + (1- 0,8 - 0,87 - 0;8")



Table 5.16
Outlier Detection for Series J
Iteration LRT ADY
Position Type Position Type
1 43 AO 43 AO
2 55 AO 55 AO
3 113 AO 113 AO

217

Source: 1. Tiao, 1985.

Since both the methods detect same type of outliers at same positions, there is not
much difference between the parameter estimation except for a slight variation due
to different estimation procedures.

In conclusion, we illustrated how the proposed procedure ADV analyses
the selected five data sets with outliers and made comparative statements of the
analysis provided by the proposed procedure with the analysis available in the
literature, which in all five cases was using the classical LRT procedure.

The number of detected outliers and .their types as well as positions are
same for two series, namely Series D and Series J. For the remaining data sets, the
number of outliers identified by ADV is different and the analysis also shows
difference in the type of outliers and the position of outliers as compared to the
existing analysis. It is hard to confirm the actual type of outliers and their positions
in these real life data sets, but ADV seems to be giving justifiable outlier types and
positions in these cases. In addition, the procedure identified less number of
outliers in some of the series, while keeping estimates of parameters about the

same as the existing estimates available in the literature.
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Conclusion

The time series data often encounters anomalous observations due to
external disturbances or errors which disrupt the pattern of the time series. Such
observations are called outliers. Apart from influencing the adjacent observations,
affecting the estimates of model parameters, forecasting and so on, outliers can
distort the model specification itself and the impact of outliers in time series
modeling can be serious enough to affect the credibility of the model (Barnett and
Lewis, 1994, Chapter 10). Thus the investigation into presence of outliers,
identification of outliers, assessment of their effects on the analysis and the
remedial measures to accommodate the outliers is a crucial aspect of time series
analysis. The dependent structure of time series observations makes the detection
of outliers difficult, since, unlike in case of general linear models, an outlier in
time series need not necessarily be an extreme value (Barnett and Lewis, 1994, p.
395).

Following Fox (1972) and Abraham and Box (1979), the possible outliers
in a ARMA (p,q) model are divided into two main types, Type I or Additive
outliers (AOs) and Type II or Innovational Qutliers (10s). The AOs are those
which do not affect adjacent observations and hence can be visualized in terms of

superimposing an isolated measurement or execution error on the standard

process.
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Alternatively, the 10s are thosc which indicate inherent form of
contamination influencing successive obscrvations through the correlation
structure. As a result, the realization of an outlier ofien gets concealed by the
observations succeeding it, which are affected by the “carry-over effect”.

The impact of presence of a single outlier on estimates of the time series
parameters and the error variance is empirically investigated in Chapter 2. It is
seen that all the estimates get affected in the presence of outlier, but the estimate
of error variance shows marked difference. The error variance tends to get
significantly overestimated in the presence of outlier and the estimate increases
with increase in the outlier parameter . As a result, the estimate of error variance
seems to be the right choice to build the outlier detection procedures.

In time series set up, due to the correlated nature of neighboring
observations, the impact of multiple outliers depends on whether they occur
isolated or in patches. It is empirically shown in Section 4.7 (Tables 4.22 to 4.25)
that the error variance gets overestimated in the presence of multiple outliers of
either AO or IO type. The estimate increases with the increase in the number of
isolated outliers, but does not show a marked increase in comparison with the
estimate in the presence of a single outlier when the multiple outliers occur in a
patch, even if the patch length is increased. As a result, we conclude that the
problem of detection of multiple outliers occurring in a patch cannot be

satisfactorily handled using estimates of error variance.
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Significant among the outlier detection procedures available in the literature
are the procedures based on deletion diagnostics (Pefia, 1987; Bruce and Martin,
1989; Abraham and Chuang, 1989; Ledolter 1990). Most of these procedures arc
adapted from deletion diagnostics procedures available for detection of outliers in
regression data (Cook and Weisberg, 1982; Cook, 1986, 1987; Chatterjee and
Hadi, 1988) and do not take into account of the AO or IO types of outliers
separately, except for Abraham and Chuang (1989). As a result, the procedures
also do not attempt to identify the outlier type after outlier detection. The
procedures treat each observation as missing in turn and replace it by its estimate
based on remaining observations. The estimate used to replace the missing value is
the least square predictor proposed by Brubacher and Wilson (1976) which is the
weighted sum of the adjacent observations.

A critical view of the available deletion diagnostic procedures is presented
in Section 2.5, highlighting two issues. Firstly, since the estimate of missing value
depends on the adjacent observations, the estimate can be contaminated by the
succeeding observations, which contaminate themselves if the outlier is of IO
type. Secondly, in the presence of an IO type of outlier, the succeeding
observations also get contaminated due to correlated structure of the series. In
such a case, replacing a single observation by its estimate may not be enough to
remove the contamination of the series. Based on these observations, it can be
claimed that most of the available outlier diagnostics procedures are suitable in the

presence of AO type of outliers but not IO types. It is also shown in Section 2.3
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that though presence of 10 may not affect the estimates as much as that of AO, the
effect is significantly high.

To fill up this gap, a new diagnostic procedure called adjustment diagnostic
is proposed in this thesis. In this procedure, two separate models for two types of
outliers are considered. Each observation is treated as a possible outlier in turn
and the assumed model is appropriately adjusted to remove the effect of outlier
from the subsequent affected points as well. In Section 2.6, we introduce the
series adjustment in the presence of a single outlier and show that it handles the
presence of both AO and IO type of outlier. It is shown that the series adjustment
in case of an AO is equivalent to missing value estimation using least squares
predictor. Thus in case of AO, the proposed procedure will be same as that in case
of deletion diagnostic.

In Chapter 3, the effect of series adjustment on the estimate of error
variance is investigated. The observed series is adjusted for each type of outlier at
each adjustment position i in turn, iet. The adjustment may or may not be for the
correct type of outlier at the correct position:: It is shown in Section 3.3 that the
estimate of error variance decreases when the correct type of series adjustment is
made at the correct position. It is also shown in (3.11) and (3.12) that in the
presence of a single outlier in time series, the biases in estimated error variance are

- dprfi’ and lé‘),z.r for AO and IO respectively if the presence of outlier is
n n ’ -
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n-T
ignored, where 7’ =Zﬁ? which is greater than 1 and &, and &, are the

=0
estimates of outlier parameters for AO and IO types respectively. This provides a
justification to the empirical evidence found in Section 2.3 that the error variance
gets overestimated in the presence of an outlier (Tables 2.1 to 2.4). Also, the
increase in the estimated error variance is directly proportional to the square of the
estimate of outlier parameter. Thus the bias in estimate does not depend on the
sign of the estimate of outlier parameter and is inversely proportional to the series
length. As a result, a single outlier in a long series may not have significant effect
on the estimates of various parameters.

In Chapter 4, a diagnostic measure based on likelihood displacement
(Cook, 1986, 1987) is derived using series adjustment. The likelihood
displacement is considered in a general set up where the model perturbation is
taken to be an appropriate adjustment of the series. Based on the derived
measures, a comprehensive procedure using adjustment diagnostics is proposed.
The proposed procedure is called Adjustment Diagnostic based on Variance
(ADV), which is a comprehensive procedure to detect an outlier, identify its type
and position. In addition to outlier detection, is shown to perform better in
identification of correct outlier type and correct outlier position in the series.

Extensive Monte Carlo simulations are carried out to compute the critical
values of the proposed procedure, part of which is presented in Table 4.1 and

Tables A1-A9 in Appendix A. We also suggest that the ADV diagnostic plot be
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used initially to guess the possible positions and types of outlicrs and also to geta
reliable reference value. The proposed procedure is extended to iteratively identify
multiple outliers in the series in Section 4.5,

An extensive simulation study is carried out to evaluate the performance of
the procedure and to compare the performance with that of the existing -deletion
diagnostic procedure. Initially, the performance evaluation of the proposed
procedure is carried out using least squares estimates of the time series parameters
which is presented in Section 4.3. The evaluation shows that the proposed
procedure gives a satisfactory performance irrespective of the type of outlier,
unlike the deletion diagnostic procedures available in the literature. For instance,
for the outlier parameter @ = 3, the adjustment diagnostic identifies an 10 at
correct position in an AR(1) series 29.4% of times as against the deletion
diagnostics for which the corresponding figure is 19.6% (Table 4.5). A brief study
of the performance of the proposed procedure for various values of time series
parameters is also presented here.

In Section 4.4 evaluation of the proposed procedure is carried out using
robust estimates of time series parameters.

The problem of multiple outliers is addressed in Section 4.5 and its
performance evaluation in the presence of two outliers of same or different types
is presented in Section 4.6. The simulation based study shows satisfactory
performance of the procedure in detecting the outliers when the outliers occur in

isolation. When the outliers occur in a patch, the procedure detects the first outlier
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with high precision. If the two outlicrs are both 10 type or I0-AO type, the
performance of the procedure is satisfactory. However, if both the outliers are of
AO type, or if the first outlier is an AQ, the procedure detects and identifies outlier
type with less accuracy. A critical evaluation of the proposed diagnostic in the
presence of multiple outliers is presented in Section 4.7. It is observed that the
procedure misidentifies the outlier type AO in the presence of a patch of multiple
outliers and the heuristics presented to analyze the reason behind it. Based on it,
possible extensions of the proposed procedures are suggested.

Chapter 5 presents data analysis using the proposed procedure where
various generated data sets with different types of outliers at different positions
and some real life data sets available in the literature are used. It is suggested that
initially the plot of ADV be drawn, which gives a fairly good idea of type and
position of outliers in the contaminated series. The use of ADV plot and residual
plot is illustrated in Section 5.2 using two specific AR(1) and MA(I) series. The
real life data sets considered in Section 5.4 are Truck Defects Series (Wei, 1990)
and Box and Jenkins Series C, Series A, Series D and Series J (Box et al., 1994).
This section presents comparison of the analysis available in the literature and
analysis given by the proposed procedure for each of these series. For some data
sets, the proposed procedure diagnoses outliers which are of types different from
those of the existing analysis. Also in certain instances, the positions indicated are
different from those suggested by existing analysis. In most of these situations,

ADV seems to be giving a justifiable outlier type and outlier position. The model
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identification and parameter estimation using ADV is also satisfactory. As
claimed earlier, the proposed adjustment diagnostic procedure is more
comprehensive than the existing deletion diagnostics. Thus the proposed ADV
procedure can be considered as a desirable alternative to the _existing diagnostic
procedures.

Based on simulation it was found that the performance of the proposed
procedure is in general better in case of AR(1) series as against MA(1) series.
Also, consistent with the findings in Section 2.3, the deletion of AO is handled
with higher accuracy than that of 10.

It is well known that in time series analysis, the theoretical derivation and
exact expression of estimators are intractable. As a result, it is impossible to
theoretically compute the effect of outliers on estimates of parameters of interest
for time series of finite length. Since we consider series with finite length, the
emphasis here is on simulation based empirical study which is consistent with the
study of outliers in time series available in the literature.

Throughout the thesis, the simulations are presented for AR(1) and MA(1)
series only. An attempt was made to study the performance of the procedure in
case of a contaminated ARMA(1,1) series. It showed that the detection of outliers
was similar to that in case of AR(1) and MA(1) for moderate values of outlier
parameter. A systematic simulation study was not carried out due to computational

difficulties in handling high fluctuations in the ARMA(1,1) series.
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The adjustment diagnostics is derived using the likelihood displacement
criterion in the thesis. Alternatively, Akaike’s information criteria (AIC) (Akaike,
1974), Bayesian information criteria (BIC) (Akaike, 1978, 1979) or similar criteria
can be employed to arrive at an appropriate diagnostic. We, however, believe that
there will not be much difference in the performance of procedures based on
various criteria as in all cases the adjustment diagnostics will outperform the
existing deletion diagnostics in certain cases and will present a more
comprehensive procedure.
| Several issues remain to be answered at this stage. Though the issue of
multiple outliers is addressed in Chapter 4, it is well known that multiple outliers
in any data set are difficult to be identified due to the masking effect. The
problem is even more challenging in time series data due to the correlated
structure of observations. The iterative procedure is shown to handle the multiple
outliers satisfactqrily provided they are well separated. In the presence of patch
outliers also, the procedure detects the outliers and their positions with high
accuracy. If the patch of outliers starts with an AO, then the procedure identifies it
as an IO more often. At the same time, it must be pointed out that none of the
existing procedures seem to satisfactorily handle the problem of masking effect in
the presence of patch outliers. To overcome this drawback, it is proposed to extend
the adjustment method to block adjustment which is planned to be taken up for
future research work. The determination of block size, however, is a problem.

Based on simulation study, it is shown in Table 4.25 that the estimate of error
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variance does not show significant increase with an increase in the patch length,
even when the outlier parameter is of large magnitude. This indicates that
handling patch outliers based on estimates of error variance will not result in a
satisfactory solution. A new approach to this problem is needed and the Gibbs
sampling based procedure proposed by Justel et al. (2001) suggests a new
direction.

In the present study, it is assumed that the basic time series model is
known, which may not always be the case. A suitable model identification
prbccdurc along with adjustment diagnostics is needed to ensure a more precise
outlier analysis on the lines of Tsay (1986).

The present work focuses on two types of outliers, namely, the additive
outliers (AOs) and the innovational outliers (I0s). The proposed adjustment
diagnostic can be easily modified to handle other types such as level shift (LS) and
temporary change (TC) etc, giving a much more comprehensive diagnostic
procedure. The method can also be extended for seasonal time series models.

In conclusion, this thesis proposes a comprehensive outlier diagnostic

procedure for outliers in time series which satisfactorily handles the diagnosis of

outlier type and outlier position in stationary and invertible ARMA(p,q) series.
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Table Al

Estimated Percentiles of Q°, Q4 and ; : AR(1) Series
(o.2=1; 5000 replications)
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Table A2

Estimated Percentiles of Q°, Q4 and ©Q; : AR(1) Series

(o:2=3; 5000 replications )
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Table A3

Estimated Percentiles of Q°, Q4 and O : AR(1) Series
( G.2=5; 5000 replications )
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Table A4

Estimated Percentiles of ', Qa and O : AR(2) Series

(oa2=1; 5000 replications )
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Table AS

Estimated Percentiles of Q°, Qa and Q; : MA(1) Series

(oa2=1; 5000 replications )
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\us \\0\13.54 1224 1223\ 1355 12.37 1220 13.78 1246 1286 1406 1301 1266 14.10 1291 12.58) 1433 1322 1300 1439 1326 13.17) 1451 1342 1325/ 1489 13.67 13.59
o | 1537 1are 1394 1546 1407 1383] 1560 1413 1420| 1583 1469 14320 1589 1479 1435] 1598 1487 14.65] 1587 1491 14661632 1520 14571666 1353 15.46
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Table A6

Estimated Percentiles of Q°, Qa and Q; : MA(1) Series
(G2 =3; 5000 replications )
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Table A7

Estimated Percentiles of ©Q°, Q4 and € : MA(1) Series
(6.2 =5; 5000 replications )
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Appendix C

List of Computer Programs

CP-1: Series Generation of ARMA(p,q) Model

CP-2: Average of Estimated Parameters for AR(1)/MA(1) with One Outlier

CP-3: Bias Calculation of Incorrect Type Adjustment for AR(1)/MA(1)

CP-4: Estimated Percentiles of ADV for ARMA(p,q)

CP-5: Significance Level of ADV for Given C Value

CP-6: Comparison of Adjustment and Deletion Diagnostics

CP-7: Outlier Detection and Correct Type Identification (One Outlier)

CP-8: Outlier Detection and Correct Type Identification (Two Qutliers)

CP-9: Average of Estimated Parameters for AR(1)/MA(1) with Isolated Outliers -

CP-10: Average of Estimated Parameters for AR(1)/MA(1) with Patch Outliers

Note: 1. Please see the attached CD for the programs.
2. All programs are written in C under Sun OS with IMSL Fortran
Libraries.
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Appendix B
Contents of STDS Manual
_ Introduction B-1
. System Requirements and Installation B-1
_ The fundamentals of STDS B-2
3.1 Getting Started with STDS B-2
3.2 Using STDS and its Menus B-3
3.3 Manipulating Files B-4
. Statistical Computing B-5
4.1 Basic Statistics B-6
4.2 Autocorrelation and Partial Autocorrelation B-7
4.3 Preliminary Estimates B-12
4.4 Final Estimates B-14
. Diagnostic Plots B-17
5.1 Series Plots B-17
5.2 Residuals Plots B-19
5.3 Rescale Residuals Plots B-20
5.4 Adjusted Estimates of Error Variance Plots B-21
5.5 Adjustment Diagnostic based on Variance estimate (ADV) Plots  B-21
5.6 Adjusted Rescaled Residuals Plots B-22
5.7 Adjusted AIC Plots B-22
. Iterative Diagnostic Procedures ~ B23
6.1 Adjustment Diagnostic based on Variance estimate (ADV) B-23

6.2 Adjusted Rescaled Residuals Method B-24



Table A9

Estimated Percentiles of Q°, Qa and € : ARMA(1,1) Series
(.2 =1; 5000 replications )
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