




































 

CHAPTER I 

INTRODUCTION 

It is generally known that classical statistics depend on the assumptions of 

parametric models. Typically, assumptions are made on the structural and the 

stochastic parts of the model and optimal procedures are derived and used under these 

assumptions. Standard examples include such estimators as least squares estimators in 

linear models and their extensions, maximum likelihood estimators and corresponding 

likelihood-based tests, etc. Many classical statistical procedures are known for not 

being robust, because results violate stochastic assumptions and rely on a few sample 

observations. These procedures are optimal when the assumed model is exactly 

satisfied, but they are biased and/or inefficient when small deviations from the model 

are present. The results obtained by classical procedures can therefore mislead when it 

comes to applications. Consequently, it may cause issues when the classical methods 

are used for the underlying model. Hence, one would naturally like to employ an 

estimation method that is sufficiently resistant to outliers.  

The term “robust” was coined in statistics by G.E.P. Box in 1953. Various 

definitions of greater or lesser mathematical rigidity exist, but in general, referring to 

a statistical estimator, it means “insensitive to small departures from the idealized 

assumptions for which the estimator is optimized.”  The word “small” can have two 

different interpretations, both important: either fractionally small departures for all 

data points, or else fractionally large departures for a small number of data points. It is 

the second interpretation that leads to the notion of outlier points, the most significant 

points to statistical procedures. The aims of robust statistics are:  

1. To describe the structure of best fitting the bulk of the data, 

2. To identify outliers (for possible further treatment), 

3. To give a warning about highly influential data points (leverage points),   

4. To deal with deviations from the assumed correlation structures. 

Five to ten percent of wrong values in the data appear to be the rule rather than 

the exception. Outliers may appear in data due to (i) gross errors, (ii) wrong 

classification of the data (outlying observations may not belong to the model followed 
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by the bulk of the data), (iii) grouping, and (iv) correlation in the data (Hampel et al., 

1986). 

Gross errors often show themselves as outliers, but not all outliers are gross 

errors. Gross errors or outliers are data severely deviating from the pattern set by the 

majority of the data. This type of error usually occurs due to mistakes in copying or 

computation. They can also be due to part of the data not fitting the same model, as in 

the case of data with multiple clusters. Gross errors are often the most dangerous type 

of errors. In fact, a single outlier can completely spoil the least squares estimate, 

causing it to break down. Consequently, the estimators may not be efficient 

estimators. Some outliers are genuine and may be the most important observations of 

the sample. Rounding and grouping errors result from the inherent inaccuracy in 

collecting and recording data which are usually rounded, grouped, or even roughly 

classified. The departure from an assumed model means that real data can deviate 

from the assumed distribution. The departure from the normal distribution can 

manifest itself in many ways, for instance, in the form of skewed (asymmetric) or 

longer-tailed distributions. 

The theory of robust statistics deals with deviations from the assumptions on 

the model. Examples of deviations include the contamination of data by gross errors, 

rounding and grouping errors, and departure from an assumed distribution. Robust 

statistics is concerned with the construction of statistical procedures which are still 

reliable and reasonably efficient in a neighborhood of the model that is pointed by 

Huber (1981), Hampel, Ronchetti, Rousseeuw, and Stahel (1986), Maronna, and 

Martin, and Yohai (2006). Therefore it can be viewed as a statistical theory dealing 

with approximate parametric models and a bridge between the parametric approach 

and the nonparametric approach. It is a reasonable negotiation between the 

inflexibility of a strict parametric model and the potential difficulties of interpretation 

of a full nonparametric analysis.  

Fundamental theories on robustness were proposed by Huber (1964), and 

Hampel (1971). Their assumptions could be considered as the foundations of modern 

robust statistics.  

 

1.1 Rationale of the Study 
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The concept of robustness is not new in the field of statistics. Box (1953) first 

gave the word a statistical meaning. Since then, rapid development of the theory of 

robustness has risen to alternative approaches to robust statistical theory.  

The earliest discussions and applications of robustness go back as far as the 

eighteenth-nineteenth century (Hampel et al., 1986 and Barnett and Lewis, 1978). For 

instance, as regards astronomical observations, there were ‘unrepresentative’, ‘rogue’ 

or ‘outlying’ observations, that is, outliers. In the early 1800s, scientific debate was 

concerned with the effects of outlying observations on estimates calculated by 

ordinary least squares (OLS).      

Hampel (1971) introduced the concept of qualitative robustness. The main 

idea is to complement the notion of differentiability (influence function) with 

continuity conditions, with respect to the Prohorov distance. Hampel et al. (1986) 

considered the relationship of continuity with respect to qualitative robustness. Two 

other concepts for judging the robustness performance of an estimator are efficiency 

robustness and min-max robustness, which are also directly applicable to time series 

data (Martin and Yohai, 1985 and Huber, 1973). Quantitative robustness is built on 

the concept of a breakdown point, whereas infinitesimal robustness incorporates the 

influence function as the critical concept. In this study, outlier robustness as well as 

distributional robustness in regression analysis will be emphasized. In time series, 

only outlier robustness will be observed. 

 

1.2 Related Literature Review 

There have been many researches and papers on robust statistics. A pioneering 

work on robust statistics is due to Huber (1964) and Hampel (1971). Robust statistics 

is the generalization of the classical theory: it takes into account of model 

misspecification, and the inferences remain valid not only at the parametric model but 

also in the neighborhood model. 

 In practice, there are many types of robust estimators. In the regression 

context, least absolute values (LAV or L1) regression is very resistant to observations 

with unusual values of the dependent variable Y. Estimates are found by minimizing 

the sum of the absolute values of the residuals. Ashar and Wallace (1963) studied the 

statistical properties of regression parameters estimated by minimization of L1 norm. 

Huber (1964) explored the properties of L1 regression in its robustness to wild 

fluctuations in the magnitude of residual elements. 



 4 

Meyer and Glauber (1964) for the first time directly compared L1 and L2 

regression estimators. They estimated their investment model by minimization of L1 

as well as L2 norm and tested the regression equations obtained on post-sample data 

by using those equations to forecast the nine (in some cases eleven) observations 

subsequent to the period of fit. They found that with very few exceptions, the 

equations estimated by L1 minimization outperformed the ones estimated by L2 

minimization even on criteria (such as sum of squared forecast errors) with respect to 

which, L2 regression is ordinarily thought to be remarkably suitable or optimal. 

The study by Oveson (1968) in his Doctoral research on the LAV estimator 

gave a new thrust to the investigation into the properties and applicability of the 

estimator. It was almost fully established that in the presence of errors generated by 

thick-tailed distribution, L1 regression performed better than L2 regression. 

Mosteller and Tukey (1977) poined out that LAV was less affected than OLS 

by unusual values of the dependent variable y, it failed to account for leverage and 

thus had a breakdown point (BP) of 0. 

Kim and Muller (2000) presented the asymptotic properties of two-stage 

quantile regression estimators. In their paper, they derived the asymptotic 

representation of the estimators and proved the asymptotic normality with quantile 

regression predictions. The asymptotic variance matrix and asymptotic bias were 

discussed. They also analyzed the asymptotic normality and the asymptotic 

covariance matrix with OLS predictions. The results obtained permitted valid 

inferences in structural models estimated by using quantile regressions, in which the 

possible endogenous of some explanatory variables was treated via ancillary 

predictive equations. Simulation results illustrated the usefulness of this approach. 

Furno (2000) compared the performance of least absolute deviation (LAD) 

and OLS in the linear regression model with random coefficient autocorrelated (RCA) 

errors. The presence of thick-tailed error distribution led to the estimation of the RCA 

model by LAD estimator. It is known that when error follows a double exponential 

distribution, LAD coincides with maximum likelihood. In all other cases, the 

estimator is less affected by observations coming from tails, since it minimizes the 

absolute value and not the squared value of the residuals. In case of leptokurtic error 

distribution, the LAD estimator is particularly useful. Furno proved that the LAD 

estimator for randomly autocorrelated errors is asymptotically normal. The more 

general random coefficient ARMA models for the error term was also considered in 
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the study and the resulting heteroskedasticity was analyzed. Monte Carlo experiments 

revealed that LAD improved upon OLS in case of RCA errors, both in terms of bias 

reduction and efficiency gains. However, in the case of constant autocorrelation 

model, the results confirmed that LAD is not advantageous, especially in small 

samples, since its sampling distribution differs from the asymptotic one.  

 Huber (1964) proposed maximum likelihood type estimation (M-estimation) 

for regression which was a relatively straightforward extension of M-estimation for 

location. It represented a compromise between the efficiency of the OLS estimators 

and the resistance of the LAV estimators, both of which could be seen as special cases 

of M-estimation. 

Hampel at al. (1986) showed that M-estimators have higher statistical 

efficiency but tolerate much lower percentages of outliers unless properly initialized. 

Rousseeuw and Leroy (1987) found out that M-estimates of location are highly 

robust, having a bounded influence function and a breakdown point of 0.5. In the 

paper, they showed that M-estimates for regression share these attributes for y but not 

the xs, resulting in a breakdown point of 0. Moreover, in some situation they 

performed no better than OLS. 

Hampel et al. (1986) pointed out that the M-estimator had unbounded 

influence because it failed to account for leverage. In response to this problem, 

bounded influence generalized M-estimators (GM-estimators) had been proposed. The 

goal was to create weights that consider both vertical outliers and leverage points. 

Outliers are dealt with using a standard M-estimator, and leverage points are typically 

down-weighted according to their hat value. 

 Least median of squares estimation (LMS or LMedS) is based on Hampel’s 

idea and was later proposed by Rousseeuw (1984). LMS replaces the summing of the 

squared residuals that characterizes OLS with the median of the squared residuals. 

The idea is that by replacing the sum with the more robust median, the resulting 

estimator will be resistant to outliers. Although this result was achieved at a 

breakdown point (BP) of 0.5, LMS estimator had deficiencies that limit its use.  

Rousseeuw and Leroy (1987) found out that the LMS estimator additionally 

possesses the “short” property, that is, it provides a regression hyper plane around 

which 50% of the observations are most tightly packed in terms of absolute deviation 

of the residuals.  
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Rousseeuw and van Zomeren (1990) and Atkinson (1994) showed that the 

short property makes the LMS estimator a convenient tool for identifying outliers and 

potential nonhomogeneity.  

Davies (1992) pointed out that there are however many estimators with the 

same BP and a number of studies in the statistical literature compare their relative 

merits. Among the various estimators the LMS estimator while robust to gross 

contamination was characterized by lack of local robustness that was related to its 

sensitivity to “inliers” due to the unboundedness of the influence function (IF) at 

small values. 

Campbell and Galbraith (1993) found out that the short properties indicated 

that the LMS estimator could be a useful tool in applications to data that were likely 

to lead to a breakdown of other estimators. Closeness of results for standard 

estimators and the LMS could be used as evidence that contamination/outliers did not 

present a significant problem for the standard methodology. 

Finite sample comparisons were made by Ferretti et al. (1999). They showed 

that as expected LMS did relatively well when there was substantial gross 

contamination (demonstrating its global robustness) but not as well against local 

contamination (lack of local robustness). Since many financial data series were very 

accurately recorded, but exhibit occasional extreme volatility LMS may provide 

valuable information. 

 Least trimmed squares estimation (LTS) principle was introduced by 

Rousseeuw (1984) to overcome the efficiency problems of the LMS estimation 

technique. The performance of this method was improved by Rousseeuw and Van 

Driessen (1999). 

Hample (1975), Rousseeuw and Yohai (1984) proposed studentized location 

estimates (S-estimates). They showed that S-estimates were the solution that found the 

smallest possible dispersion of the residuals. With the same breakdown value, it had a 

higher statistical efficiency than LTS estimation. 

The MM-estimators first proposed by Yohai (1987) had become increasingly 

popular and were perhaps now the most commonly employed robust regression 

techniques. They combined a high breakdown point (50%) with good efficiency 

(approximately 95% relative to OLS under the Gauss-Markov assumptions). The 

‘‘MM’’ in the name refers to the fact that more than one M-estimation procedure is 

used to calculate the final estimates. Following from the M-estimation case, iteratively 
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reweighted least squares (IRLS) is employed to find estimates. It has both the high 

breakdown property and a higher statistical efficiency than S-estimation. 

 Hubert and Rousseeuw (1997) proposed a method, called robust distance 

least absolute values (RDL1), that first downweights the leverage points in the space 

of the continuous regressors and then follows a weighted least absolute value fit for 

both continuous and categorical regressors. In their paper they observed that RDL1 

may suffer from the swamping effect due to its weights for the L1 procedure being 

obtained by only considering the continuous design matrix. 

Kosinski (1999) proposed a new method for the detection of outliers which 

was very resistant to high contamination of data. As classical covariance matrix was 

very sensitive to outliers, alternative covariance matrix had been proposed. The 

minimum volume ellipsoid (MVE) and the minimum covariance determinant (MCD) 

were two of several multivariate location and scale estimators. These estimators had 

high finite-sample breakdown point. The use of estimators with high finite-sample 

breakdown point yields good performance according to masking effect.   

The estimation of coefficients in a simple linear model is one of the oldest and 

most important problems and has received tremendous attention in the literature in 

statistics and econometrics. Lawrence and Arthur (1990) pointed out that most of the 

work reported was, however, based on the assumption of normality. It had been 

recognized that the underlying distribution in most situations was basically not 

normal, especially in Economics and Finance proposed by Huber (1981). In his study 

the solution was to develop efficient estimators of coefficients in multiple regression 

model when the underlying distribution was non-normal. Naturally, one would prefer 

closed form estimators which were fully efficient (or nearly so). Preferably, these 

estimators should also be robust to plausible deviations from an assumed model. The 

underlying distribution was assumed to be symmetric and to be student's t family. The 

method of modified maximum likelihood (MML) estimation was invoked.  

Tiku et al. (1999) developed the MML estimators for simple linear regression 

with symmetric innovation and came up with the MML estimators for the first order 

autoregressive model with symmetric Innovation; Tiku et al. (2001) treated the MML 

estimator for the simple linear regression model with innovation from student’s t 

family while Bian and Tiku (1997) adopted the Bayesian approach to study a standard 

multiple regression model with identical and independently distributed (i.i.d.) error 

term. 
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Tiku et al. (1999), Wong and Bian (2005) pointed out that the MML 

estimators had been extensively demonstrated by simulation study to be robust and 

really efficient and clearly superior to the traditional normal-theory estimators in all 

the models being studied, including the autoregressive model, simple linear regression 

model and simple linear regression model with autoregressive innovation. As the 

multiple linear regression model was a simple extension of the above models, the 

properties of the robustness and efficiency for its estimators would be similar to that 

of the simple linear regression. As such, the resulting estimators were explicit 

functions of sample observations and were asymptotically fully efficient. Since they 

were almost fully efficient for small sample sizes, they were noted as being 

remarkably robust. 

 Several authors have considered robust estimation procedures for parameters 

of time series in the presence of outliers. Denby and Martin (1979) showed that the 

M-estimator was robust to innovation outliers (IO), but not to additive outliers (AO).  

In fact, they showed that M-estimators could have asymptotic bias nearly as large as 

least squares estimators in the AO case. Martin and Yohai (1985) pointed out that the 

performance of M-estimators in the presence of outliers, especially AO, was not 

satisfactory. This was because in ARMA models, contaminated Y t’s would also be 

included in explanatory variables. 

Denby and Martin (1979) first proposed a class of generalized maximum 

likelihood estimates (GM-estimates) for AR(1) model in the presence of outliers of 

other type. It was shown that those GM-estimates performed moderately well in the 

presence of AO and IO, the M-estimates performed much better in the presence of IO. 

Martin (1979) extended the GM-estimates to AR(p) model. He also discussed some 

theories and methodologies of robust estimation for time series with AO and IO as 

well as the problem of patch outliers. 

Martin and Yohai (1985) pointed out that the performance of M-estimators in 

the presence of outliers, especially AO, was not satisfactory. In their paper, they 

showed that the GM-estimator could handle both AO and IO quite successfully in the 

AR(1) model. The problem with the GM-estimator was its performance when the 

order of AR structure increases. More specifically, since the GM-estimator was a low 

break down point estimator, when the proportion of outliers increased in the AR 

model, it will break down. 
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Martin and Yohai (1985) proposed a new class of estimators that were based 

on the combined use of robust filtering and S-estimates. For the case of an AR(1) 

model, they showed that these estimates dominated both the bounded influence (BIF) 

autoregressive estimator and the estimator suggested by Chang et al. (1988), while the 

BIF estimator dominated the estimator suggested by Chang et al(1988). 

Busto and Yohai (1986) pointed out that the LS estimate was not very 

sensitive to the presence of innovation outliers. It was shown that if the innovations 

had finite variance, the asymptotic covariance matrix was independent of the 

distribution F.  

 It was pointed out by Bustos and Yohai (1986) that the GM-estimator has a 

complicated asymptotic covariance matrix. They proposed two new robust estimators 

based on residual autocovariances estimators (RA estimators) and truncated residual 

autocovariances estimators (TRA estimators). The proposed estimators were 

compared with LS estimator, M and GM-estimators for AR(1) and MA(1) models 

with AO and IO outliers. Based on Monte Carlo results, it was shown that RA 

estimators were not qualitatively robust when the model had the moving average part 

but much stable than LS and M-estimators in the presence of AO. 

 Based on re-weighted maximum likelihood estimator using Huber or 

redescending weights, Luceno (1998) proposed robust estimators in the presence of 

nonconsecutive multiple outliers in Autoregressive Moving Average (ARMA) (p, q) 

series. Another attempt in this direction was by Pena (1984) who discussed sample 

influence function for parameters in the presence of outliers in ARMA model. 

In the area of robust estimations, high breakdown point (HBP) estimators have 

been widely suggested over the last decade. HBP estimators were concerned with the 

concept of the breakdown point of an estimator. Intuitively, the breakdown point 

measures the largest possible proportion of outliers in the data set an estimator can 

tolerate before it collapses to some nonsensical value. Maddala and Yong Yin (1997) 

pointed out that the performance of the M-estimator was not always satisfactory, HBP 

estimators have been introduced into time series analysis as well. Rousseeuw and 

Yohai (1984) introduced the class of S-estimators and Yohai (1987) introduced the 

MM-estimator in time series analysis.  

Soe Win (2004) proposed adjustment diagnostics measure based on error 

variance (ADV) to identify the correct type of outlier and developed statistical time 

series diagnostic software (STDS) to diagnose the outliers in time series. The ADV 
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procedure can work well for isolated outliers but does not result satisfactorily in 

handling patch outliers.  

Mya Thanda (2010) studied the detection and identification of outliers using 

the likelihood ratio and the adjustment diagnostics procedures. In this study, the 

simulation data as well as selected economic time series data were used. The 

simulated results suggested that the percentage of correct model selection declined as 

the value of outliers increased in the AO whereas it was not true in the IO of both 

AR(1) and MA(1) series. Based on the outliers detected, the most fitted model of each 

series was constructed for forecasting purpose. 

 

1.3 Objectives of the Study 

     The objectives of the study are as follows: 

   (i) To analyze the robust estimates compared with the classical estimates and  

   (ii) To estimate the parameters of regression model and time series model by using      

simulation data as well as real data, 

               (iii) To explore the best estimation method among all available robust techniques used                           

                      in regression and time series for simulation data and real data having heavy-tailed  

       distributions.   

 

1.4 Research Methodology 

The study attempts to analyze the effect of outliers on estimation of 

parameters in regression and time series analysis. In attempting to achieve the 

objectives of the study, classical and robust methods are used, based on simulated as 

well as real data. Regarding regression analysis, two major problems such as outlier 

robustness and distributional robustness are investigated. The required data sets are 

generated by using multiple linear regression models with three explanatory variables. 

Then, these data sets are transformed into outlier contaminated data sets. After that, 

the performances are compared in terms of bias and MSE criteria and then the most 

suitable estimation method is chosen. For the time series analysis, the outlier 

robustness is considered. The simulated data sets are generated using AR(1) and 

MA(1) models. Then, the clean data gained are transformed into outlier contaminated 

data sets using AO and IO outliers. The results are compared in terms of ME and 

MSE criteria and then the most suitable estimation method is explored. With regard to 
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real data, secondary data are used in the study. These data are obtained from the 

Central Statistical Organization and UNDP. 

 

1.5 Scope and Limitations of the Study 

Simple linear regression and multiple linear regression methods are taken into 

account for the study. However, non-parametric regression analysis is excluded from 

the study. In this study, five well-known methods of linear regression like LAV, M, 

MM, LMS and LTS estimators are included but L, R, and GS-estimators are excluded. 

And for the time series analysis, only univariate case is considered. Four robust 

estimators (M, GM, ACM and RA) are considered but approximate maximum 

likelihood type (AM), truncated residual autocovariances (TRA) and filter smoother 

estimators are excluded in this study. Some types of outliers which can occur in a time 

series, only additive outlier (AO) and innovation outlier (IO) are used. Only non-

seasonal Autoregressive Moving Average (ARMA) and Autoregressive Integrated 

Moving Average (ARIMA) time series models are considered in this study. No 

comparison has been made between robust procedures and outlier detection 

procedures used in estimating parameters of contaminated models in this study.  

 

1.6 Organization of the Study 

This study is composed of six chapters. Chapter I is the introduction which 

includes rationale of the study, related literature review, objectives of the study, 

research methodology, scope and limitations of the study and organization of the 

study. Then, the concepts of robustness are shown in chapter II. In this chapter, 

influence function, gross-error sensitivity, local-shift sensitivity, rejection point, 

maximum-bias curve, breakdown point, min-max robustness and qualitative 

robustness are discussed. Then, robust estimators and their possible applications to 

regression and time series are mentioned in chapter III. After that, in chapter IV 

simulated data as well as real data are used to analyze the effect of the outliers in 

regression by using the OLS method and robust methods. In chapter V, certain robust 

methods for AR(1) and MA(1) models with AO and IO outliers are analyzed by using 

simulated data sets. In this chapter, the performances of classical and robust 

procedures in the presence of outliers in an ARMA model are analyzed by using real 

data set. Chapter VI is the conclusion.  

 



CHAPTER II 

CONCEPTS OF ROBUSTNESS 

 

 As mentioned in the earlier chapter, robustness means insensitivity to small 

departures from idealized assumptions for which the estimator is optimized. 

Robustness is usually used in the context of distributional robustness that is the actual 

noise distribution deviates from the nominal distribution. In most cases, the nominal 

noise distribution is independent and identically distributed (i.i.d.). The deviations, 

however, may also be due to model class selection errors, or there may be more than 

one statistical population present in the data set, and hence it is not possible to 

describe only with one set of parameters. Robust methods can be considered to be 

approximately parametric, that is, a parametric model can be used but some deviations 

from the strict model are also allowed.  

 To know more clearly about the robustness concept, mathematical setup has to 

be described first because it allows us to formalize the robustness thoughts. The 

notion of the sensitivity of an estimator T is put into theory considering a model 

characterized by a cumulative distribution function (c.d.f.) F and its neighborhood 

Ғε,G: distributions ( ) GF εε +−1 , where ( )2/1,0∈ε and G is an arbitrary probability 

distribution, which represents data contamination. Hence, not all data necessarily 

follow the pre-specified distribution, but the ε-part of data can come from a different 

distribution G. If ∈H Ғε,G , the estimation method T is then judged by how sensitive 

or robust are the estimates T(H) to the size of Ғε,G , or alternatively, to the distance 

from the assumed c.d.f. F. Two main concepts for robust measures analyze the 

sensitivity of an estimator to infinitesimal deviations, o→ε , and to finite (large) 

deviations, ε > 0, respectively. Despite generality of the concept, easy interpretation 

and technical difficulties often limit our choice to point-mass distributions (Dirac 

measures) ∈= xG x ,δ R, which simply represents an (erroneous) observation at point 

∈x R.  

The following are the basic concepts of robustness, statistical robustness and 

robustness properties. 
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            2.1 Basic Concepts of Robustness in Statistics 

Robustness, a fundamental concept in statistics, was first introduced by Box 

(1953). Since then, the theory of robustness has been developed as an important part 

in the field of statistics (Huber, 1981 and Hampel et al., 1986). The notion of 

robustness has different interpretations. One interpretation would be the distributional 

robustness, that is, robustness of the assumed model to minor departures from the 

model assumptions. Outlier-resistant or distributionally robust (so-called robust) 

statistics methods aim at constructing statistical procedures that are stable (robust) 

even when the underlying model is not perfectly satisfied by the available data set. An 

example of departure from the assumed model is the presence of outliers – 

observations that are very different from the rest of the data. Outliers are “bad” data in 

the sense that they deviate from the pattern set by the majority of the data. Hence, 

they tend to be doubtful in its common flow and may lack explanatory and predictive 

power regarding the common portion of the data. Robust models focus on the 

statistical properties of the bulk of the data without being distracted by outliers, while 

in classical models all data equally participate in the analysis.  

The presence of outlying events, the so-called “low frequency / high severity” 

events, in the data creates a following inconsistency. On the one hand, the tail events 

correspond to the data that, despite their low frequency of occurrence, are often the 

most destructive for the institution as shown in Figure 2.1. In this sense, they cannot 

be ignored as they express important information regarding the process and may 

signal important flaws in the system. On the other hand, recent empirical findings 

suggest that classical methods will frequently fit neither the bulk of the data nor the 

outliers well, and the center and the tails of the data appear to conform to different 

laws. 

Classical estimators that assign equal importance to all available data are 

highly sensitive to outliers and in the presence of just a few extreme values can 

produce arbitrarily large estimates of mean, variance, and other vital statistics. For 

example, a high mean and standard deviation values for data do not provide an 

indication as to whether this is generally due to large values of observations or just 

one outlier, and it may be difficult to give the right interpretation to such results. 

On the contrary, robust methods take into account the underlying structure of 

the data and “separate” the bulk of the data from outlying events, a way of avoiding 

the upward bias in the vital statistics and forecasts. Robust methods do not aim at 
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throwing away extreme observations. They focus on the behavior of the bulk of the 

data that can be easily distorted by outliers. An important application of robust 

statistics uses them as a diagnostic technique to evaluate the sensitivity of the 

inference conducted under the classical model to the rare events and to reveal their 

possible economic role.  

  

 

 

 

 

 

 

 

 

  

 

 

Figure 2.1  Histogram of Hypothetical Data 

 

The classical model and the robust model are not competitive. The uses of 

both models are complementary to each other. Instead the use of the robust model 

should be encouraged. The results from both approaches are not expected to be the 

same, as they explain different phenomena dictated by the original data: the general 

tendency (the robust method) and the conservative view (the classical method).  

Conducting robust or classical analysis of the data is a trade-off between 

safety and efficiency: although some information may be lost while discarding or 

diminishing the contribution of the outlying events, one can significantly improve 

forecasts and produce more reliable estimates by applying robust theory.  

 

2.1.1 Statistical Robustness 

Robustness, in general, refers to the ability of a procedure or an estimator to 

produce results that are insensitive to departures from ideal assumptions. This 

definition of robustness covers all scientific research. Lucas (1996) made the remark 

that robustness is a fascinating subject both from a theoretical and practical point of 

f(x) 

Tail Events 

x 
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view. With reference to general robustness theory, Hampel et al. (1986) defined 

statistical robustness as follows: 

In a broad informal sense, robust statistics is a body of knowledge, partly formalized 

into ‘theories of robustness’, relating to deviations from idealized assumptions in 

statistics. 

 

2.1.2 Outlier Robustness 

Outliers can be thought of as observations in a data set that cause surprise in 

relation to the majority of the data. For example, surprising or extreme observations 

might be unusually large or unusually small values compared to the remaining data. 

Outliers are a common occurrence in data. They may be the result of an error in 

measurement of recording or transmission errors of exceptional phenomena such as 

earthquakes or strikes, or they may be due to the samples not being entirely from the 

same population. Apparent outliers may also be due to the values being the same, but 

nonnormal (in particular, heavy-tailed) distribution. 

Outliers should be investigated carefully. Often they contain valuable 

information about the process under investigation or the data gathering and recording 

process. Before considering the possible elimination of these points from the data, one 

should try to understand why they appeared.  

Outliers can be classified in statistics as outlying observations in linear 

regression, time series analysis, survey, directional and contingency table data 

(Barnett and Lewis, 1978). In the regression context, outliers are classified as y- and 

x-outliers. Outliers always entail both theoretical and practical problems. Usually, 

depending on our goal(s), we need one or more procedures that are robust, to protect 

against and detect outlying observations in the data. For instance, in the case of a 

forecasting model, it is of utmost importance to be able to detect, estimate the effects 

of, and interpret outliers. In some cases, outliers in a residual series may indicate 

omission of an explanatory variable from the model. Furthermore, the robust 

regression estimates are less biased than OLS and provide estimates of outliers that 

are more strikingly seen in residual series.  

Many robust methods have been developed to handle data contaminated with 

outliers. Such methods are said to have outlier robustness. These robust methods can 

be used to detect outlying observations and to provide resistant results which are 

stable in the presence of outliers. For instance, if we are interested in estimating a 
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model parameter for a data contaminated with outliers from a random measurement 

error, it is of interest to use an estimator which is not sensitive to such outlying 

observations. 

 

2.2 Main Concepts of Statistical Robustness 

 In this section, the main concepts of statistical robustness such as influence 

function, gross-error sensitivity, local-shift sensitivity, rejection point, maximum-bias 

curve, breakdown point, min-max robustness were described.  

 
2.2.1 Influence Function 

The influence function (IF) or the influence curve (IC) is a local robustness 

measure. By definition, an IF measures the change in the value of an estimator when 

outliers are added to the sample. The IF is essentially the first derivative of an 

estimator, viewed as functional, at some distribution (in an infinite-dimensional 

space), and it is shown how it can be used to several local robustness properties which 

are defined and intuitively interpreted. The study of influence curves serves to extend 

our understanding of estimators (e.g., the three-part descending M-estimators, or the 

optimal robust estimators of scale, with the median deviation as limiting case). The 

influence curve can be drawn and looked at, and its various properties (qualitative 

shape, supremum, maximal slope, points and heights of jumps, points and intervals 

where it is zero, etc.) together with a bit of qualitative information about type or 

regularity of the estimator (how the influence curve behaves in a neighborhood, and 

how the limit which defines it is approached) tell us a lot about the detailed behavior 

of the estimator and about how the separate observations contribute to the estimated 

value.  

The influence of infinitesimal contamination on an estimator is characterized 

by the IF, which measures the relative change in estimates caused by an 

infinitesimally small amount ε of contamination at x (Hampel et al., 1986). Let xδ  

denote the probability measure which puts the unit mass at the point x, that is, the 

c.d.f. with a point mass at x. The IF of an estimator T at F is given by 

 

                 (2.1)                   

at those x where the limit exists. In (2.1) T (F) denotes the value of the estimator of 

( ) ( ){ } ( )
ε
δεε

ε

FTFTFTxIF x −+−
=

→

1lim,;
0
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the original distribution F. Similarly, ( ){ }xFT δεε +−1 denotes the value of this 

estimator of the slightly contaminated distribution ( ) xF δεε +−1 . ε  refers to the 

fraction of the perturbation, 0 < ε  < 1.   

For each point x , the IF reveals the rate at which the estimator T changes if a 

wrong observation appears at x . In the case of sample mean ( )nFTx = for { }n
iix 1=  we 

obtain 

( ) ( ) ( ) ( ) ( ){ } εδεε
ε

/1lim,;
0 ∫ ∫ ∫−+−=

→
uudFuuduudFFTxIF nxnn         

 

                                     = ( ) ( ){ } .lim
0

xxuuduudF xn −=+− ∫ ∫→
δ

ε
                               (2.2)                                    

The IF is the first derivative of a statistic T of an underlying distribution F. If the IF is 

bounded, then the effects of a small number of outliers are also bounded. As for its 

interpretation, one can say that IF measures the asymptotic (standardized) bias of the 

estimator T caused by contamination of F. There are also some studies in the literature 

on finite-sample versions of the IF, that is, the empirical influence function (EIF) and 

sample influence function (SIF). Not all estimators have an influence function, but all 

of them have a breakdown point. The IF can be further shown to be of the form 

IF = (constant) ψ (u). 

Hence, the shape of IF depends only on the shape of the ψ-function, not the data 

distribution. 

 

2.2.2 Gross-Error Sensitivity 

The gross-error sensitivity expresses asymptotically the maximum effect a 

contaminated observation can have on the estimator. It is the maximum absolute value 

of the IF. The asymptotic bias of an estimator, defined as the maximum effect of the 

contamination of a given distribution with a proportion ε from an outlying 

distribution, is giving by ε (gross-error sensitivity). Unfortunately, it was reported that 

in general, poor gross-error sensitivity corresponds to higher Gaussian efficiency, and 

vice versa. The IF allows us to define various desirable properties of an estimation 

method. The largest influence of contamination on estimates can be formalized by the 

gross-error sensitivity, 
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                                 (2.3) 

 

which under robustness consideration is finite and small. Even though such a measure 

can depend on F in general, the qualitative results (e.g., ( )FT ,γ being bounded) are 

typically independent of F. Hample (1974) calls (2.3) the gross-error sensitivity. It 

may be regarded as a measure of the maximum possible influence of any observation 

on the estimated coefficients. A disadvantage of (2.3) is that it is not location or scale 

invariant. 

 

2.2.3 Local-Shift Sensitivity 

Local-shift sensitivity measures the effect of the removal of a mass ε at y and 

its reintroduction at x . Therefore, it measures the effect of rounding and grouping 

errors on an estimator. For highest resistance, it is required that the local-shift 

sensitivity be bounded. For a continuous and differentiable IF, local-shift sensitivity is 

given by the maximum absolute value of the slope of IF at any point. The sensitivity 

to small changes in data, for example moving an observation from x  to ∈y R, can be 

measured by the local-shift sensitivity 

 

 ( ) ( ) ( )
yx

FTyIFFTxIF
FT

yx −

−
=

≠

,;,;
sup,λ .      (2.4)

           

Also this quantity should be relatively small since we generally do not expect that 

small changes in data cause extreme changes in values or sensitivity of estimates. In 

general, a lower (hence better) local-shift sensitivity corresponds to higher Gaussian 

efficiency.  

 

2.2.4 Rejection Point 

  The rejection point is defined as the point beyond which IF becomes zero. 

Except possibly through the auxiliary scale estimate, observations with residuals 

beyond the rejection point have zero influence. Hence they make no contribution to 

the final estimate. Estimators which have a finite rejection point are said to be 

redescending and are well protected against very large outliers. However, a finite 

rejection point usually results in the underestimation of scale. This is because when 

( ) ( ),,;sup, FTxIFFT
x R∈

=γ
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the samples near the tails of a distribution are ignored, too little of samples may 

remain for the estimation process. This in turn adversely affects the efficiency of the 

estimator. An estimator is efficient if the variance of its estimate is as close as 

possible to the variance of the best estimator for a given distribution. For the Gaussian 

distribution the best estimator is the mean which also yields the minimum variance of 

the estimate. In general, it is best for a robust estimator to use as many of the good 

samples of a distribution as possible, in order to maintain a good efficiency. Another 

adverse effect of finite rejection is that if a large part of the sample is ignored, the 

objective function may have many local minima. As unlikely large or distant 

observations may represent data errors, their influence on estimates should become 

zero. Such a property is characterized by the rejection point, 

 

                    (2.5) 

 

which indicates the non-influence of large observations. Alternatively, behavior of the 

estimator T can be studied for any finite amount ε of contamination. 

 

2.2.5 Maximum-Bias Curve 

  The most common property viewed in this context is the estimator's bias 

( ) { } { }FFHH TETEHTb −=;  which measures a distance between the estimates for clean 

data, T(F), and contaminated data, T(H); ∈H Ғε,G .The corresponding maximum-bias 

curve measures the maximum bias of T on Ғε,G at any ε: 

 

                        (2.6) 

 

Although the computation of this curve is rather complex, Berrendero and Zamar 

(2001) provide general methodology for its computation in the context of linear 

regression. The maximum-bias curve is not only useful on its own, but allows to 

define further scalar measures of robustness. 
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0
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2.2.6 Breakdown Point 

The breakdown point (BP) introduced by Hampel (1971) is a measure of 

global stability for a statistical functional and as such is a typical robustness measure. 

However, the quest for high breakdown point estimators in the field of robust 

statistics has pushed the development, among other things, of general computational 

techniques and resampling algorithms which can be used in more general settings 

(Rousseeuw, 1984 and Rousseeuw and Leroy, 1987).  

 The BP is a global robustness measure (of reliability); it is often the first and 

most important number to be looked at before going into the details of local 

robustness properties. The BP takes values between 0 and 1. The BP is essentially the 

largest fraction of contamination which does not ruin an estimate. The definition of 

the BP contains no probability distributions.  It is also often quite simple: for the 

arithmetic mean it is 0, for the median it is 1/2 (slightly less than 1/2 of the data can 

move to infinity while the median still stays in the range of the “good” data). Among 

scale estimators, standard deviation, mean deviation and range all have BP of 0, while 

the interquartile range (difference between 3rd and 1st quartile, perhaps with a factor) 

has BP = 1/4. But the counterpart of the median among scale estimators is the median 

(absolute) deviation or “MAD” (Hampel, 1974), which is the median of the absolute 

differences of the data from their median, and which has BP = 1/2. A zero value for 

the BP reflects extreme sensitivity of an estimator to outliers.  

An estimator’s robustness can be characterized in several ways. One concept 

that has received a lot of attention in recent years is an estimator’s BP (Donoho and 

Huber, 1983 and Rousseeuw and Leroy, 1987); it is the smallest fraction of 

contamination that can produce an infinite bias in the estimator. For instance, in a 

univariate sample of size n, the average can be increased without limit if any single 

observation is made arbitrarily large; accordingly, the BP of the average is 1/n, or zero 

asymptotically. On the other hand, if all the observations that exceed the sample 

median are increased arbitrarily, the median is unchanged; so its BP is essentially 

50%. In other words, the BP accurately characterizes the average’s well-known lack 

of robustness and the sturdiness of the median. 

Contamination in excess of an estimator’s BP is a sufficient condition for an 

indefinitely large bias, but it is not a necessary condition. As a practical matter, the 

extent of the bias obviously depends not only on the number of outliers but also on 

their magnitudes. Another important consideration is the fit between the 
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uncontaminated data and the model. In a linear regression where the valid 

observations have a very high value of coefficient of determination (R2), the bias 

induced by several stray data points may be small even if the estimator itself is not 

highly robust. Conversely, if the valid observations have a low R2, application of a 

high breakdown estimator may not avoid a large (but finite) bias due to the presence a 

few outliers. Accordingly, the BP is similar to estimation criteria like efficiency and 

consistency; its usefulness ultimately depends on its performance in actual 

applications (Zaman et al., 2001).  

An important robustness theorem states that “50% is the highest possible value 

for the BP, since for larger amounts of contamination it becomes impossible to 

distinguish between the good and the bad parts of the sample”. Actually, 50% is an 

asymptotic value for the maximum BP; in finite samples, the value is reduced by a 

degrees-of-freedom adjustment. 

Like the univariate average, OLS regression is quite vulnerable to aberrant 

observations not only in the dependent variable (“regression outliers”) but also among 

the regressors (“bad leverage points”). Either sort of data problem can produce a large 

bias, so OLS has a BP of 1/n. On the other hand, the L1 norm minimizes the sum of 

the absolute values of the residuals; as such, it estimates the conditional median of the 

dependent variable and might be expected to inherit the robustness of the univariate 

median. The L1 norm is in fact highly resistant to regression outliers, but it performs 

no better than OLS when there are bad leverage points among the regressors; so its 

BP is also 1/n (Rousseeuw and Leroy, 1987). 

The maximum BP is attained by LMS, LTS, S-estimators, and other 

procedures that behave like multivariate versions of the mode. These estimators are 

based on the 50% of observations that cluster most tightly around the regression 

plane, and they are unaffected by data lying outside that cluster. As a result, the high-

breakdown methods are quite robust, but they are inefficient when the data set is 

uncontaminated. A researcher can apply a high-breakdown estimator initially and 

follow up with a more efficient estimator once any inconsistent observations have 

been identified, scrutinized, and either reinstated, down weighted, or removed 

(Rousseeuw and Leroy, 1987, Yohai, 1987, and Yohai and Zamar, 1988). 

The most important is the BP (Hampel, 1971), which is defined as the smallest 

amount ε of contamination that can cause an infinite bias: 
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                            (2.7)                                  

 

The intuitive aim of this definition specifies the BP ( )T∗ε  as the smallest amount of 

contamination that makes the estimator T useless. Note that in most cases 

( ) .5.0≤∗ Tε  This definition and the upper bound however apply only in simple cases, 

such as location or linear regression estimation. The most general definition of BP 

formalizes the idea of “useless” estimates in the following way: an estimator is said to 

break down if, under contamination, it is not random anymore, or more precisely, it 

can achieve only a finite set of values. This definition is based on the fact that 

estimates are functions of observed random samples and are thus random quantities 

themselves unless they fail. Although the latter definition includes the first one, the 

latter one may generally depend on the underlying model F, for example in time 

series context. 

 

Finite Sample Breakdown Point  

The standard definition (Rousseeuw and Leroy, 1987) of a finite sample 

breakdown point in a regression estimator is as follows. Consider a regression 

estimator T(X); where X represents a sample of n observations, ( )nmX ,′  coincides 

with X for all but m of the observations that have been replaced with arbitrary 

unbounded values and define  

                                            

     (2.8)          

 

where supremum is taken over all possible ( )nmX ,′ . If the bias =∞ ; it is said that the 

estimator “breaks down”. The BP is then defined as the minimum amount of 

contamination to cause the breakdown of an estimator:   

    

 ( ) ( )

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
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Clearly the OLS estimator has a finite sample breakdown point 1/n; the LAV 

estimator by construction is flexible to high contamination in regression errors but not 

in the regressors and in the event of such contamination breaks down at 1/n. A 

number of regression estimators are resistant to contamination of the regressors as 
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well as errors. An example of such an estimator is LMS estimator introduced by 

Rousseeuw (1984) which has a finite sample breakdown point close to 1/2 ; 

specifically of Rousseeuw and Leroy (1987) demonstrates that generally the BP of 

LMS is [ ]( )
n

kn 22/ +−  where k is  number of regressors.  

  

2.2.7 Min-Max Robustness 

The minimax approach borrowed from game theory was Huber (1964) elegant 

solution of the robustness problem, viewed as a game between nature which chooses a 

distribution of the data in a neighborhood of the model and the statistician who 

chooses an estimator in a given class. The payoff is the asymptotic variance of the 

estimator at a given distribution. Sometimes minimax solutions can be pessimistic, 

but it turned out that this was not the case here. The resulting estimator, Huber’s 

estimator, became the basic building block of any robust procedure and is a basic tool 

beyond robust statistics. Many estimators have been developed for these problems 

such as M-estimates, LTS, LMS, S-estimates, LAV or L1 estimates, rank test estimates 

( R-estimates) and MM-estimates.  

   

2.3 Robustness Properties 

Robustness properties can be formulated within two frameworks: qualitative 

and quantitative robustness. Qualitative robustness is concerned with the situation in 

which the shape of the underlying (true) data distribution deviates slightly from the 

assumed model. It focuses on questions like stability and performance loss over a 

family of such slightly deviating distributions. Quantitative robustness considers the 

situation in which the sensitivity of estimators to a proportion of unusual observations 

is studied.  

Another important property of an estimator is equivariance. A linear 

regression estimator is equivariant if it transforms properly when a variable (either 

dependent or regressor) is recentered or rescaled. For example, if each observation on 

a particular continuous-valued regressor is multiplied by a positive constant c, the 

estimated regression coefficient should change by the factor 1/c. Some widely used 

equivariant estimators are OLS, the L1 norm (least absolute deviations), and LTS 

(Rousseeuw and Leroy, 1987). On the other hand, orthogonal regression is a method 
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that lacks equivariance because the estimated coefficients are changed in a nonlinear 

way when a variable is rescaled. 

Another concept (Tukey, 1976), closely related to robustness and which may 

be considered its data-oriented counterpart, is resistance. A resistant sequence of 

estimates should be (i) stable in the presence of a few atypical outliers (that is a small 

percentage of abnormal observations should not influence the estimates too much) 

and (ii) stable when all of the observations have small errors (e.g., round-off errors). 

Some robust estimators were discussed in the next chapter. 



CHAPTER III 

ROBUST ESTIMATORS  

 

 In this chapter different types of robust statistical estimators which were 

developed by several statisticians were discussed in the context of regression and time 

series analysis. From section 3.1 through section 3.14, some salient features as well as 

outstanding robustness features, together with respective drawbacks, of each of these 

robust estimators are presented.   

A robust estimator is one whose performance remains unchanged, satisfactory 

and attractive even when the true distribution of the data deviates from the assumed 

distribution. Data sets, for which one often makes a Gaussian assumption, sometimes 

contain a small fraction of unusually large values or outliers. In this situation, typical 

statistical estimators might be affected by the cause of these unusually large values. 

The goals of robust estimation are to find estimates (i) that are highly efficient 

under a central model and (ii) such that small changes in the distribution of sample 

produce small changes in the distribution of the estimates. Robust methods can be 

considered to be approximately parametric, that is, a parametric model is used but 

some deviations from the strict model are allowed. 

 Many statisticians in the field of robust inference have developed various 

sorts of robust statistical estimators. These estimators are different from each other in 

real situations. Some estimators are usually used in regression analysis, some are in 

time series and some are in both. In this chapter, some robust statistical estimators, 

which are usually applied for regression and time series analysis, are presented. 

Robust techniques, including those sometimes labeled as resistant techniques, 

in an evolutionary manner, explaining how new methods evolved in response to 

limitations of existing ones. Several classes of estimators are discussed. They are: 

linear combinations of order statistics (L-estimators); least absolute values estimators 

(LAV); M-estimators (extending from M-estimates of location by considering the size 

of the residuals); generalized M-estimators (GM-estimators, which extend M-

estimators by giving less weight to high influence points as well as to large residual 

points); least median squares estimators (LMS); least trimmed squares estimators 

(LTS); R-estimators (based on the ranks of the residuals); S-estimators (which 
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minimize a robust M-estimate of the residual scale); generalized S-estimators; MM-

estimators (which are built on both M-estimation and S-estimation to achieve a high 

breakdown point with high asymptotic efficiency); minimum volume ellipsoid 

estimator (MVE); minimum covariance determinant estimators (MCD); residual 

autocovariances estimators (which replace with the robust estimate of the residuals 

autocovariances) (RA); and approximate conditional mean robust filter (ACM). 

 Some of these methods could be considered obsolete, but general descriptions 

are still provided in many research works in the literature of robustness because more 

recent developments in robust regression build on them. Among the above mentioned 

estimators, LAV, M, GM, LMS, LTS, S, and MM-estimators are usually used in 

regression as well as time series analysis. But, MVE and MCD estimators are usually 

used in regression analysis. However, RA and ACM estimators are usually used in 

time series analysis only. In this study, the robust estimators such as the LAV, M, 

LMS, LTS, and MM-estimators were chosen to analyze the effect of outliers in 

regression analysis. Moreover, the M, GM, ACM and RA estimators were selected to 

study the effect of outliers’ contamination on the estimation of parameters of time 

series models.  

 

3.1 Linear Combination Estimators 

Linear combination estimators (L-estimators) are linear combinations of order 

statistics. They are of the form:  

 ( ) ∑
=

=
n

i
niinn xaxxT

1
:1 ,,...,                  (3.1) 

where nnn xx ::1 ,...,  are the ordered samples of size n and the ai's are coefficients. One 

of the most widely used L-estimators for location estimation is α -trimmed mean, 

where nα  samples from the both ends of the ordered set of samples do not contribute 

to the estimate. 

As stated above, any estimator that is computed from a linear combination of 

order statistics is classified as an L-estimator. The first L-estimation procedure, which 

is somewhat more resistant than OLS, is least absolute values (LAV) estimator. It is 

also known as L1 regression because it minimizes the L1-norm (sum of absolute 

deviations); LAV is the simplest and earliest approach to bounded influence robust 

regression, predating OLS by about 50 years. Least squares regression also fits this 
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definition, and thus it is sometimes referred to as L2, reflecting that the L2-norm (the 

sum of squared deviations) is minimized. Other well-known L-estimators are the least 

median of squares (LMS) and the least trimmed squares (LTS) estimators. 

 

3.2 Least Absolute Values Estimators 

Due to the squaring of the residuals, OLS becomes extremely vulnerable to the 

presence of outliers. To handle with this, Edgeworth (1887) proposed a method 

consisting in minimizing the sum of the absolute values of the residuals rather than 

the sum of their squares. Least absolute values (LAV), sometimes called L1 or least 

absolute deviation (LAD) regression, is also known as median regression. The LAV 

estimator is very resistant to observations with unusual y values. The LAV estimates 

are found by minimizing the sum of the absolute values of the residuals  
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This estimator does protect against vertical outliers but not against bad leverage 

points. It has an efficiency of only 64% at a Gaussian error distribution (Huber, 1981). 

The LAV can be seen as a case of the more general quantile regression. In this 

case, the objective function to be minimized can be written as 

 

                                            (3.3)    

 

where 

                           

                               (3.4) 
 

and α is the quantile being estimated.  

Although LAV is less affected than OLS by unusual y values, it fails to 

account for leverage (Mosteller and Tukey, 1977), and thus has a breakdown point BP 

of 0. Moreover, LAV estimates have relatively low efficiency. Following the case of 

the mean, under the assumption that y ~ N(µ, σ2), the sampling variance of y for OLS 

is σ2 / n; for LAV it is π / 2 = 1.57 times larger at πσ2 / 2n (in other words, about 64% 
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efficiency). The combination of the low breakdown point and low efficiency makes 

LAV less attractive than other robust regression methods still to be discussed. 

 

3.3 Maximum Likelihood Type Estimators 

Huber introduced the notion of M-estimators in (1964) (Hampel et al., 1986) 

which opened new gates in the theory of classical statistics. Afterwards several M-

estimators were proposed from time to time and the theory of M-estimators got 

enriched by every day passed. A brief discussion over the concept of M-estimators is 

given in this section. In simple terms, the M-estimator minimizes some function of the 

residuals. The linear regression model is given by: 

 

                    (3.5) 

 

From this equation, the parameters pβββ ,...,, 10 are estimated and then the fitted model 

is written as follows: 

 

       (3.6)                            

 

where                                   

 iii xye β̂′−= .                              (3.7)             

A robust regression M-estimator minimizes the sum of a less rapidly increasing 

function of the residuals is given by 
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where the function ρ(.) gives the contribution of each residual to the objective 

function. A reasonable ρ(.) should have the following properties: 

• ρ(e) ≥ 0 

• ρ(0) = 0 

• ρ(e) = ρ(-e) 

• ρ(ei) ≥ ( )ie ′ρ    for ii ee ′> .  
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The solution obtained from Equation (3.8) is not scale equivariant, and thus 

the residuals must be standardized by a robust estimate of their scaleσ̂ , which is 

estimated simultaneously. 

 ∑
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ρ                                       (3.9) 

As in the case of M-estimates of location, the median absolute deviation (MAD) is 

often used. 

                                     (3.10)                       

 MAD = median ( | ei - median {ei }| )        (3.11) 

 

Taking the derivative of Equation (3.9) and solving produces the score function 

 

            (3.12)                    

with ψ = ρ′  which is called the IF. There is now a system of p + 1 equations, for 

which ψ  is replaced by appropriate weights that decrease as the size of the residual 

increases. Define the weight function w (e) = ψ(e) /e, and let wi = w(ei). Then the 

Equations (3.12) becomes 
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This is exactly the system of equations that can be solved by using the iterated 

reweighted least squares (IRLS) procedure. 

The weights wi are computed by using the residuals of each point to determine 

the influence of each residual to the fit. Estimators using weighting functions which 

reject completely observations farther than certain distance are called redescending. 

Among the most widely employed functions for weighting are Huber's, Andrew's, 

Hampel's and Tukey's. The shape of each weighting curve is depicted in Figure 3.1. 

The BP of M-estimators is shown to be ε = l / (p + l), where p is the number of 

parameters to be estimated (Hoaglin, Mosteller and Tukey, 1983). 

For time series analysis, the M-estimators of parameter φ  denoted by Mφ̂ , 

proposed by Denby and Martin (1979), is defined by 

MAD×= 4826.1σ̂
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where ( ).ρ  is a symmetric robustifying loss function. Equivalently, Mφ̂  is the solution 

of the following equation: 
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where ( ) ( )ee ρψ ′=  is called the IF. ψ(.) is chosen to be a bounded function with 

( ) ,0≥eeφ and usually ( ) 10 =′ψ . The most commonly used IFs are those from the 

Huber family and from bisquare family proposed by Beaton and Tukey (1974). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Shape of Widely Used Weighting Functions Based on: (a) Huber's;                              

           (b) Hampel's;  (c) Andrew's sine; and (d) Tukey's biweight 

 

There are different M-estimators according to the choice of ψ-function or 

weight function. They are Huber, Hampel, Andrews and Tukey M-estimators which 

are discussed in brief in the followings. 
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(a) Huber’s M-estimators  

Huber’s uses the following ψ-function.  
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Huber’s ψ-function is shown in Figure 3.2. Both OLS and Huber objective functions 

increase without bound as the residual departs from 0, but the OLS objective function 

increases more rapidly. OLS method assigns equal weight to each observation; the 

weights for the Huber estimator decline when ae > . The Huber’s ψ-function takes 

into account the neighborhood of a normal model in a linear way. In Figure 3.2, it has 

a constant-linear-constant behavior, that is, it is constant beyond the specified bound 

( )atoa− and is linear like mean within these bound. Like the OLS it assigns equal 

weights to all observations within its bound, which surely will result in its high 

efficiency but distant outliers still have a maximum influence (in the form of constant 

a ), which lead to the efficiency losses of about 10-20 percent in typical cases with 

outliers. To cope with this problem redescending M-estimators were introduced. 

 

 
 

Figure 3.2 Shape of the ψ-Functions of Mean and Huber-Estimators 
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(b)  Hampel’s M-estimators or Redescending M-estimators 

The redescending M-estimators were introduced by Hampel (Hampel et al., 

1986), who used a three part-redescending estimator with ρ-function bounded and ψ-

function becoming 0 for large e can be shown in Figure 3.3. They reject distant 

outliers completely, but not suddenly, allowing a transitional zone of increasing 

doubt, and are therefore much more efficient than “hard” rejection rules; they are 

usually about as good to clearly better than Huber-estimators (Hampel et al., 1986). 

The logic of these estimators is that the very central observations (in the 

neighborhoods of 0) of the normal neighborhood receive maximum weight and as 

they depart from center their weights decline and as they reach the specified bounds 

their ψ-function becomes 0.  

The Hampel’s three-part redescending ψ-function is defined as follows: 

 

 

                                 (3.17)       

                                        

 

From Figure 3.3, it can be concluded that the Hampel’s three-part redescending 

estimator is still not a good one, as the abrupt changes in its slope are unappealing 

because of the abrupt changes in the way the data are used. So, the need of a ψ-

function with a smoothly redescending nature was seriously felt. Several smoothly 

redescending M-estimators have been proposed from time to time. 

 
 

Figure 3.3 Hample’s Three-Part ψ-Function 
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(c)  Andrews M-estimators 

A real improvement came from Andrews (1974), who used wave estimators 

(also called sine estimators), developed the following ψ-function. Andrews’ wave 

estimators have smoothly redescending ψ-functions, shown in Figure 3.4. The 

Andrews ψ-function is given by,  

                                                

                                 

                          (3.18) 

 

 

 
 

Figure 3.4 Andrews Wave ψ-Function 

 

(d)  Tukey’s M-estimators 

 Tukey who used biweight estimators proposed another smoothly redescending 

ψ-function. The Tukey’s redescending ψ-function is defined as follows: 
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The Tukey’s redescending ψ-function is shown in Figure 3.5. It is clearly seen 

that, the Tukey’s ψ-function declines as soon as e departs from 0, and are 0 for |e| > a . 

The Tukey’s biweight estimators are also known as bisquare estimators (Mosteller 

and Tukey, 1977 and Hoaglin et al., 1983). 
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Figure 3.5 Tukey’s Biweight ψ-Function 

 

It is a well-known statistical truth that the arithmetic mean has the highest 

possible efficiency among all other estimators but unfortunately it is extremely 

sensitive to outliers and even a single outlier can have disastrous effects on it. Among 

M-estimators the most efficient estimator would be Huber’s estimator with carefully 

chosen bounds. The ψ-function of Huber’s estimator has a constant-linear-constant 

behavior (Hoaglin et al., 1983). Figure 3.2 shows that the central section of Huber’s 

ψ-function is linear and within specified bounds it coincides with the ψ-function of 

the mean and in respect of efficiency it is its plus point. Within the specified bounds it 

is as efficient as mean can be. 

The value a  for the Huber and bisquare estimators is called a tuning constant; 

smaller values of a  produce more resistance to outliers, but at the expense of lower 

efficiency when the errors are normally distributed. The tuning constant is generally 

picked to give reasonably high efficiency in the normal case; in particular, a  = 1.345σ 

for the Huber and a  = 4.685σ for the bisquare (where σ is the standard deviation of 

the errors) produce 95-percent efficiency when the errors are normal, and still offer 

protection against outliers. In an application, the standard deviation of the errors is 

estimated and to use these results in estimation process. Usually a robust measure of 

spread is employed in preference to the standard deviation of the residuals.  

The main drawback of Huber’s ψ-function is that distant outliers still have 

maximum (though bounded) influence and would lead certainly to certain percent 

efficiency losses. To avoid these losses, one can use smoothly redescending M-

estimators such as Andrew’s sine function, or Tukey’s biweight function, with ρ(.) 
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being bounded and ψ-function continuously becoming zero for large absolute 

residual. They reject distant outliers completely, but not suddenly, allowing a 

transitional zone of increasing doubt, and are therefore much more efficient than 

“hard” rejection rules; they are usually about as good to clearly better than Huber-

estimators. As in the case of M-estimation of location, the robustness of the estimator 

is determined by the choice of weight function. 

An effective strategy for obtaining an M-estimate is as follows: the initial 

estimate is computed by using OLS estimation; then the M-estimate based on the 

Huber (MH-estimate) influence function is computed by the IRLS method will be 

described in subsection 4.4.4; the corresponding MH-estimate is used as a starting 

point for computing M-estimate based on the bisquare (MB-estimate) influence 

function, again using the IRLS method. The use of the Huber influence function 

ensures that a unique root of Equation (3.15) is obtained and the choice of the 

bisquare influence function leads to a much more robust estimator in the case of AO 

model (Denby and Martin, 1979). Since the robustness of the M-estimator is not 

satisfactory, a more robust estimator, called the generalized M-estimator (GM-

estimator) is used.  

 

3.4 Generalized Maximum Likelihood Type Estimators  

The M-estimators have unbounded influence because it fails to account for 

leverage (Hampel et al., 1986). In response to this problem, bounded influence GM-

estimators have been proposed by Hampel (1974). The goal was to create weights that 

consider both vertical outliers and leverage points. Outliers are dealt with using a 

standard M-estimator, and leverage points are typically down-weighted according to 

their hat value. The general GM class of estimators is defined by 
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where ψ  is the score function (as in the case of M-estimation, this is typically the 

Huber or biweight function), and the weights wi and vi initially depend on the model 

matrix X from an initial OLS fitted to the data but are updated iteratively. 
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The first GM-estimator proposed by Mallows includes only the wi weights—

that is, vi (xi) = 1 in Equation (3.20). The wi are calculated from the hat values which 

values range from 0 to 1, a weight of ii hw −= 1  ensures that observations with high 

leverage receive less weight than observations with small leverage (that is, if hi > hj,      

ui < uj). Although this strategy seems sensible at first, it is problematic because even 

‘‘good’’ leverage points that fall in line with the pattern in the bulk of the data are 

down-weighted, resulting in a loss of efficiency. 

For time series, the basic idea of the GM-estimator is to modify the 

minimization problem so that the summands of the estimating Equation (3.14) are 

bounded and continuous functions of the data. Therefore, Martin and Yohai (1985) 

proposed to use GM-estimator. GM-estimates eŝ,φ̂ of autoregression parameters 

),...,,( 21 p
T φφφφ = and innovations scale es are obtained by solving the equations  
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where the observed time series is ,,...,, 21 nZZZ χ,,...,, 11 +−−= pttt
T
t ZZZZ  is a bounded 

and continuous function, and W(Zt), wt are nonnegative, data-dependent weight 

functions. Equation (3.21) provides a linear weighted least squares (WLS) estimate, 

linear in the case where the “big” weights W(Zt) and the “little” weights wt are 

replaced by fixed weights; that is, weights independent of both the data Zt and the 

estimate .̂φ Because the wt (but not W(Zt)) depend upon ,φ̂ the Equations in (3.21) are 

nonlinear. 

The big weights W(Zt) are constructed so that W(Zt).Zt is bounded and 

continuous, and the little weights wt are constructed so that ( )φ̂. 1
T
ttt ZZw −+ is bounded 

and continuous. This achieves the basic requirement for robustness that the summands 

of the estimating Equation (3.21) be bounded and continuous. Specifically, the 

weights j
tw are obtained from a psi-function ψc, with tuning constant c, as follows: 
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Two types of psi-functions are used, namely Huber’s (Huber, 1964) favorite psi:  
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and Tukey’s bisquare functions (Mosteller and Tukey, 1977): 
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The separate tuning constants chr and cbr for the ψ-function applied to residuals are 

adjusted to obtain a compromise between high efficiency when the data are actually 

Gaussian, and robustness towards outliers. The “big” weights W(Zt) are also derived 

from a psi-function of either the Huber or Tukey type. When the residual 

φ̂1
T
ttt ZZe −= +  is not too large, wt will be close to one, whereas when |et | is “very 

large”; for example, when Zt+1 is a gross outlier, w t will be zero.  

The only difficulty is that when wt is based on the Tukey bisquare ψB,cbr, the 

equations in (3.21) have multiple solutions and starting the iteration (3.21) with OLS 

might lead to a poor solution. This difficulty is avoided when wt is based on the 

Huber psi-function ψH,chr, since then (3.21) has an essentially unique solution. 

However, basing wt on ψH,chr does not result in as much robustness toward large 

outliers as does basing wt on ψB,cbr. Thus, the strategy adopted is to iterate (3.21) a 

number of times iterh using wt based on the Huber psi-function, followed by a 

number of iterations iterb using wt based on the Tukey psi-function.  

The GM-estimates are consistent under a perfectly observed autoregressive 

model, but they do not completely use the structure of time series when down 

weighting observations. Consequently, they have a complicated asymptotic 

covariance matrix and the calibration of the tuning constant when making robust the 

function that defines the estimates depends on the order of autoregressive operator. 
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3.5 Least Median Squares Estimators 

First proposed by Rousseeuw (1984), least median of squares (LMS) replaces 

the summing of the squared residuals that characterizes OLS with the median of the 

squared residuals. The estimates are found by minimizing the median of squared 

residuals; that is,  

 

 ( )( ) ( )( ).minmin 22
ijiji eMedianxyMedian =−∑ β                    (3.26) 

                                 

The idea is that, by replacing the sum with the more robust median, the resulting 

estimator will be resistant to outliers.  

 Rousseeuw and Croux (1993) pointed out that, it had at best a relative 

efficiency of 37%, and it did not have a well-defined influence function because of its 

convergence rate of n-1/3 (Rousseeuw, 1984). Despite these limitations, LMS 

estimators can play an important role in the calculation of the much more efficient 

MM-estimators by providing initial estimates of the residuals. Another method 

developed by Rousseeuw (1984) is least trimmed squares (LTS) regression. 

Extending from the trimmed mean, LTS regression minimizes the sum of the trimmed 

squared residuals. 

 

3.6 Least Trimmed Squares Estimators 

The least trimmed squares (LTS) estimation principle was introduced by 

Rousseeuw (1984) to overcome the efficiency problems of the LMS estimation 

technique. This particular method can be chosen because of the good convergence 

rate, smoother objective function and more stable algorithm than the LMS method. 

The squared residuals are ordered in ascending, that is,  
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To construct a high-breakdown method which is still equivariant, the OLS 

criterion is modified as follows: 
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Since criterion (3.28) does not count the largest squared residuals, it allows the LTS 

fit to steer clear of outliers.  The LTS method achieves the maximal breakdown point 
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ε = ([(n - p) / 2] + l) / n for h = [n / 2]+[(p + 1) / 2], where p is the number of 

parameters to be estimated and h is the number of observations included in the 

calculation of the estimator. When using LTS regression, σ can be estimated by 
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where ie ’s are the residuals from the LTS fit, and nhc ,  makes σ̂ consistent and 

unbiased at Gaussian error distributions (Rousseeuw and Leroy, 1987). The LTS scale 

estimator σ̂ is itself highly robust. Therefore, regression outliers are identified by 

their standardized LTS residuals ei /σ̂ . 

This estimator basically finds a robust estimate by identifying the (n - h) 

points having the largest residuals as outliers, and discarding (trimming) them from 

the data set. The resulting estimates are essentially OLS estimates of the trimmed data 

set. It can be seen that h should be as close as possible to the number of good points in 

the data set, because the higher the number of good points used in the estimates, the 

more accurate the estimates are. In this case, LTS will yield the best possible estimate. 

One problem with LTS is that its objective function does not provide itself to 

mathematical optimization. Besides, the estimation of h itself is difficult in practice. 

Atkinson and Cheng (1999) discussed the choice of h. They showed that one 

can get more stable results for the detection of outliers as well as highly efficient 

estimates when more data are fitted, provided h is small enough to exclude outlying 

cases. Zaman et al. (2001) suggested that [0.75n] is a reasonable value for h in most 

empirical studies. In contrast to OLS, the LTS estimator has a high BP which ensures 

it is robust enough to resist multiple outliers. The LTS fits only those h observations 

with the smallest residuals and trims the rest where h ≤ n. The LTS depends only on 

the residuals; it generally will not trim the same number of observations from the 

upper and lower tails of the distribution.  

The LTS objective function is based on hard rejection. That is, a given data 

point is either totally included in the estimation process or totally excluded from it. 

This is not a good strategy if there are points in the region of doubt. LTS suffers from 

a low efficiency, because it completely ignores part of the data. 
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The LTS by itself is not suited for inference because of its relatively low 

finite-sample efficiency. This can be resolved by carrying out a reweighted least 

squares (RLS) step. To each observation i one assigns a weight wi based on its 

standardized LTS residual ei  /σ̂ , e.g. by putting wi = w (ei /σ̂ ) where w is a 

decreasing continuous function. A simpler way, but still effective, is to put wi = 1 if 

ei /σ̂  ≤ 2.5 and wi = 0 otherwise. Either way, the RLS fit ( )pββ ˆ...,,ˆ
0  is then 

defined as follows: 
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which can be computed quickly. The result inherits the breakdown value, but is more 

efficient and yields all the usual inferential output such as t-statistics, F-statistics, an 

R2 statistic, and the corresponding p-values. These p-values assume that the data with 

wi = 1 come from the regression model which is shown in Equation (3.5) whereas the 

data with wi = 0 do not. 

Although LTS is highly resistant, it suffers badly in terms of relative 

efficiency at about 8%. Its efficiency is so low that it is not desirable as a stand-alone 

estimator. Still, the LTS has merit in the role it plays in the calculation of other 

estimators. For example, the GM-estimators proposed by Coakley and 

Hettmansperger (1993) use LTS to obtain initial estimates of the residuals.   

 

3.7 Rank Test Estimators 

First proposed by Jaeckel (1972), rank test estimation (R-estimation) is a 

procedure based on the ranks. Consider replacing one factor in the OLS objective 

function ( ) ( )∑
=

′−=
n

i
iyS

1

2βxiβ by its rank.  Here, ix′  is 1× (p + 1) row vector and β  is 

(p + 1) × 1 column vector of parameters. Thus if Ri is the rank of βxi′−iy , then we 

wish to 
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More generally, replacing the ranks (which are the integers n,...,2,1 ) by the score 

function ( ) ,,...,2,1 nia =  so that the objective function becomes 
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where Ri is the rank of the i th residual and ( )ian is a monotone (nondecreasing) score 

function that satisfies ( )∑
=

=
n

i
n ia

1
.0        

 Many possibilities have been proposed for the score function. The simplest, 

and perhaps most commonly employed, are the Wilcoxon scores, which directly find 

the rank of observations from the median, given by 
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Median scores are a simple adjustment over the Wilcoxon scores, 

 ( ) .
2

1sin 













 +

−=
niian                         (3.34) 

                                

Van der Waerden scores adjust the ranks according to the inverse of the normal 

probability density function 1−Φ :                                       
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Finally, bounded normal scores adjust the Van der Waerden scores by bounding them 

according to a constant, c: 
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An advantage of R-estimators over some others (such as M-estimators, and those 

extending from them) is that they are scale equivariant. They have some undesirable 

attributes, however. One problem is that the optimal choice for the score function is 

unclear. A second problem is that the objective function is invariant with respect to 

the intercept. If an intercept is not required, this is of no concern—it is simply not 

estimated. Even if one is needed, it can be calculated manually after fitting the model 

from the median of the residuals, so this limitation of R-estimators is surmountable.  
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More problematic is the fact that most R-estimators have a BP of 0. An 

exception is the bounded influence R-estimator of Naranjo and Hettmensperger 

(1994), which is also fairly efficient (90%-95%) when the Gauss-Markov assumptions 

are satisfied. Even for this estimator, however, the BP never reaches more than 0.20. 

 

3.8 Studentized Location Estimators 

OLS estimator depends on the minimization of the variance of the residuals. 

Hence, since the variance is highly sensitive to outliers, OLS is also largely 

influenced as well. For this reason, Rousseeuw and Yohai (1984) proposed to 

minimize a measure of dispersion of the residuals that is less sensitive to extreme 

values than the variance. They called this class of estimators the S-estimators. To 

increase robustness, the square function could be replaced by another loss function ρ

(.) which awards less importance to large residuals. The estimation problem would 

now consist in finding the smallest robust scale of the residuals. This robust 

dispersion, that will be called sσ̂ , satisfies the condition 
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where b is a constant defined as ( )[ ]eEb ρΦ=  and Φ  represents the standard normal 

distribution. Differentiating Equation (3.37) and solving results in 
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where ψ  is replaced with an appropriate weight function. As with most M-estimation 

procedures, either the Huber weight function or the biweight function is usually 

employed.  The value of β that minimizes sσ̂  is then called an S-estimator. More 

formally, an S-estimator is defined as follows: 
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where sσ̂ is the robust estimator of scale as defined in (3.37). 
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Although S-estimators have a BP of 0.5, it comes at the cost of very low 

efficiency (approximately 30%) relative to OLS. S-estimators play an important role 

in calculating MM-estimates, which are far more efficient. 

Among the estimators with high resistance to many outliers, it is found that the 

S-estimators are particularly attractive. Unlike the LTS and LMS estimators, the S-

estimators smoothly down weigh outlying observations. This smooth handling of the 

outliers is not only natural from a practitioners' point of view, but also it tends to 

make the S-estimators more efficient relative to the LMS estimator. Further, as shown 

in Sakata and White (1995), the S-estimators are more efficient than the OLS 

estimator under various error distributions. In addition, they are computationally less 

demanding than the LTS. These are points of more attractiveness than LMS and LTS. 

 

3.9 Generalized Studentized Location Estimators 

Croux et al. (1994) proposed generalized studentized location estimators (GS-

estimators) in an attempt to overcome the low efficiency of the original S-estimators. 

These estimators are computed by finding a GM-estimator of the scale of the 

residuals. A special case of the GS-estimator is the least quartile difference estimator 

(LQD), the parallel of which is using the interquartile range to estimate the scale of a 

variable. The LQD estimator is defined by 
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3.10 MM-Estimators 

First proposed by Yohai (1987), MM-estimators have become increasingly 

popular and are perhaps now the most commonly employed robust regression 

technique. They combine a HBP (50%) with good efficiency (approximately 95% 

relative to OLS under the Gauss-Markov assumptions). The ‘‘MM’’ in the name 

refers to the fact that more than one M-estimation procedure is used to calculate the 

final estimates. These estimators are redescending M-estimators as defined in (3.9), 

but where the scale is fixed at sσ̂ . The preliminary S-estimator is obtained from 

Equation (3.39). The objective function of MM-estimator is defined as 
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where sσ̂ is the robust estimator of scale as defined in (3.37). It has both the high 

breakdown property and a higher statistical efficiency than S-estimation. The MM- 

estimates are found that simultaneously have BP 0.5 and asymptotic efficiency for 

normal errors as close to one as desired. For both the initial S-estimate and the MM-

estimate, two different weight functions can be used: Tukey’s bisquare function and 

an optimal weight function introduced in Yohai and Zamar (1988). It is common to 

use a Tukey’s bisquare ρ (.) function for both the preliminary S-estimator and the 

final MM-estimator. Tukey’s bisquare functions ( )c.;ρ  and ( )c.;ψ  are as follows: 

 

( )








>

≤





+






−








=
,1

33;

246

ceif

ceif
c
e

c
e

c
e

ceρ  

 

 

       (3.44) 

 

 

The Yohai and Zamar optimal functions ( )c.;ρ  and ( )c.;ψ  are as follows: 
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(3.45) 

 

 

where  

  g1 = -1.944,     g2 = 1.728 ,     g3 = - 0.312 ,  g4 = 0.016    

      h1 =  g1/2,        h2 = g2 /4 ,         h3 = g3 /6,              h4 = g4 /8. 

 

Yohai and Zamar (1988) showed that the ρ (.) and ψ -functions given above 

are optimal in the following highly desirable sense: the MM-estimate has a BP of one-

half, and minimizes the maximum bias under contamination distributions (locally for 

small fractions of contamination), subject to achieving a desired efficiency when the 

data is Gaussian. The Gaussian efficiency of the MM-estimate is controlled by the 

choice of the tuning constant c. 

 The preliminary S-estimator gives guarantee of a HBP, and the final MM-

estimator allows a high Gaussian efficiency. The tuning constant c can be set to 1.547 

for the S-estimator, to guarantee a 50% BP, and it can be set to 4.685 for the MM-

estimator in Equation (3.43) to guarantee a 95% efficiency of the final estimator. If c 

= 2.697, the efficiency of the MM-estimator will be 70%. For computing the MM-

estimator, the IRLS algorithm can be used, taking sβ̂  as initial value. 
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3.11 Minimum Volume Ellipsoid Estimator  

In the minimum volume ellipsoid estimator (MVE), proposed by Rousseeuw 

(1984), an ellipsoid of the smallest volume with a subset of h objects (no 

contaminated data) is constructed. In one of the proposed iterative algorithms, n + 1 

object is selected iteratively at random in each of iterations and their mean and 

covariance are determined. Then, the ellipsoid containing exactly h = ((n + p + 1) /2) 

data objects is found by deflating or expanding the data covariance. The steps of the 

algorithm are repeated until the subset of h objects yielding the smallest volume of the 

covariance ellipsoid is found. 

The MVE estimator has highest possible BP value (50%). Geometrically, the 

estimator finds the minimum volume ellipsoid covering, or enclosing a given set of 

points. The MVE estimator is a generalization of the LMS estimator for high 

dimensional data sets, with the extra property of being equivariant to translation, 

scaling, orthogonal projection and affine transformations.  

The objective function of MVE estimator is based on the h th quantile dh:N of 

the Mahalanobis-type distances d = (d1,…,dN), 

 FMVE  = ( ) min1
1

:
2 →∑

=

h

i
Nie

h
                                 (3.46) 

subject to dh:N= 2
05.0,nχ , where C is the scatter matrix estimate, and the 

Mahalanobis-type distances are computed as 

 

                                        d = ( ) ( )




 −− − TXCTXdiag T 1                                   (3.47)        

where T is the center of minimal volume ellipsoid covering h points of X. The 

covariance estimator of this is given by the ellipsoid. Because of the transform 

bxAx +→ is an ellipsoid where A and b are the constants, MVE is an affine 

equivariant estimator such that any transformation on x does not affect the MVE.  

 

3.12 Minimum Covariance Determinant Estimator  

The minimum covariance determinant (MCD) method of Rousseeuw (1984) 

aims to find h observations out of n whose covariance matrix C has the lowest 

determinant. Since the covariance matrix is an n×n symmetric positive definite 

matrix, all p eigenvalues are positive. Furthermore, the determinant of a covariance 
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matrix equals the product of the p eigenvalues. Near linear dependencies among the 

set of p variables produce near-zero eigenvalues. Thus, a small value in the 

determinant reflects some linear patterns in the data. Consider all n
hC subsets, and 

compute the determinant of the covariance matrix for each subset. The subset with the 

smallest determinant is used to calculate the usual p×1 mean vector, m, and 

corresponding p×p covariance matrix, C. These estimators are called the MCD 

estimators. 

In terms of asymptotic properties, the MCD is preferred over the MVE. Both 

have an [(n - p - 1) / 2] / n BP, which is 50% asymptotically. Both are also affine 

equivariant. However, the MCD converges as n−1/2 while MVE converges as n−1/3. 

Thus, MCD has higher efficiency than does MVE.  

 

3.13 Residual Autocovariances Estimators  

Bustos and Yahoi (1986) proposed a new class of estimators that are based on 

residual autocovariances (RA estimators). The basic idea behind the RA estimates is 

to exhibit the OLS estimates in a form that involves (the usual nonrobust) covariance 

estimates of residuals, and then make OLS robust by making the covariance estimates 

robust in a natural way. Consider the OLS estimates by minimizing the following 

residuals sum of squares 

 ( )λ∑ 2
tr     (3.48)        

where λ = (Φ,θ, μ), the residuals ( )λtr  are defined by 

( ) ( ) ( )( ),1 µφθλ −= −
tt ZBBr  

and it is assumed that µ=tZ for t ≤ 0. The residuals can be computed recursively 

from 

( ) ( ) ( ) ,1111 qtqtptpttt rrZZZr −−−− +++−−−−−−= θθµφµφµ   

for t ≥  p +1, with initial conditions .01 === +−qpp rr   Differentiating the Equation 

(3.48), the following system of p + q + 1 equations was obtained for the OLS 

estimates. 
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It is easy to show from ARMA (p, q) processes 

 

 ( )( ) ( ) tt rBZB θµφ =−   that  (3.50)
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where stationarity and invertibility of ARMA process ensures that ( )B1−φ  and ( )B1−θ  

exit. By replacing parameter values with estimated parameter values in (3.51) and 

using the result in (3.49), the OLS estimates which will satisfy the following 

equations were gained.  
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Call si = si(φ), 0 ≤ i ≤ ∞, the series expansion coefficients of the operator ( )B1−φ  and 

( )θii tt = , 0 ≤ i ≤ ∞, those of ( )B1−θ ; that is, 
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Then, (3.52) can be written as  
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Using the initial conditions tr  = 0 for t < p + 1 and interchanging the order of 

summations, it can be seen as shown below 
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where 

                                       (3.54)                                            

 

The class of robust RA estimates can be defined by making the residual covariances 

iγ  robust. This may be done by replacing the iγ (λ) in (3.53) by 

   ( ) ( ) .,...2,1,ˆ/,ˆ/
1
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++=

− irr
T

ipt
itti σσηλγ    (3.55) 

 

In the last Equation of (3.53), tr  is replaced by ( )σψ ˆ/tr , where 

RRandRR →→ :: 2 ψη  are bounded and continuous functions and σ̂  is a robust 

estimate of the scale of the ta ’s. Then, the RA estimates are defined by the following 

 p + q + 1 equations: 
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σ̂ is computed simultaneously using,  

                            (3.57)          

 

It was assumed that η is odd in each variable and ψ is odd. Therefore, if the 

distribution of the innovations ta is symmetric, the RA estimates will be Fisher 

consistent. This is because in this case we have 
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where 0λ  is the true parameter and  
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Two ways of selecting η are  
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where ψ is a continuous and odd function. They may be chosen, for example, to be in 

the Huber family given by 

 

                                (3.60)     

 

where sgn (u) is the sign function. 

 Another possibility is to take the ψ-function in a redesending family – for 

example, in the bisquare family proposed by Beaton and Tukey (1974). This family is 

defined by 

(3.61)                           

  

 If η (u,v) = ψ(u)v , then the RA estimate given by (3.56) is asymptotically 

equivalent to the M-estimate minimizing 
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+= pt
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where .ψρ =′   

Therefore the class of RA estimates contains the class of M-estimates. In 

particular the OLS estimate is obtained putting η (u,v) = uv and ψ(u) = u. Since the sh 

and th decay exponentially, for numerical computations it is not necessary to consider 

all of the terms in the first p + q equations of (3.56).  

 

3.14 Approximate Conditional Mean Robust Filter  

( ) ( ) ( ),,minsgn, cuuucH =ψ

( ) ( ) .0,/1 222
, cucuuucB ≤≤−=ψ
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Martin (1979) proposed the approximate conditional mean robust filter 

estimator. These robust filters are nonlinear functions of the data which are designed 

to give good estimates of tZ in the presence of outliers. A class of robust filter 

cleaners which are used to obtain the one-step-ahead predictions 11 ˆˆ −− = t
t

t
t ZY , and 

thereby compute the prediction residuals 1ˆ −−= t
ttt YYu  appearing in the loss function. 

These filter cleaners are sometimes called approximate conditional mean type (ACM) 

filter cleaners because of an approximate optimality result are obtained. The term 

filter refers to an estimate tẐ  of tZ  which is based on the present and past data 

( ) .,...,1
′= t

t YYY The filter cleaner computes robust estimates tẐ  of the vector tZ  

according to the following recursion: 
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where 2/ ttt sm=ρ , with tm  being the first column of the k×k matrix tM , which is 

computed recursively as  

                                      (3.64) 
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The ψ  is a robustifying psi-function, ,2 rrQ ′=σ  r  is a k×1 column vector defined as 

( )′−−− −121 ,...,,,1 kθθθ with iθ  = 0 for i > q in case p > q. w  is a weight function which 

is given as follows: 

 ( ) ( )
u
uuw ψ

=                                 (3.66) 

The time-varying scale ts is defined by 

 

                                             (3.67) 

 

where tm ,11  is the 1-1 element of tM , the robust one-step-ahead predictors of tY  and 

tZ  are 

,1 QPM tt +Φ′Φ=+

,,11
2

tt ms =
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 ( ) ,ˆˆˆ
11

11
−

−− Φ== t
t
t

t
t ZZY                       (3.68) 

and the cleaned data at time t is given by 

 

                                             (3.69) 

With the scaling (3.67), we will have tt YZ =ˆ  a large fraction of the time when there 

are rather few outliers in the series. This is we use the term filter cleaner. The weight 

function w  should have the same qualitative properties as a good robustifying ψ - 

function, namely: boundedness, continuity and perhaps compact support. A common 

compact support for ψ  and w  results in the following desirable behavior of the filter 

cleaner: if an observation tY  deviates from its prediction 1ˆ −t
tY  by a sufficiently large 

amount, then tẐ  will be the pure prediction 1
ˆˆ
−Φ= tt ZZ , and the filtering-error 

covariance is set equal to the one-step prediction-error covariance .tt MP =  The later 

idea has often been implemented as a so-called hard-rejection rule: set 1
ˆˆ
−Φ= tt ZZ  and 

tt MP =  if ,tt scu >  replacing (3.67) by 2
0,11

2 σ+= tt ms  in general noise component. 

Typically, c = 3 has been used according to a time-honored habit, and the procedure 

accordingly is termed a 3- sigma- edit rule. This corresponds to the choices 
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The two-part redescending ψ -function is as follows: 
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CHAPTER IV 

ROBUSTNESS IN REGRESSION MODELS 

 

Regression analysis is an important tool for any quantitative research. For the 

regression analysis, OLS method can produce bad estimates when the error 

distribution is not normal, particularly when the errors are heavy-tailed. It explores the 

relationship between dependent and explanatory variables. Many hypotheses claimed 

by economic theories can be tested by applying a regression model on real world data. 

The OLS method is a mostly applied method in regression technique. The application 

of this specific method requires several assumptions. A researcher should be aware of 

the fact that the OLS method performs poorly if these assumptions are not fulfilled.  

In the last two centuries, various strategies were introduced to test whether the 

model assumptions are fulfilled or not. Besides, various more general regression 

techniques are available based on less stringent conditions. Until the mid-20th century, 

violations of the model assumptions were treated independently from any common 

error source. But in particular, outlying observations within the data can cause 

violations of model assumptions and thereby it can have a huge impact on regression 

results. 

Robust regression analyses have been developed as an improvement to OLS 

estimation in the presence of outliers and provide information about what a valid 

observation is and whether this should be thrown out. The primary purpose of robust 

regression analysis is to fit a model which represents the information in the majority 

of the data. In this context, robust regression is to employ a fitting criterion that is not 

as vulnerable as OLS to unusual data. One remedy is to remove influential 

observations before using the OLS fit.  

Robust regression analysis provides an alternative to an OLS regression model 

when fundamental assumptions are unfulfilled by the nature of the data. When the 

estimates of the parameters of statistical regression models and tests assumptions, it is 

frequently found that the assumptions are substantially violated. Sometimes, the 

variables can be transformed to confirm to those assumptions. Often, however, a 

transformation will not eliminate or satisfy the leverage of influential outliers that bias 

the prediction and distort the significance of parameter estimates. Under these 
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circumstances, to the best of the present researcher's knowledge, robust regression 

that is resistant to the influence of outliers may be the only reasonable remedy. This 

chapter focuses on the (robustness-) performance of estimators if outliers occur within 

the data set. 

In this chapter, section 4.1 introduces the linear regression models. The OLS 

estimates for regression model are discussed in section 4.2. Section 4.3 describes the 

types of outliers that can be found in regression analysis and discusses the methods of 

outlier detection. Section 4.4 is mainly concerned with the some robust estimates 

(LAV, M, MM, LMS and LTS) that are applied to the simulated as well as real data in 

regression analysis. In this section, the computation algorithms of these estimators are 

described. Robustness in dummy variable is presented in section 4.5. In this section, 

the RDL1 estimates and its computation algorithm is discussed. In section 4.6, these 

robust estimates are applied to the simulated data as well as real data to illustrate how 

the robust methods outperform the OLS when data contain the outlying observations.    

 
4.1 Linear Regression Model 

Regression analysis is a statistical method that utilizes the relation between 

two or more quantitative variables so that one variable can be predicted from others. 

The linear regression model is written as follows: 

 

 iippii xxy εβββ ++++= 110                            (4.1) 

for ni ,...,2,1=  where iy stands for the response variable and 1ix to ipx are the 

regressors (explanatory variables). The constant term is denoted by 0β . Classical 

theory, be assumed as the iε  have a Gaussian distribution with mean 0 and 

variance 2σ . The parameters pβββ ,...,, 10 and σ are estimated from n observations of 

the form ( ).,,...,1 iipi yxx  Applying a regression estimator to the data yields p + 1 

regression coefficients .ˆ,...,ˆ
0 pββ  The residual ie of case i is defined as 

 ( ) ( ).ˆˆˆˆ,...,ˆ
1100 ippiipi xxye βββββ +++−=                       (4.2) 

                     

  Although coefficients can be estimated in several ways, the underlying idea is 

usually applied to get as close as possible to the true value by reducing the magnitude 

of the residuals, as measured by an aggregate prediction error. There are various 
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methods for estimation of regression coefficients in the above linear regression model 

(4.1). The most commonly used is the method of least squares. In the case of the well-

known OLS, this aggregate prediction error is defined as the sum of squared residuals. 

This method was discussed in the following section. 

 

4.2 Ordinary Least Squares Estimates for Regression Model 

A linear regression analysis, one of the most important statistical tools, is very 

useful for many fields. Almost regression analysis relies on the method of least 

squares for estimation of the parameters in the model. The OLS regression method of 

Gauss and Legendre computes the parameters )ˆ,...,ˆ( 0 pββ that minimize the sum of 

squares of ( )pie ββ ˆ,...,ˆ
0 .  Formally, it can be written as 

 ( )∑ =
=

n

i ieQ
p

1
2

ˆ,...,ˆ
.min

0 ββ
                                     (4.3) 

                                                                                 

Q is the sum of the squared vertical deviations from the hyperplane 

.110 pp XXH βββ +++=   Taking the derivative of (4.3) with respect to 

( ),,...,, 10 pβββ=β  obtain the normal equations  

 YXβXX TT =ˆ                      (4.4)           

and solving these equations give the least squares estimator of β  

 ( ) YXXXβ T1T −
=ˆ .    (4.5)        

The vector of predicted or fitted values is HYβXY == ˆˆ  where 

( ) T1T XXXXH −
= is called the hat matrix. The i th entry of Ŷ is the i th fitted value 

(or predicted value)  ββββ ˆˆˆˆˆ
,1,10

T
ipipii xXXY =+++=   for observation Yi while the i 

th residual is  .îii YYe −=  The vector of residuals is e = (I −H)Y. The OLS criterion 

allows computing the coefficients explicitly from the data and is optimal if the errors 

ei follow a Gaussian distribution. Recently, people have realized that actual data do 

not often satisfy Gauss’ assumptions, and it can have dramatic effects on the OLS 

results. One of the basic assumptions of regression analysis is equality of the error 

variance along the predicted line: a condition called homoskedasticity which provides 

a degree of uniformity to the confidence intervals. If the residual distribution is 

normally distributed, the analyst can determine where the level of significance or 
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rejection regions begin. Even if the sample size is large, the influence of the outlier 

can increase the local and possibly even the global error variance. This inflation of 

error variance decreases the efficiency of estimation. 

Another form of violation resides in the lack of independence of observations. 

When this happens, the R2, F and t values become inflated. Failures of these 

assumptions can influence output toward false statistical significance. However, 

failure of basic classical regression model assumptions can be detected using the 

proper tests. Another assumption is a normality of the residuals. When there are 

violations of normality assumption of the residuals in OLS regression analysis, the 

estimation of significance becomes impaired.  

Several assumptions need to be judged whether the OLS regression model is 

valid or not. When the regression model does not meet the fundamental assumptions, 

the prediction and estimation of the model may become biased. Residuals, differences 

between the values predicted by the model and the real data, which are very large, can 

seriously distort the prediction. When these residuals are extremely large, they are 

called outliers. A problem encountered in the application of regression is the presence 

of an outlier or outliers in the data. Small sample taken from a different population, 

which has outliers, can have an impact on statistical inference. Even one outlying 

observation can destroy OLS estimation, resulting in parameter estimates that do not 

provide useful information for the majority of the data. The outliers will make the 

error variance inflate. The confidence interval becomes stretched. The estimation 

cannot become asymptotically consistent. When outliers inflate the error variance, 

they undermine the model of power to detect the outliers. 

OLS regression possesses the lowest possible breakdown point of 1/n, where n 

denotes the number of observations. This indicates that OLS cannot handle a single 

outlier because one outlier can be sufficient to move the coefficient estimates 

arbitrarily far away from the actual underlying values. Thus, outliers cause unreliable 

coefficient estimates if OLS is applied. This weakness of OLS estimation in outlying 

observations has been demonstrated in various studies (Hampel et al., 1986, Huber, 

1973, and Rousseeuw and Leroy, 1987).  Reliable results are provided by OLS if and 

only if outlier diagnostic and treatment tools such as robust regression methods or 

robust regression diagnostics are applied as well. A least squares analysis assigns 

weights to each observation equally in achieving the parameter estimates. Therefore, 

it has to be sensitive to outlying cases. The robust methods, however, enable the 
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observations to be weighted unequally, so that observations with large residuals are 

down-weighted. The application of these methods ensures the non-inclusion or the 

appropriate down-weighting of outliers in the analysis.   

A drawback of OLS is that, by considering squared residuals, it tends to award 

an excessive importance to observations with very large residuals and, consequently, 

distort parameters' estimation in case of existence of outliers. That is why the outliers 

in regression are needed to discuss as shown below before discussing robust 

estimation procedures.  

 

4.3 Outliers in Regression 
 

Outliers play an important role in regression. Outliers in the response variable 

represent model failure. Such observations are called outliers. Outliers with respect to 

the predictors are called leverage points. They can affect the regression model, too. 

Their response variables need not be outliers. Observation whose inclusion or 

exclusion results in substantial changes in the fitted model (coefficients, fitted values) 

is said to be influential. For this, about the types of outliers that can be found in 

regression analysis, their effects on regression coefficients and outliers detection were 

discussed in following subsection 4.3.1 and 4.3.2. 

 

4.3.1 Types of Outliers in Regression 

 According to Rousseeuw and Van Zomeren (1990), there are several kinds of 

outliers. They proposed vertical outlier, good leverage point and bad leverage point. A 

point (xi , yi) which  does not follow the linear pattern of the majority of the data but 

whose xi is not outlying is called a vertical outlier. A point (xi , yi) whose xi is 

outlying is called a good leverage point which follows the pattern of the majority, and 

a bad leverage point otherwise. To summarize, a data set can contain four types of 

points: regular observations, vertical outliers, good leverage points, and bad leverage 

points. Of course, most data sets do not have all four types. These types of outliers are 

shown in diagrammatic form. 

 Figure 4.1 shows these four types in simple regression. Point A clearly 

deviates from the typical linear relationship between the dependent (Y) and the 

independent (X) variable. Such ‘vertical’ outlier is characterized by an unusual 

observation in the dependent variable. The impact of vertical outliers on the 
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estimation of regression coefficients is usually small and mainly affects the regression 

intercept. If unusual observations occur in the set of independent variables, these 

outliers are called leverage points. If such leverage point deviates from the linear 

relationship described by the majority of observations it is called ‘bad leverage point’ 

such as Point B in Figure 4.1. Due to the exposed position of the outlier it has a 

leverage effect on the coefficient estimation. In contrast, a leverage point is called 

‘good leverage point’ if it does not deviate from the typical relationship. Good 

leverage points are no outliers and even improve the regression inference as these 

points reduce standard errors of coefficient estimates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Simple Regression Data with Points of All Four Types 

 

Rousseeuw and Van Zomeren (1990) pointed out that high leverages can 

affect the estimated slope of the regression line in OLS, thus they may cause more 

serious problems than other outliers which might only affect the estimated intercept 

term. Moreover, their occurrence in regression models may move to some low 

leverage as well as high leverage and it can turn in vice versa. These two concepts are 

called masking and swamping in linear regression (Rousseeuw and Leory, 1987). 

Furthermore, the range of explanatory variables increases when they exist in 

regression analysis. Thus, the multiple coefficient determination statistics (R2) which 

is a well known and popular measure of goodness-of-fit in the regression models will 

increase even by any changes of a single x variable (Ryan, 1997). In addition, high 
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leverages may be the prime source of collinearity-influential observations whose 

presence can make collinearity and can destroy the existing collinearity pattern among 

the x variables (Hadi, 1992). In this respect, the identification of high leverage points 

to prevent their effect on linear regression becomes necessary. 

 

4.3.2 Detection of Outliers in Regression Analysis  

Outlier detection is one of the most important tasks in data analysis. There are 

various methods for detecting outliers in the literature of regression analysis. A simple 

outlier diagnostic tool is the scatter plot that enables the detection of outliers in simple 

regression cases. However, this is impossible if the dimension of the problem exceeds 

the simple regression case and the number of observations is very large.  

Outlier diagnostics based on residual plots might suffer from outliers 

(Rousseeuw and Leroy, 1987), in particular for bad leverage points. Outliers can tilt 

the (original) regression line and have small regression residuals. Thus, outliers might 

not be discovered in residual plots. Other diagnostic tools are required to identify 

outlying or influential observations. However, they may involve additional problems. 

Studentized and jackknifed residuals, Cooks distances and other diagnostics based on 

hat matrix elements, for instance, are vulnerable to the so called masking effect. If 

more than one outlier occurs, these outlier diagnostics might not be able to detect a 

single one because one outlier can be masked by the presence of others.  

One way to identify possible multivariate outliers is to calculate a distance 

from each point to a center of the data. Mahalanobis distance (MD) is one of these 

well-known multivariate methods for detecting high leverage points as well. MD 

gives a one-dimensional measure of how a point is far from a location with respect to 

a shape. Utilizing MD, the points, which are unusually far away from a location are 

found and call those points outlying.  

 Although it is a reliable diagnostic tool for detecting high leverage points, it 

suffers from masking problem. Most of the classical diagnostic methods fail to 

identify the multiple high leverage points due to their masking effects. Data sets with 

multiple outliers are subject to problems of masking and swamping. Although it is 

still quite easy to detect a single outlier by means of the MD, this approach no longer 

suffices for multiple outliers because of the masking effect, by which multiple outliers 

do not necessarily have large MD. 
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Masking occurs when a group of outlying points skews the mean and 

covariance estimates toward these points and the resulting distance of the outlying 

point from the mean is small. While, swamping occurs when a group of outlying 

points skews the mean and covariance estimates toward these points and away from 

other inlying points and the resulting distance from the inlying points to the mean is 

large. Problems of masking can be resolved by using robust estimates of shape and 

location, which by definition are less affected by outliers. Multiple-case diagnostics or 

high-breakdown diagnostics have to be employed instead. Therefore, robust 

regression and outlier identification based on robust regression residuals for 

identification were applied and adequate treatment of outliers. Two robust estimators 

of multivariate location and scatter, MVE and MCD, have already been discussed in 

sections 3.11 and 3.12. 

Regression diagnostics aim to detect observations of one or more of these 

above stated types.  There are many numerical and graphic diagnostics for detecting 

outliers and leverage points. Among them three plots such as the Mahalanobis 

distance, the standardized residuals and the diagnostic plot were used for this study. 

These three diagnostics plots were discussed in the followings. 

 

(a)  Mahalanobis Distance  

Outlying points are less likely to enter into the calculation of the robust 

procedures, so they will not be able to influence the parameters used in the MD. The 

inlying points, which all come from the underlying distribution, will completely 

determine the estimate of the location and shape of the data. For a p-dimensional 

multivariate sample ( ),,...,2,1 nixi = the MD is defined as: 

 

 ( ) ( )( ) ( ) ( )( ) niforXTXXCXTXxMD i ,...,11 =−′−= −             (4.6) 

       

where: 

T(X) = The estimated multivariate location which is usually the multivariate   

arithmetic mean 

C(X) = The estimated covariance matrix which is usually the sample covariance 

Matrix. 
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If there are only a few outliers, large values of MD, indicate that the point xi is an 

outlier (Barnett and Lewis, 1978). Any value of which the MD exceeds the cutoff 

2
975.0,pχ is considered as outliers where p is the number of explanatory variables. 

 

(b) Standardized Residuals  

Standardized residuals are defined as 

                                                 (4.7)           

where σ̂ denotes a robust scale estimate based on the LTS residuals which is 

estimated from the Equation (3.29). Standardized residuals help us to distinguish 

between well-fitting and non-fitting observations by comparing their absolute values 

to some yardstick,  

compare σ̂/ie to 2.5. 

The yardstick 2.5 is used since it would determine a (roughly) 99% tolerance interval 

for ie if they had a standard Gaussian distribution. Since the standardized residuals 

approximate the ie , an observation can be considered as non-fitting if its standardized 

residual lies (far) outside this tolerance region. 

 

(c)  The Diagnostic Plot 

The diagnostic plot makes the complete classification into the four types. 

Rousseeuw and Leroy (1987) introduced the robust distance given by 

 ( ) ( )( ) ( ) ( )( ) niforXTXXCXTXxRD RRRi ,...,11 =−′−= −        (4.8) 

 

where, TR(X) and CR(X) are robust location and shape estimate such as MCD or 

MVE. By using a robust location and shape estimate in the RD, outlying points will 

not skew the estimates and can be identified as outliers by large values of the RD. 

Unfortunately, using robust estimates gives RD with unknown distributional 

properties. The use of 2
975.0,pχ  quantile as cutoff point for RD will be prone to 

declare some good, low leverage and high leverage points and often leads to 

identifying too many points as outliers (Rousseeuw and Van Zomeren, 1990). In 

general, each observation (xi) is given by weight  

 

σ̂/ie
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                      (4.9)                 

 

The resulting one-step reweighted mean and covariance matrix  
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have a better finite-sample efficiency than the MCD. The updated robust distances 

RD are then obtained by inserting T1(x) and C1(x) into (4.8). 

 

4.4 Robust Estimates for Regression Model 

Robust regression is an important tool for analyzing data that are contaminated 

with outliers. It can be used to detect outliers and to provide resistant (stable) results 

in the presence of outliers. The main idea of robust regression is to give little weight 

to outlying observations in order to isolate the true underlying relationship.  

In this section, the five robust estimators such as LAV, LMS, LTS, M, and 

MM-estimators were chosen to describe the calculation procedures. In the previous 

chapter, these estimators were discussed in detail. In this section, the computation 

algorithms of these estimators were explained vividly.  

 

4.4.1 Algorithm for Computing LAV Estimates   

The LAV algorithm is an iterative algorithm and it converges in a finite 

number of iterations. It can be described as follows:  

1.  Compute the initial estimates from a weighted least squares of absolute 

residuals. 

2.  Estimate the quantile of the dependent variable, the median, by taking the raw 

sum of absolute deviations around the unconditional median. 

3.  Find the regression coefficients that minimize the objective function. 

In our studies, it was found that the algorithm generally converges after a few less 

than 10 iterations. 
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4.4.2 Algorithm for Computing LMS Estimates  

The LMS algorithm is a resampling algorithm and it performs four steps. The 

key idea is to start with sub samples of size p are drawn from n observations. A 

detailed procedure is shown below: 

1. Drawing sub samples of size p from n observations. 

2.  A trial estimate Jβ is computed from each sub sample. 

3.  For each Jβ , the corresponding LMS objective function with respect to the 

whole data set can be determined. 

4. Repeat steps 1 until 3, and keep the estimate with lowest objective function 

value that is the fit with the lowest median of squared residuals is retained. 

Once the above algorithm has been carried out, it remains possible to assign 

weights to the observations based on their LMS residuals, and then to perform a 

reweighed least squares analysis.  

 

4.4.3 Algorithm for Computing LTS Estimates  

The LTS estimation algorithm is a resampling algorithm and starts from 

randomly drawn p-subsets. For each p-subsets the coefficients of the hyperplane 

through the points in the subset are calculated. Then the algorithm obtains the 

estimate with a lowest value for the objective function. The algorithm formally 

described in the following steps: 

1.  Draw a random subset of p observations. For small data sets it is possible to 

consider all p-subsets, whereas for larger data sets many p-subsets are drawn 

at random. 

2.  Compute hyperplane through these p observations and obtain an initial 

estimate of the slope and the intercept. 

3.  If regression with intercept, adjustment is made. 

4.  Evaluate the objective function at this estimate. 

5.  Repeat steps 1 until 4, and keep the estimate with lowest objective function 

value.  

 

4.4.4 Algorithm for Computing M-Estimates   

An iterative procedure is necessary to find M-estimates for regression. A 

single step is impossible because the residuals can not be found until the model is 
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fitted, and the estimates can not be found without the residuals. As a result, iteratively 

reweighted least squares (IRLS) is employed: 

1.  Setting the iteration counter at I = 0, an OLS regression is fitted to the data, 

finding initial estimates of the regression coefficients ( )0β̂ . 

2.  The residuals are extracted from the preliminary OLS regression, ei
(0), and 

used to calculate initial estimates for the weights. 

3.  A weight function is then chosen and applied to the initial OLS residuals to 

create preliminary weights, w(ei
(0)). 

4.  The first iteration, I =1, uses weighted least squares (WLS) to 

minimize ( )∑ 21
ii ew  and thus obtain ( )1β̂ . In matrix form, with W representing 

the n×n diagonal matrix of individual weights, the solution 

is ( ) ( ) WyXWXX TT 11ˆ −
=β . 

5.  The process continues by using the residuals from the initial WLS to calculate 

new weights, wi
(2). 

6.  The new weights wi
(2) are used in the next iteration, I = 2, of WLS to estimate 

( )2β̂ . 

7.  Steps 4–6 are repeated until the estimate of  β̂   stabilizes from the previous 

iteration. 

Specifically telling, at each of the q iterations, the solution 

is ( ) ( ) yWXXWX q
T

q
TI 1ˆ −

=β , where 
( )

( ){ }1−

×

= I
i

nn

wdiagqW . The iteration process 

continues until ( ) ( ) 0ˆˆ 1 ≅− −II ββ . Typically, the solution is considered to have 

converged when the change in estimates is no more than 0.01% from the previous 

iteration. The asymptotic covariance matrix of β̂  is 

( ) ( )
( )[ ]

1
2

2

)(ˆ −′
′

= XX
E
EV
ψ
ψβ

 

using ( )[ ]∑ 2
ieψ  to estimate E(ψ2), and ( )[ ]∑ ′ 2/ neiψ to estimate ( )[ ]2ψ ′E  produce 

the estimated asymptotic covariance matrix, ( )β̂V̂  (which is not reliable in small 

samples). 
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4.4.5 Algorithm for Computing MM-Estimates  

The MM-estimation algorithm consists of three steps. It can be described as 

follows: 

1.  To compute the S-estimators, it is necessary to select N subsets of p 

observation (defined as p-subset). For each p-subset, the equation of the 

hyperplane that fits all points perfectly is obtained yielding a trial solution of 

(3.43) and residuals are computed.  

2.  Based on these residuals obtained in step 1, a scale estimate is computed for 

each p-subset. An approximation for the final scale estimate is given by the 

trial value that leads to the smallest scale over all p-subsets. 

3.  At this stage, it is required to compute the final MM-estimates.   

 

4.5 Robustness in Dummy Variables 

In the previous sections, it was found that both response and regressors are 

continuous, but in practice, data can be mixed with both continuous and categorical 

regressor variables. Thus, dummy variables in regression needs to be considered. The 

classical linear regression model shown in (4.1) can alternatively be described as  

    ,
1

0 ∑
=

++=
p

j
iijji xy εββ  (4.11)    

where εi ~ N(0,σ2), ,,...,2,1 ni =  the explanatory variables xij are often quantitative. In 

real situation, qualitative variables can be included in regression model as explanatory 

variables. This situation often occurs in social sciences, where the explanatory 

variables may include gender, ethnic background, professional occupation, marital 

status and so on. 

If there are qualitative explanatory variables, then it is conventional in practice 

to encode such regressors by binary dummy variables. Extending model (4.11) to a 

model with continuous and discrete regressors, the model is expressed in the 

following form: 

    niIxy
p

j
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k
iikkijji ,...,1,

1 1
0 =+++= ∑ ∑

= =

εδββ                    (4.12) 

                           

where kI  denotes the dummy variable with elements either zero or one. The OLS 

method fits the model (4.12) in a nonrobust way. For instance, it is possible to apply 
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the standard calculations by processing the dummy variables in the same manner as 

the continuous ones, as described by Draper and Smith (1981) and Chatterjee and 

Price (1977). 

Unfortunately, the OLS method is very sensitive to outliers. Even a small 

fraction of contamination can influence the regression estimates. In the above stated 

model (4.12), both outliers in the y-direction and in the x-direction can occur. The p + 

q coefficients pββ ,...,1 and qδδ ,...,1 in (4.12) are estimated in a robust way. Armstrong 

and Frome (1977) developed a linear programming algorithm to obtain the least 

absolute values (L1) estimate. This approach is already more robust against outliers in 

the y-direction, but not against outliers in the x-direction which can still tilt the 

estimated hyperplanes.  

One of the mostly applied methods of robust regression is M-estimation (also 

OLS and L1 belong to this class). This approach can also be applied to the model 

(4.12), as done by Birch and Myers (1982) for the case of one categorical variable. 

One then has to solve a system of p + q + 1 implicit equations, using an IRLS 

algorithm. But M-estimators are still vulnerable to leverage points. 

Therefore, it seems natural to extend regression methods that are able to 

withstand a positive percentage of contamination, including leverage points. Typical 

examples are the LMS estimator and the LTS estimator (Rousseeuw, 1984), and the 

class of S-estimators (Rousseeuw and Yohai, 1984). However, Hubert and Rousseeuw 

(1996) pointed out that, these estimators in (4.12) can not be simply calculated by 

treating the dummy variables in the same way as the continuous regressors, since this 

would lead to a problem of singular matrices. The typical algorithm for LMS 

regression in the model (4.11) starts by drawing a subset of p + 1 observations. Then 

the hyperplane through these p + 1 points is obtained, and the corresponding objective 

function computed. This procedure is repeated often, and the best fit is kept. But in 

the case of p + q regressors of which q are binary variables, a large majority of the (p 

+ q + 1)-subsets will be of less than full rank, hence the hyperplanes cannot be 

computed.  

Therefore, RDL1 proposed by Hubert and Rousseeuw (1997), which is 

particularly used in the case when the regression model consists of binary regressors. 

They proposed the RDL1 estimator which can withstand contaminations in the data 

for model (4.12). RD stands for robust distance, and L1 indicates the least absolute 
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values method in the estimates of the regression coefficients. The computation 

algorithm of RDL1 estimates is described in the followings. 

 
4.5.1 Algorithm for Computing RDL1 Estimates  

The RDL1 consists of three steps: identifying leverage points, downweighting 

the leverage points when estimating the parameters, and estimating the residual scale.  

1.  In the first step, the MVE estimator introduced by Rousseeuw (1984) is 

applied to compute the robust RD for the continuous predictors. The RD have 

already mentioned in Equation (4.8) of subsection (4.3.2). These distances 

(4.8) are used to identify the leverage points for the space of continuous 

regressors and to be the weights for estimating the regression coefficients by a 

weighted L1 procedure at the second step. 

2.  In the second step, the parameters ( β, δ ) of model (4.12) are estimated by a 

weighted L1 procedure  

                                        ,min
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                                                                  (4.13)                     
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            applied to the observations .),...,,,...,,1,( 11 iqiipii IIxxy                   

3.      In the final step, the scale of the residualsσ̂  is estimated from the Equation 

(3.10).  

            The robust estimate )ˆ,ˆ,ˆ( σδβ can be used to detect regression outliers, by 

flagging the observations whose absolute standardized residual |e i /σ̂ | exceeds 2.5. 

The entire three-stage procedure is called the RDL1 estimation. The applications of 

RDL1 estimator to the simulated data as well as a real data are shown in section 4.6. 
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4.6  Simulation and Real Data Study 

In this section, simulated data as well as real data were used to analyze the 

effect of the outlier in regression by using the OLS method and robust methods. The 

statistical software packages namely S-PLUS 2000, STATA 10, and SPSS 13.0 were 

used to obtain the desire estimates throughout the analyses. In the following 

subsections, the performances of OLS and robust estimators were analyzed by 

simulations. Then, simulated data were used to show that the robust methods 

outperform the classical method in presence of outliers. The real data study was 

followed then. 

 

4.6.1 Simulation Study 

(a) Analysis of Outlier Robustness in Multiple Linear Regression  

 
To study the outlier robustness, a multiple linear regression model with three 

explanatory variables was used.  The data sets were generated from the following 

model: 

 niexy
p

j
iijji ,...,2,1,

1
0 =++= ∑

=

ββ                      (4.15) 

 where all regression coefficients are fixed 0β = 5 and jβ = 1, for each i = 1,2,…,n and  

j = 1,2,…,p. The explanatory variables were randomly generated from a normal 

distribution with mean 0 and unit variance. The errors were assumed to be i.i.d. 

with ( )5.0,0N .The data sets were generated under three regressors (p = 3) and the 

sample sizes were (n = 30 and n = 40) respectively. The true y's were calculated from 

the Equation (4.15). In this simulation study, two types of outlier namely vertical 

outlier and bad leverage point were studied because they give different effects in the 

estimation of parameters of the regression model.  After generating the data sets, two 

scenarios were considered in the following manners. They were seen as follows 

(i) outliers in the independent variable:  10% of the y observations set to be vertical 

outliers by multiplying constant number 5 and keeping the others. 

(ii) outliers in both y and x: 10% of both y and x observations were modified to be 

vertical outlier and bad leverage points and the remaining were unchanged. The 

vertical outlier was obtained by multiplying 5 to its y value and the bad leverage 

point was obtained by adding 10 to its x value. 
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All simulations were done with 100 replications. To measure the robustness, 

the bias (that is the average of the estimated parameters minus the true value) and the 

mean squared errors (that is the variance of the estimated parameters plus the square 

of the bias) were used.  For the first scenario, among the robust methods the LAV, M 

and MM-estimators were applied to this simulated data set because these estimators 

are robust subject to the vertical outliers. Then, this procedure was repeated 100 times 

and each time the parameters of OLS, LAV, M- (using Huber and Turkey) and MM-

estimators (with a 70%, an 85% and a 95% efficiency) were estimated. On the basis 

of all the estimated parameters, the bias and the MSE were computed and the results 

were presented in Appendix A, Table (A.4.1). Figure 4.2 summarizes the results of 

simulations where n = 30 and n = 40 observations and three predictors. Bars represent 

bias and MSE for each estimator.  

It is seen in Appendix Table (A.4.1) and Figure 4.2 that in the presence of 

vertical outliers, both the bias and MSE obtained from the MM-estimators (with a 

70%, an 85% and a 95% efficiency), Huber and Turkey-M, and LAV are much close 

to each other but inferior to the OLS estimator. Their patterns shown in Figure 4.2(a) 

to (d) are intermingled and so no methods have a preferable bias and MSE in this 

case.    

 In the case of second scenario, the LAV, M, MM, LTS and LMS estimators 

were applied to this simulated data set. The results are shown in Appendix A, Table 

(A.4.2) and Figure 4.3.  According to Figure 4.3, the bias and MSE obtained from the 

Huber and Turkey-M are the smallest, followed by the MM-estimators (with a 70%, 

an 85% and a 95% efficiency) and LTS estimator in presence of vertical outlier and 

bad leverage points. In this case, the LMS behaves differently but just slightly, and 

have a bias and an MSE comparable to that of Huber and Turkey-M and MM-

estimators. The OLS method also indicated in Figure 4.3(a) to (d) performs much 

worst in these situations. Therefore, the low bias and MSE values of the Huber and 

Turkey-M and MM-estimators are in line with the asymptotic robustness properties. 

As expected, OLS is a relatively less efficient estimator whatever the type of outliers 

occurred in the data. 
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                          (a)                            (b) 
 
 
 

 

 
 

                         (c) (d) 

 

Figure 4.2     Bias and MSE of Simulated Data with Vertical Outliers 

Source: Appendix Table (A.4.1) 
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                               (a)                                                                       (b)  
 
 

 

                            (c )                                                                        (d) 

 

Figure 4.3 Bias and MSE of Simulated Data with Vertical Outlier and Bad 

Leverage Points 

Source: Appendix Table (A.4.2) 
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(b) Analysis of Distributional Robustness in Multiple Linear Regression  

Another simulation study was carried out to analyze the effects of outliers on 

parameter estimation. When performing such a simulation study, different error 

structures were taken into account. In this study, the multiple linear regression model 

with three explanatory variables was used. In this model, the intercept and slopes 

were equal to one. These explanatory variables were generated from standard normal 

distribution. In this simulation study, the errors which contain outliers were generated 

using heavy-tailed distribution (compare to standard normal distribution) such as 

logistic, Cauchy and skewed independent data sets like gamma and exponential 

distribution. Thus, the errors were simulated from the following densities: N(0,1), 

LOG(0,1), EXP(1), C(0,1), and GAM(1,0.5). Table 4.1 shows the notation and 

parameters of distributions, which are used in the simulation process. 

 

Table (4.1) Notation and Parameters of Distribution  

Distribution Notation and Parameters p.d.f. f(x) 

Normal ( )
0,

,,~ 2
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In each case, 10 replications were simulated and regression coefficients of 

OLS, LAV, Huber and Turkey M-estimates, LMS and LTS were calculated. To 

compare the properties of the estimation procedures, the mean squared errors (MSE) 

and bias of the estimated coefficients were computed using the following formulas  

( )
210

1

ˆ
10
1 ∑

=

−=
i

iMSE ββ  



 73   

∑
=

−=
10

1

ˆ
10
1

i
iiBiasAbsolute ββ  

Overall results of the methods under study and corresponding MSE and bias of 

10 simulations for each estimation method were shown in Appendix A, Tables (A.4.3 

to A.4.7) and Appendix B, Figures (B.4.1 to B.4.5). Those figures illustrate the results 

of MSE and bias for the coefficients of multiple linear regression model with three 

explanatory variables (p = 3). 

Based on the results of normal distributions, the bias of OLS is the smallest as 

expected, followed by the bias of Turkey and Huber-M, respectively. Moreover, in 

this case, the MSE of OLS is the smallest followed by the values of MSE of Huber 

and Turkey-M, respectively. It is found that, the OLS method is more efficient than 

the robust methods under normal error distribution. Thus, the low bias and MSE 

values of the OLS method are in line with the asymptotic robustness properties. In 

this normal distribution, the bias and MSE of LMS are much greater which followed 

by the biases and MSEs of LTS and LAV methods. The LMS method performs much 

worst in this case. [See in Appendix A, Table (A.4.3)] 

Yet, as for logistic distributions, the bias of OLS, Turkey-M and Huber-M are 

close to each other and perform better than LAV, LTS and LMS methods. In this case, 

the MSE of OLS, Turkey and Huber-M, LAV and LTS methods are much close to 

each other but this value for LMS is significantly larger. Furthermore, although biases 

and MSEs of OLS, Turkey and Huber-M are significantly smaller than the bias and 

MSE of LMS, their patterns as shown in Appendix B, Figure B.4.2(a) to (h) are 

intermingled and so no methods have a preferable bias and MSE in this situation. The 

bias and MSE of LMS are much greater than the others. [See in Appendix A, Table 

(A.4.4)] 

In exponential distributions, the LAV, LTS and Turkey-M are close to each 

other, but inferior to the Huber-M in terms of intercept. The bias of LMS is the 

smallest in this case. The OLS method as shown in part (a) of Appendix B, Figure 

B.4.3 performs much worst in these situations. The MSE of OLS, for this situation is 

much greater which followed by the MSE values of Huber-M, Turkey-M, LTS and 

LAV respectively. The MSE of LMS is the smallest in this case. As indicated in 

Appendix B, Figure B.4.3(c) to (h), the general pattern of the bias and MSE values for 
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all methods are intermingled so that no preferred method could be chosen for the 

study of slope coefficients.  [See in Appendix A, Table (A.4.5)] 

In Cauchy distribution, regarding intercept, the biases of the robust methods 

are so close to each other, but the OLS method as shown in Appendix B, Figure B.4.4 

(a) performs much worst in this situation. Furthermore, the MSE of OLS is 

significantly larger than the MSE of robust methods. The robust methods are so close 

to each other and their pattern as shown in Appendix Figure B.4.4(b) is intermingled. 

So, no methods have a preferable MSE in this case. The similar results are found in 

the study of slope coefficients. The OLS method performs much worst based on bias 

criterion in this study. The biases of LAV, LTS, Turkey and Huber-M and LMS are so 

close to each other. In this case, the MSE of OLS is significantly larger than the MSE 

of robust methods. From this study, it is found that, the general patterns of the bias 

and MSE values for all robust methods are intermingled so that no preferred method 

can be selected for this case. [See in Appendix A, Table (A.4.6)] 

In the case of gamma distribution, the intercept of LAV, LTS and Turkey-M 

are close to each other, but inferior to the Huber-M depending on bias criterion. In this 

situation, the bias of LMS is significantly smaller than the bias of other methods. The 

OLS method as described in Appendix B, Figure B.4.5(a) performs much worst. In 

addition, in this case, the MSE of LAV, LTS and Turkey-M are close to each other. 

The MSE of LMS is the smallest and performs better than the other methods. The 

OLS method as described in Appendix Figure B.4.5(b) performs much worst. 

Moreover, the bias and MSE of Turkey-M is the smallest in terms of the slope. It is 

closely followed by the bias and MSE values of Huber-M, LAV, LTS and OLS.  [See 

in Appendix A, Table (A.4.7)]  
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(c) Analysis of Effect of Outliers in Multiple Linear Regression Model with 

Categorical Variable 

 
Next, to show the fact that the robust procedure outperforms the classical 

procedure in dummy variable regression model, simulation with data set contaminated 

by different types of outliers was carried out. Observations can be classified into good 

data, good leverage points, vertical outliers, and bad leverage points in regression 

analysis. Taking this idea, a set of observations consisting of these four types of 

model (4.12) with two continuous variables (p = 2), one categorical variable (q = 1), 

and n = 30 was used. The data were generated by the following model 

 

 iiiii Ixxy ε++++= 1219 , i = 1,…,30,            (4.16) 

 

where both 1ix  and 2ix follow a standard normal distribution, 1iI is a binomial 

distribution with a success rate 0.5, and iε is a normal distribution with mean zero and 

standard deviation 0.5. Once these 30 observations have been generated, cases 25 and 

26 are then set to be vertical outliers by doubling their y values and keeping the 

others. Cases 27 and 28 are bad leverage points by adding 9 to their x1 values and 

keeping the others as well. Case 29 and 30 are good leverage points by adding 9 to 

both x1 and x2 values and reproducing the corresponding y values as model (4.16). 

The resulting simulated data are presented in Appendix A, Table (A.4.8). The RDL1, 

LTS and OLS estimates are applied to these simulated data and results are 

summarized in Table (4.2).  

 First, the RDL1 estimate is applied to these simulated data. Part (a) of 

Appendix Figure B.4.6 shows the standardized residuals. Case 25, 26, 27, 28, 29, and 

30 are revealed as outliers. This is due to the fact that the weight (4.14) is calculated 

by the continuous design matrix without considering the model fitting. The resulting 

weights are shown in Appendix B, Figure B.4.6(b). Therefore, case 27, 28, 29, and 30 

are outlying observations from X space and will be given relatively small weights as 

shown in part (b) of Appendix Figures B.4.6. This makes case 29 and 30 become bad 

leverage points in the diagnostic plot of Appendix Figure B.4.6(c). The cutoff values 

are indicated ± 2.5 and  2
975.0,2χ  by horizontal and vertical lines. These results point 
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out that the RDL1 method results in the swamping effect due to its weights for the L1 

procedure obtained from the application of continuous design matrix. 

Thus, the LTS method is applied using the same data. Parts (a), and (b) of 

Appendix B, Figure B.4.7 show the results of robust standardized residuals and the 

diagnostic plot, respectively. From part (a), the LTS procedure identifies cases 25, 26, 

27, and 28 to be outliers. It gives weight 1 for both cases 29 and 30. The 

corresponding diagnostic plot also divides all points into the right categories as the 

original configuration of these data being generated. The fit from the LTS method 

ignores outlying observations, which gives the MSE of 0.3042. 

Next the OLS method is applied using the simulated data. Both the visual 

sketch [Figure 4.4(a)] and the large MSE of OLS for the simulated data set argue that 

the data are highly influenced by outliers. The OLS regression estimators often break 

down in the presence of vertical outliers or bad leverage points. It is evident from the 

graphical sketch of data as the OLS line is pulled towards the middle of the two 

groups of the data points rendering it an unrepresentative line.   A Gaussian Q-Q plot 

Figure 4.4(b) confirms that the residuals are roughly normally distributed. Only a 

small number of outliers cause the distribution to be heavier-tailed.  

According to the result of LTS analysis, the observations (25, 26, 27, and 28) 

gained from the simulated data are excluded and the remaining data are rerun using 

the OLS method. Table (4.3) presents the regression results for the two techniques. 

New regression represents the regression results after eliminating the outlier found 

through LTS analysis. The intercept and slope coefficients changed and all are 

statistically significant at 1% level. The fact that the F and R2 values increased 

indicates that the new regression is well matched with those remaining data. The OLS 

line fits the simulated (non-contaminated) data well with a reasonable MSE of 0.1230. 

Figure 4.5(a) shows the OLS residuals without considering the cases 25, 26, 27, and 

28. Cases 29 and 30 are obviously located near the regression surface. Figure 4.5(b) 

suggests that the residuals are approximately normally distributed.  

 This simulation also shows that the RDL1 regression clearly outperforms OLS 

regression as well as LTS regression. The OLS regression is the best when data are 

free from outliers. 
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Table (4.2) OLS, LTS and RDL1 Regression Models Fitted to the Simulated Data 

 
 

Method 

Coefficients 
 

 
MSE 

Constant x1 x2 1iI  
OLS 8.84*** 0.43** 1.34*** 2.47** 6.1504 

LTS 9.22*** 1.16** 0.72*** 1.37*** 0.3042 

RDL1 8.94*** 0.82*** 0.77*** 1.40 *** 0.1849 

            Note: (1) Significant at *** 1%, **5%, * 10% 

Source: Appendix Table A.4.8 

 

 

Table (4.3) Regression Results  

 
OLS Regression New OLS Regression 

 
Variable Coefficient Standard Errors 

of Coefficients 
t 

Statistics 
Coefficient Standard Errors 

of Coefficients 
t 

Statistics 
Constant 8.8410  *** 

 
0.5926 14.9203 9.1344*** 0.0872 104.7172 

x1 0.4276  ** 
 

0.1737 2.4611 1.0139*** 0.0412 24.6214 

x2 1.3386  *** 
 

0.2355 5.6847 0.9480*** 0.0504 18.8205 

1iI  2.4729  ** 
 

0.9456 2.6153 0.9954*** 0.1484 6.7095 

MSE = 6.1504,    R2 = 0.7995,      F = 34.55*** MSE = 0.1230, R2  = 0.996,  F =2046.865*** 

   Note:  (1) Absolute value of t statistics in parentheses  

  (2)  Significant at *** 1%, **5%, * 10% 

   Source: Appendix Table A.4.8 
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Figure 4.4  Simulated Contaminated Data Set Using the OLS: (a) scatter plot     
                         with OLS line; and (b) quantiles standard normal plot 
Source: Appendix Table A.4.8 
 
 
 
 

Fitted : x1 + x2 + x3

y

10 15 20 25 30

1
0

1
5

2
0

2
5

3
0

Quantiles of Standard Normal

R
e
si

d
u

a
ls

-2 -1 0 1 2

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

4

21
20

 
   (a)           (b) 
 
 
 
Figure 4.5  Simulated Non-contaminated Data Set Using the OLS: (a) scatter  
                         plot with OLS line; and (b) quantiles standard normal plot  
Source:  Appendix Table A.4.8  
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4.6.2 Simple Linear Regression Using Real Data Study 

 In order to study the effect of regression outliers, it is required to start with 

simple linear regression. An attempt was made to explain the export of maize as a 

function of the production of maize. The required data set was taken from the 

Statistical Year Books. In this study, the dependent variable was the export of maize 

(Thousand Metric Tons) and the independent variable was the production of maize 

(Thousand Tons). The other factors such as sown acres and price etc. were not 

considered in this study. Only the export of maize related with the production was 

considered for the study. The scatter plot of export versus production was shown in 

the part (a) of Appendix B, Figure B.4.9. It shows that there exists a linear 

relationship between them and some outliers appear. The linear regression model of 

export of maize on the production of maize can be written as follows: 

                 (4.17)                    

where, 

 EXP    = export of maize 

 PROD = production of maize  

 0β  = intercept 

1β  = slope 

tε  = error.  

All of the computed results from OLS method are summarized in Appendix A, 

Table (A.4.10). It is clear that from this table that the intercept is statistically 

insignificant but the slope is highly significant at 1% level.  As expected, the 

production of maize coefficient is positive. The F value is 37.943 which is highly 

significant at 1% level and the coefficient of determination (R2) is 0.558. This result 

shows that the production of Maize explains about 56 percent of the variation in 

export of maize. This value may signal that additional explanatory variables should be 

considered in the model or curvilinear regression. Moreover, Durbin-Watson (D.W.) 

statistic is 1.770 which lies between ud = 1.502 and 4 - ud  = 2.498. This result 

suggests that there are no serially correlated residual values in the estimated model 

(4.17). Furthermore, residual analysis can be used to evaluate the appropriateness of 

the regression model that has already been fitted to the data.  

First, the residuals of the fitted model are checked whether they satisfy the 

normality assumption by drawing the normal probability plot which is shown in part 

ttt PRODEXP εββ ++= 10
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(a) of Appendix B, Figure B.4.8. It shows that most of the points differ from the 

straight line. As a result of this, the residuals of the fitted model are not normally 

distributed. After that, it needs to confirm whether the variance of the residuals is 

constant or not. Then, the standardized predicted values are drawn on the horizontal 

axis against the corresponding standardized residual values on the vertical axis as 

shown in part (b) of Appendix Figure B.4.8. From this figure, a funnel shape is clearly 

seen. Thus, it can be concluded that the assumption of equal variance is violated. 

These results suggest that the transformation is needed. The model (4.17) can be 

transformed (by taking natural logarithms of both the dependent and independent 

variables) into the following model and then the regression was rerun using the 

transformed variables in place of the original variables. Thus, a new regression model 

can be described as follows: 

 ttt ePRODEXP +′+′= lnln 10 ββ                             (4.18)  

where 

00 ln ββ =′  

11 lnββ =′  

.ln tte ε=  

In this new regression model, the log of export maize is the dependent variable 

and the log of production of maize is the independent variable. From this model, the 

parameters are estimated and the results are shown in Appendix A, Table (A.4.10). 

This Table suggests that the regression coefficients are statistically significant at 1% 

level. Furthermore, the F value is highly significant at 1% level. Moreover, the value 

of D.W. is 1.28 < ld = 1.373. The low D.W. statistic of 1.28 strongly suggests the 

presence of positive first-order serial correlation. In order to correct for the presence 

of positive first-order serial correlation, the Cochrane-Orcutt iterative procedure is 

used to estimate ρ (correlation coefficient) from the estimated residuals of the new 

model. Then, both variables (dependent and independent variables) of the new model 

are transformed by using ρ̂ . Next, another regression model which can be denoted as 

transformed model is developed and proceeded to the usual OLS estimation. The 

transformed model can be shown as follows: 

 

  (4.19)              
ttt uPRODEXP ++= **

1
*
0

* ββ
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where 
*
0β   ( )ρβ ˆ10 −=  

*
tEXP   ( )1lnˆln −−= tt EXPEXP ρ  

( )1
* lnˆln −−= ttt PRODPRODPROD ρ   

tu   ( ).ˆ 1−−= tt ερε  

The results of transformed model are also shown in Appendix A, Table 

(A.4.10). From this Table, it is observed that the intercept is significant at 10% level 

and the slope is statistically significant at 1% level. Moreover, the value of F of the 

transformed model decreases to 13.604. According to the part (c) of Appendix Figure 

B.4.8, the residuals of transformed model do not satisfy the normality assumption. 

According to Appendix Figure B.4.8(d), the pattern in it is not so clear that it inclines 

to suspect heteroscedasticity. Based on this result, it can be concluded that the 

transformed model does not fit the data. 

Appendix B, Figure B.4.9(a) depicts a situation in which there is a significant 

simple linear relationship between production and export of maize. However, it would 

be possible that a curvilinear model between the two variables might be more 

appropriate. Thus, it can be deduced from Appendix Figure B.4.9(a) that the 

curvilinear model may be a better fit and should be evaluated in place of the simple 

linear model. The curvilinear relationship between the production of maize and the 

export of maize can be expressed as follows: 

  

                      (4.20) 

 where, 

 0β = intercept 

 1β  = linear effect on Export 

 11β = curvilinear effect on Export 

 tε   = error. 

An alternative approach to the curvilinear regression model in Equation (4.20) is to 

center the data by subtracting the mean of the explanatory variable from each value in 

the model. This centered regression model can be described as 

 

          (4.21) 

tttt PRODPRODEXP εβββ +++= 2
1110

.)()( 2
1110 tttt meanPRODmeanPRODEXP εβββ +−+−+=
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The values of the three regression coefficients ( 0β , 1β , and 11β ) in model (4.21) are 

estimated and  the results are shown in Appendix A, Table (A.4.11). In this table, the 

regression coefficient ( 11β ) is statistically significant at 5% level. Based on this result, 

it can be noted that the curvilinear model is significantly better than the linear model 

in representing the relationship between export and production of maize. Moreover, 

the regression coefficient ( 1β ) is statistically significant at 1% level. This result 

implies that the curvilinear model that includes the linear effect is significantly better 

than the model that includes only the curvilinear effect. The value of R2 is 0.644 

which can be interpreted to mean that 64.4% of the variation in export can be 

explained by the curvilinear relationship between export and production. Based on the 

result of F value, it can be remarked that there is a significant curvilinear relationship 

between production and export of maize.  

After estimating of regression, the aptness of the fitted regression model is 

evaluated by using the residual analysis. From Appendix Figure B.4.9(b), the 

residuals of the fitted curvilinear model do not satisfy the normality assumption. 

Appendix Figure B.4.9(c) shows more variation on the high side than on the low side. 

It can be said that the variance of the residuals increase as the predicted values 

increases. Thus, the fitted model does not satisfy the basic assumptions. These results 

suggest that the data can contain some outlying observations. 

 Both variables have to be transformed to meet those assumptions. However, 

the transformation does not eliminate or attenuate the leverage of influential outliers 

that bias the prediction and distort the significance of parameter estimates. Even 

though the curvilinear effect is included in the model, the reliable results are not 

obtained from the OLS fit. Therefore, alternative methods that can detect and resist 

outliers are needed so that reliable results can be obtained in the presence of outliers 

as well.  

Before calculating the robust estimates, the unusual observations are detected 

by a robust diagnostic plot. The regression outliers are detected with standardized 

LTS residuals, and leverage points are diagnosed by robust distances RD (xi) based on 

the MCD. Figure 4.6(c) shows the diagnostic display for the fitted LTS regression. It 

automatically makes the observations classify into four types. 

The part (c) of Figure 4.6 shows that two observations (23 and 25) have 

residuals with robust distance above the horizontal value and thus are detected as 
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vertical / regression outliers. The observations 27 and 29 exceed the cutoff line 

2
975.0,2χ = 2.72, and detected as bad leverage points. Although observations 21, 24, 

26, 28, 30, 31, and 32 exceed the cutoff point, they are detected as good leverage 

points because they fall within the two horizontal lines. As a result of the robust 

diagnostics plot, the production and export of maize data set contains two vertical 

outliers, two bad leverage points and seven good leverage points. Therefore, the 

different robust methods such as LAV, LMS, LTS, MH, MT, and MM are applied to 

the production and export of maize data and results are shown in Table (4.4). 

Table (4.4) gives the estimates from several robust regressions fitted to the 

same data. Comparisons are made the OLS to the robust methods. The OLS method is 

used to build a model that can be predicted export of maize based on production of 

maize. The diagnostics plots and preliminary analyses suggest that the performance of 

the model is not quite satisfactory. From Table (4.4), it is clear that the fit from OLS 

gives the intercept term quite different to that of robust fits. Thus, there is a serious 

risk that the OLS estimator is strongly attracted by these vertical outliers and bad 

leverage points. The good leverage points are beneficial and they can improve the 

precision of the regression coefficient. The impact of vertical outliers on the 

estimation of regression coefficients is usually small and it mainly affects the 

regression intercept. Bad leverage points can be harmful to the results of OLS method 

because they can change the OLS fit drastically. Therefore, the results of the OLS 

clearly show that the intercept of this method is larger than the other robust methods 

and the slope coefficients are markedly different. It is observed that the OLS fit is 

highly influenced by outliers as it has the largest MSE of 1823.8878, thus this fit 

represents neither good nor bad data points very well. 

The standardized residuals plot shown in Figure 4.6(a) shows that there are no 

outliers at all because the horizontal band of the occurrence between the standardized 

residuals of -2.5 and 2.5. It can also be concluded that the data set contains no outliers 

at all because all the standardized residuals fall nicely within the band. However, it is 

observed that robust fits suggest a different idea about the nature of the data. The LTS 

method shows a severe robustness by detecting four observations as outlying 

observations and deletes these four observations (two vertical outliers and two bad 

leverage points). Moreover, this method also gives the second smallest MSE among 

all other robust methods. 
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Due to the two bad leverage points, many differences between estimates are 

found out to a greater degree. But, the LAV, MM, LMS and LTS estimators reveal the 

same story regarding the effect of curvilinear. Moreover, intercepts and slope 

coefficients of linear effect of these robust estimates are markedly different. The MSE 

of M-estimates (using Huber and Turkey weights) are quite different. These 

estimators are not robust owing to bad leverage points. The LMS estimates detect the 

observations 23, 25 27, 29 and 30 as outliers and discard them. After that, the MSE of 

557.9275 is obtained. The LMS and LTS estimators are resistant to the vertical 

outliers as well as the bad leverage points. According to the results, it can also be seen 

that the LMS estimator is the most suitable one which has the smallest MSE. The 

fitted LMS regression is given below: 

 

.)ˆ(0001.0)ˆ(2314.07144.66ˆ 2meanDPROmeanDPROPEX ttt −−−+=  
 
 

Table (4.4) OLS and Robust Regression Models Fitted to the Production and 

Export of Maize Data 
Estimation Methods 

 
β0 β1 β11 MSE 

OLS 88.6880*** 

(8.43) 
0.3008*** 

(5.95) 
-0.0003** 

(2.64) 
1823.8878 

LAV 76.2001*** 
(6.47) 

0.2252*** 
(4.08) 

-0.0001 
(0.88) 

960.4243 

MH 75.7844*** 
(8.78) 

0.2527*** 
(6.09) 

-0.0002** 
(2.05) 

657.9225 

MT 66.3655*** 
(7.83) 

0.2917*** 
(7.16) 

0.0003*** 
(3.40) 

852.0561 

MM 59.9677*** 
(3.08) 

0.1859**   
(2.06) 

-0.0001 
(0.40) 

836.3664 

LMS 66.7144*** 0.2314*** -0.0001** 557.9275 
 

LTS 60.5182*** 0.1901*** -0.0001** 617.0256 
 

           Note: (1) MH M-estimate with ψ (.) of the Huber type; 

                        (2) MT M-estimate with ψ (.) of the Turkey type. 

  (3) Absolute values of t statistics in parentheses 

  (4) Significant at *** 1%, **5%, * 10% 

           Source: Appendix Table (A. 4.9) 
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Figure 4.6 (a) standardized residuals plot from OLS; (b) standardized 

residuals plot from LTS; (c) robust diagnostic plot; and (d) 

analogous plot based on classical estimates 

Source:           Appendix Table (A. 4.9) 
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4.6.3 Multiple Linear Regression Using Real Data Study  

The maternal mortality ratio (per 100,000 live births) was studied as a function 

of the contraceptive prevalence rate (% of married women aged 15-49), adult literacy 

rate (% aged 15 and older), births attended by skilled health personnel (%), total 

fertility rate (birth per women), life expectancy at birth (years), physicians (per 

100,000 people), and public expenditure on health (% of GDP). The data contain 34 

countries which were obtained from the Human Development Report (2007/2008) 

published by the UNDP. Concerning these, a model was constructed that explains the 

maternal mortality ratio for sample of 34 countries based on these seven explanatory 

variables. So, the distribution of the individual variable was examined first. It was 

found that the dependent variable was not linear. To make linearity, this dependent 

variable was transformed by taking the logarithm. Next, whether or not these 

explanatory variables shown above were individually related to the dependent 

variable were checked. Then, the correlation coefficient for each of the explanatory 

variables with the dependent variable was computed. It was found that these 

explanatory variables were highly correlated with the dependent and thus they were 

used in model building process. Thus, a model to predict the maternal mortality ratio 

of countries was built based upon the contraceptive prevalence rate, adult literacy rate, 

births attended by skilled health personnel, total fertility rate, life expectancy, 

physicians and public expenditure on health. In this study, it can be expected that the 

maternal mortality ratio might be inversely related to the contraceptive prevalence 

rate, adult literacy rate, births attended by skilled health personnel, life expectancy, 

physicians and public expenditure on health, but it can directly be related to the total 

fertility rate. The multiple linear regression model is seen as follows: 

  
iiiii

iiii

PEOHPHYLETFR
BABSHPALRCPRMMR

εββββ
ββββ

++++
++++=

7654

3210ln
     (4.22)

    

where,  

  MMR  = maternal mortality ratio 

CPR  = contraceptive prevalence rate 

ALR  = adult literacy rate 

BABSHP = births attended by skilled health personnel 

TFR  = total fertility rate 
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LE  = life expectancy 

PHY  = physicians, 

PEOH  = public expenditure on health.  

The OLS method is applied using this data and the parameters 70 ,...,ββ from 

the model (4.22) are estimated and the results are shown in Appendix A, Table 

(A.4.13). From this table, it is obtained that most of the variance inflationary factor 

(VIF) values for each explanatory variable are relatively small, ranging from a high of 

6.219 for BABSHP to a low of 2.672 for CPR. Due to these results, neither of the 

slope coefficients (CPR, ALR, TFR and PHY) is individually statistically significant. 

Moreover, the CPR and ALR variables are not only statistically insignificant but also 

wrong sign. In addition, it is found that the F value is highly significant at 1% level 

which is shown in Appendix A, Table (A.4.16). Hence, it can be remarked that there 

is multicollinearity among the set of explanatory variables.   

Thus, a widely used procedure, “search” called stepwise regression was 

applied for exploring the “best” regression model. Appendix A, Table (A.4.14) 

presents the results obtained from the SPSS STEPWISE procedure. According to 

these results, the four variables (CPR, ALR, TFR, and PHY) were dropped out from 

the model (4.22) and the new model under consideration thus contains three 

explanatory variables: LE, PEOH and BABSHP. The new model can be seen as 

follows: 

 

  (4.23)             

 In Appendix Table (A.4.14) the stepwise method shows a statistically significant 

negative effect of each of the explanatory variables (LE, PEOH and BABSHP) and 

suggests that when the CPR, ALR, TFR, and PHY variables are removed, a slight 

change in the values of coefficients of the remaining variables is found out. As 

expected, the coefficients of LE, PEOH and BABSHP are negative. The intercept 

value slightly increases from 5.802 to 5.863. In addition, the slope coefficients of the 

LE, PEOH and BABSHP change from -0.046, -0.084 and -0.010 to -0.044, -0.110 and 

-0.008 respectively. Moreover, the significance level of these coefficients changes 

from 5% to 1%. The value of F increases from 36.196 to 76.645 which is also shown 

in Appendix A, Table (A.4.15). 

.ln 3210 iiiii BABSHPPEOHLEMMR εββββ ++++=
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 After that, the explanatory variables to be included in the model have been 

selected; now a residual analysis is used to evaluate the aptness of the fitted model. 

Thus, the diagnostic plots which are shown in the part (a) and (b) of Appendix B, 

Figure B.4.10 are used for the study. The part (a) of Appendix Figure B.4.10 suggests 

that the residuals of the fitted model (4.23) do not follow the normality assumption 

because some of the points do not fall in a straight line. It can be observed from the 

part (b) of Appendix Figure B.4.10 that there is no apparent pattern between the 

standardized residual and predicted value. The residuals appeared to be evenly spread 

above and below the mean value for the predicted value. Based on this result, it can be 

remarked that the fitted model appeared to be appropriate. According to the part (a) of 

Appendix Figure B.4.10, the new model violates the normality assumption. This 

result implies that, the data contain some outliers. Thus, the alternative procedures are 

used to achieve the robustness properties.  

Before application of robust methods, the types of unusual observations are 

investigated using a robust diagnostic plot. This plot is shown in Figure 4.7(b). It 

reveals that observation 13 is vertical outlier and observations 21, 23, 24, 25, and 34 

are good leverage points. Therefore, it can be concluded that according to the robust 

diagnostic plot, data contain one vertical outlier and five good leverage points. The 

four different robust estimates: M, MM, LMS and LTS are applied to the same data 

set and the results of both OLS and robust methods are shown in Table (4.5). 

Table (4.5) shows the estimates from several robust regression fitted to the 

maternal mortality data. Although there are small differences between them, the MH, 

MT and MM-estimators tell a similar story regarding the effects of LE, PEOH and 

BABSHP. Their intercepts of M-estimates and MM-estimate are not too much 

different. The slope coefficients of the LE, PEOH and BABSHP are nearly identical 

regardless of which regression method is employed. Due to the unusual observations, 

it is observed that the MSE of OLS is the largest value among the others but 

magnitudes are not very different. Besides, the LTS regression detects the country 

Kuwait as outlier and discards them, gives the MSE of 0.2453. Moreover, the LMS 

gives a different idea about the nature of the data. It detects Kuwait, El Salvador and 

Indonesia as outliers and discards them. Consequently, it gives the smallest MSE of 

0.2399. In this study, it is found that the best result is obtained using the LMS 

regression. The fitted LMS regression model is given below: 
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.ˆ0455.0ˆ0485.0ˆ0092.00566.6ˆln PBABSHHPEOELRMM −−−=  

 
 

Table (4.5) OLS and Robust Regression Models Fitted to the Maternal Mortality 
Data 

 
Estimation  
Methods 

β0 β1 β2 β3 MSE 

OLS 5.8628*** 
(11.4370) 

-0.0080*** 
(3.1180) 

-0.0436*** 

(4.9270) 
-0.1102*** 
(4.2630) 

0.2904 

MH 
 

5.7020***   
(12.3681) 

-0.0078***   
(3.3627) 

-0.0411***   
(5.1639) 

-0.1189*** 
(5.1164) 

0.2632 

MT 
 

5.6681*** 

(11.7596) 
-0.0075*** 
(3.1178) 

-0.0406*** 
(4.8787) 

-0.1229*** 
(5.0571) 

0.2713 

MM 
 

5.6092*** 
(8.7760) 

-0.0072*** 
(2.2810) 

-0.0396*** 
(3.6030) 

-0.1291*** 
(3.9200) 

0.2869 

LMS 6.0566*** -0.0092*** -0.0485*** -0.0455*** 0.2399 
 

LTS 5.4550*** -0.0069*** -0.0379*** -0.1366*** 0.2453 
 

    Note: (1) Absolute values of t statistics in parentheses 

  (2) Significant at *** 1%, **5%, * 10% 

   Source: Appendix Table(A.4.12) 
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Figure 4.7  Maternal Mortality Data Set Using the LTS Robust Procedure: 

(a) plot of the standardized residuals; and (b) diagnostic plot 
 
Source: Appendix Table(A.4.12) 



CHAPTER V 

ROBUSTNESS IN TIME SERIES MODELS 

 
In the previous chapter, about the types of outliers and their effects on 

regression have already been discussed. The underlying ideas of regression and time 

series analysis is almost the same. In regression analysis, the explanatory variable is 

related to the dependent variable whereas in autoregressive modeling for time series 

analysis, it was found that the explanatory variable is its lag value of the dependent 

variable. 

    The concept of robustness in statistics is defined as the lack of sensitivity of 

a particular inferential procedure to departures from the model assumptions. A theory 

of robustness (Huber, 1981, Hampel, Ronchetti, Rousseeuw, and Stahel, 1986) has 

been developed in order to be used for departures arising from contaminated 

observations called outliers which are present in a “clean” data set generated from a 

known model. In time series analysis, the essential concept is resistance, which is 

related to the notion of robustness from a data-oriented point of view. This concept 

has the important advantage that it can be applied without special assumptions about 

the model and, on the other hand, observations can be dependent or non-identically 

distributed (Martin and Yohai, 1985).  

The basic theory of robustness has been developed in the i.i.d. context, but the 

study of outliers in time series is a more complicated task mainly due to the structure 

of the adjacent correlated observations. In addition, in time series, the influences of 

outliers can be shown depending on their type, relative position, number and 

magnitude and – as mentioned before – on the model structure underlying the time 

series. 

Typically maximum likelihood and least squares estimators have poor 

robustness properties and the performance of these approaches is sensitive to 

influential cases and the departure of the error distribution. Moreover, these 

procedures are affected adversely by the presence of outliers. To overcome these 

shortcomings, several alternative robust estimators like M-estimators (Huber, 1981) 

and L1-based estimators have been proposed. These methods were developed to be 

applied in time series models recently.  
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Robust estimation in the time series context is a difficult task because different 

types of outliers may occur in any data set. For instance, outliers can replace with or 

be added to some observations of the stochastic process. They can also be found in the 

innovation driving process. Furthermore, the configuration of time points in which the 

contaminations like isolated and patchy outliers occur gives different effects on 

estimation of parameters of time series models. Outliers should be investigated 

carefully. Often they contain valuable information about the process under 

investigation or the data gathering and recording process. Before considering the 

possible elimination of these points from the data, one should try to understand why 

they appeared. 

Some of the robust estimators for time series parameters proposed in the 

literature are M-estimators, GM-estimators (Denby and Martin, 1979), RA estimators 

(Bustos and Yohai, 1986) and ACM estimator (Martin, 1979). These estimators were 

applied to simulated as well as real data to estimate the parameters of ARMA and 

ARIMA models and their performances were compared with the ML estimator in the 

presence of AO or IO.  In this chapter, these robust methods were used to detect 

outlying observations and to provide resistant results which are stable in the presence 

of outliers. For instance, if we are interested in estimating a model parameter for a 

data contaminated with outliers from a random measurement error, it is of interest to 

use an estimator which is not sensitive to such outlying observations. 

 This chapter is organized as follows. Time series models such as AR, MA, 

ARMA and ARIMA models are mentioned in section 5.1, followed by maximum 

likelihood estimates for ARMA Model in section 5.2. The outliers in time series are 

discussed in section 5.3. Section 5.4 is mainly concerned with some robust estimates 

(M, GM, ACM and RA) that are used for this study. In this section, the computation 

algorithms of these estimators are described. In section 5.5, these robust estimates are 

applied to simulated data as well as real data to illustrate how the robust methods 

outperform the ML method when data contain the AO and IO outliers.   
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 5.1 Time Series Models 

Based on a finite number of available observations, a finite order parametric 

model was constructed to describe a time series model. In this section, autoregressive 

model (AR), moving average model (MA), autoregressive moving average model 

(ARMA) and autoregressive integrated moving average model (ARIMA) were 

described. 

 

5.1.1 Autoregressive Model 

Autoregressive models are widely used by many statisticians and they are 

really helping tools in the estimation of parameters, especially, in carrying out time 

series analysis using regression methods. An autoregressive model of order p, AR(p), 

can be defined as follows: 

  

     (5.1)                          

 

where ,~ µ−= tt ZZ  φ1,φ2,...,φp are constants and ta  are independent and identically 

distributed ( )2,0 aN σ  random variables with ∞<2
aσ .The process defined by (5.1) is 

called an autoregressive process of order p, or more concisely, an AR(p) process. This 

Equation (5.1) can be written in the equivalent form as follows: 

( ) tt
p

p aZBBB =−−−− ~1 2
21 φφφ   

or 

   

                                           (5.2) 

 

where )1()( 2
21

p
pBBBB φφφφ −−−−=  . B is a backshift operator (that is, 

( ) 1
~~

−= tt ZZB ). Since ∞<∑
=

p

j
j

1
φ , the process is always invertible. To be stationary, the 

roots of ( ) 0=Bφ  must lie outside of the unit circle. The AR processes are useful in 

describing situations in which the present value of a time series depends on its 

preceding values plus a random shock. 

 

 

,~~~~
2211 tptpttt aZZZZ ++++= −−− φφφ 

( ) ,aZ~B tt =φ
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5.1.2 Moving Average Model 

 The moving average model of order q can be written as: 

 qtqtttt aaaaZ −−− −−−−= θθθ 2211
~ .         (5.3) 

Equation (5.3) can be written in the equivalent form 

t
q

qt aBBBZ )1(~ 2
21 θθθ −−−−=   

or 

 ( ) ,~
tt aBZ θ=         (5.4) 

where ( ) )1( 2
21

q
qBBBB θθθθ −−−−=  . 

A finite moving average model is always stationary because ∞<+++ 22
11 qθθ  .This 

moving average model is invertible if the roots of ( )Bθ = 0 lie outside of the unit 

circle. Moving average models are useful in describing phenomena in which events 

produce an immediate effect which only lasts for a short period of time. 

 

5.1.3 Autoregressive Moving Average Model 

A stationary autoregressive moving average model is obtained by combining 

the equations for an AR model given by (5.1) and an MA model given by (5.3). An 

ARMA(p, q) model can be written in the form 

 

           (5.5)                  

 

where ta  is a white noise process; that is, the ta ’s are uncorrelated, and have zero 

mean and variance σ2. The process ta  is sometimes called the innovations process. 

The parameters φ1,...,φp are the autoregressive coefficients, and the parameters 

θ1,...,θq are the moving average coefficients. If the innovations ta  are Gaussian (the 

process tZ~  is Gaussian) and are uncorrelated, then they are also independent. This is a 

frequently used assumption. The ARMA model of (5.5) is often written in the form  

 φ(B) tZ~  = θ(B) ta ,              (5.6) 

where   

( ) p
pBBB φφφ −−−= 11  

and 

qtqttptptt aaaZZZ −−−− −−−+++= θθφφ  1111
~~~
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( ) q
qBBB θθθ −−−= 11 . 

For the process to be invertible, it requires that the roots of ( ) 0q Bθ =  lie outside the 

unit circle. To be stationary, it is required that the roots of ( ) 0p Bφ =  lie outside the 

unit circle. Assuming that ( ) 0p Bφ =  and qθ (B) = 0 share no common roots this 

process refers to an ARMA(p, q) process or model, in which p and q are used to 

indicate the orders of the associated autoregressive and moving average polynomials, 

respectively. Equation (5.6) can be written as follows:  

                                  (5.7) 

 

( )
( ) tp

p

q
q

tt a
BB
BB

a
B
BZ

φφ
θθ

φ
θ

−−−
−−−

==




1

1

1
1~  

the mixed autoregressive moving average model can be thought of as the output tZ~  

from a linear filter,  whose transfer function is the ratio of two polynomials θ (B) and 

φ (B), when the input is white noise ta . 

 

5.1.4 Autoregressive Integrated Moving Average Model  

 In the previous subsection, the stationary processes have already been 

discussed. However, many applied time series, particularly those arising from 

economic and business areas are nonstationary. Regarding covariance stationary 

processes, nonstationary time series can occur in many different ways. They could 

have nonconstant means tμ , time varying second moments such as nonconstant 

variance 2
tσ , or have both of these properties. In this subsection, the construction of a 

very useful class of homogeneous nonstationary time series model the autoregressive 

integrated moving average (ARIMA) model was introduced. The nanstationary 

autoregressive integrated moving average model can be written as follows: 

    ( )( ) ( ) tqt
d

p aBZBB θθφ +=− 01                                  (5.8)  

                                  
where the stationary AR operator ( ) ( )p

pp BBB φφφ −−−= 11  and the invertible MA 

operator ( ) ( )q
qq BBB θθθ −−−= 11  share no common factors. The parameter 0θ  

plays very different roles for d = 0 and d > 0. When d = 0, the original process is 

( ) ( ) t
1

t aBBZ~ θφ −=
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stationary and 0θ  is related to the mean of the process, that is, ( )pφφµθ −−−= 10 1 . 

However, when d ≥  1, 0θ  is called the deterministic trend term and, it is often left out 

from the model if it is unnecessary to be considered. 

 The resulting homogeneous nonstationary model in (5.8) refers to the 

autoregressive integrated moving average model of order (p, d, q) and is denoted as 

the ARIMA(p, d, q) model. When p = 0, the ARIMA(p, d, q) model is also called the 

integrated moving average model of order (d, q). 

 

5.2 Outliers in Time Series 

Outliers are aberrant observations that are away from the rest of the data. They 

can be caused by recurrent events such as recording errors or non-recurrent events 

such as changes in economic policies, wars, disasters and so on. They tend to occur if 

errors have fat-tailed distributions which might lead to large disturbances. Sometimes, 

outliers appear through misspecification of estimated relationships (linear instead of 

nonlinear relationships, omitted variables and so on). 

There is no issue that outliers can cause problems with inference using the 

traditional methods. The only problem is that how outliers should be tackled, that is, 

whether they are excluded or included. According to Legendre (1805), he suggested 

to throw these observations out. So did Edgeworth (1887). However, if outliers are 

caused by misspecification of the relationships estimated, a proper course is to change 

the specification. If outliers are caused by fat-tailed error distributions, a proper 

course is to use robust methods (Maddala and Yong Yin, 1997). Thus, there are three 

courses of action one can take: 

(i) throwing the rascals out. 

(ii) leaving them in but under control (robust methods) or 

(iii) changing the model. 

For (i), it is required to identify the outliers. For the linear regression model, there is a 

plethora of diagnostics which were discussed in previous chapter. However, many of 

them are not applicable for time series data.  

In time series analysis, outliers can cause biases in parameter estimation as 

well as misspecification, resulting in misleading conclusion. For this reason, several 

outlier detection and robust estimation procedures have been proposed in the literature 
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for time series analysis. The methods of outliers' detection are excluded from this 

study. 

 In time series problem, because successive observations are correlated, 

outliers can cause more problems for detection. Fox (1972) first addressed outlier 

problems in time series by classifying outliers as additive outliers (AO) and 

innovation outliers (IO). These two types of outliers and other robustness problems in 

time series were discussed extensively in the time series literature (Denby and Martin, 

1979, and Hampel et al., 1986). Another types of disturbances were introduced by 

Chen and Tiao (1990). They are the level shift (LS) and temporary change in level 

(TC). In the following subsection, these types of outliers in time series analysis were 

described and their plots of AO, IO, LS and TC were shown in Figure 5.1. 

 

5.2.1 Additive Outlier  

Additive outlier (AO) represents a disturbance which is committed to a 

particular observation. Mathematically, the observed time series is seen as  

 

                                           (5.9) 

 

where tY  is a contaminated time series, tZ  is an outlier-free time series, aw  denotes 

the magnitude of the disturbance and )(d
tI  is an indicator variable defined by 





≠
=

=
.0

1)(

dtif
dtif

I d
t  

In other words, for an AO model 

 

tt ZY = if t ≠ d and add wZY +=  otherwise. 

 

The typical reason for an AO is a recording or measurement error. Outbreaks 

of wars, strikes, an abrupt change in the market structure of some group of 

commodities, a technical change or new equipment in a communication system, or 

simply unexpected geophysical phenomena (e.g., earthquakes) are all possible causes 

of AOs. 

 

 

)d(
tatt IwZY +=
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                             (c)              (d) 

Figure 5.1 Types of Outliers (a) the plot of additive outlier; (b) the plot of          

innovation outlier; (c) the plot of level shift; and (d) the plot of 

temporary change 

 

5.2.2 Innovation Outlier  

Another type of outlier is called an innovation outlier (IO), which is a 

disturbance in the innovational series { }ta  and may affect every subsequent 

observation of the series. Mathematically, an IO model is  

 

 ( )
( ) ( ))(d

tvtt Iwa
B
BY +=

φ
θ                                     (5.10) 

AO 

t 
t = τ t = τ 

IO 

t 

t = τ 
t 

LS 

t = τ 
t 

TC 
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where )(d
tI is defined as shown above and vw  denotes  the magnitude of the 

disturbance. Rewriting the model as  

 

( )
( ) .)(d

tvtt Iw
B
BZY

φ
θ

+=  

It can be seen that an IO effects the series through its own dynamic ( )
( )B
B

φ
θ  and it 

becomes part of the system thereafter. In practice, an IO often indicates an onset of 

certain chances in the system.  

Of course, many other types of disturbance can occur in time series. The AO 

and IO models only two many possibilities.  

 

5.2.3 Level Shift  

Mathematically, a level shift (LS) can be described by 

 

 ( )
)d(

t
s

tt I
B1

w
ZY

−
+=                                            (5.11) 

where sw is the amount of shift in the level of tZ . It can be written as 

 

( ) +++=
−

21
1

1 BB
B

 

The above model (5.11) can be seen as follows: 

 





≥+
<

=
.dtforwZ

dtforZ
Y

st

t
t  

Thus, the fixed constant sw is added to every observation one or after .d  Such a level 

shift is permanent. 

 

5.2.4 Temporary Change  

In some cases, the effect of a level shift is only temporary. In a mathematical 

model, such a shift is described as: 

 ( ) .10,
1

)( <<
−

+= δ
δ

d
t

c
tt I

B
wZY                                  (5.12) 
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Since 

 

( ) +++=
−

221
1

1 BB
B

δδ
δ

 

 

the magnitudes of level shift at times ,...2,1, ++ ddd  are ,...,, 2
ccc www δδ . Thus, the 

initial shift is cw and the subsequent shifts are discounted at the rate δ. With 0 < δ < 1, 

the shift decays exponentially to zero. Such a temporary level shift refers to a 

transient change model. In practice, the values of δ are a predetermined constant. Its 

value may be 0.8 or 0.7. 

The difference between AO and IO is that in fact an AO is interpreted as an 

outlying observation added after the realization to affect a single observation and an 

IO as an outlying observation added during the realization with influence on all 

succeeding observations.  

In autoregressive models, AOs are a cause of much greater concern than IOs 

because leverage points (outliers in the x-direction) create bigger problems than 

outliers in the y-direction. For example, in the case of an AR(1) model, one IO yields 

one outlier in the response variable and a number of "good" leverage points ("good" 

refers to the fact that the leverage points lie close to the fitted line determined by the 

majority of the data), which actually improve the accuracy of the parameter estimate. 

Therefore, one IO only affects one residual.  

On the other hand, one AO results in one outlier in the vertical direction and 

one "bad" leverage point ("bad" refers to the fact that the leverage point does not lie 

close to the fitted line determined by the majority of the data). Thus, AO also affects 

the next residual inflating two consecutive residuals. 

Although OLS has been used extensively in statistics, particularly, in 

regression analysis, it has shortcomings. One of the weakest points of the method is 

its high sensitivity to outliers: one sufficiently large outlier can ruin the estimate. One 

explanation for this high sensitivity of OLS to outliers is that squaring the residuals 

magnifies the effects of these extreme data points.  

In the time series setting, OLS estimation methods also exhibit a lack of 

robustness to outliers.  The OLS estimator of the autoregressive parameter φ in the 
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AR(1) with innovation outlier is consistent, but inefficient. For the AR(1) with AO, 

the OLS estimator is not even consistent (Denby and Martin, 1979). 

The important point with IO is that the ARMA(p, q) model is still the exact 

model for the observations. However, if an outlier occurs at 0t , then 
0t

a will affect not 

only 
0t

Z , but many future observations. Meanwhile, the effect disappears. Bustos and 

Yohai (1986) give several results showing that IO does not affect too seriously the 

OLS estimators of autoregressive and moving average parameters of an ARMA 

model. 

To improve this sensitivity to outliers, statisticians began to develop robust 

estimation methods starting around 1960 (Hampel, 1971).  In the regression setting, 

robust regression methods are definitely designed to minimize the effect of outliers 

while retaining much of the sensitivity and precision of OLS in the absence of 

outliers.  

 

5.3 Maximum Likelihood Estimates for ARMA Model 

There are some parameters estimation methods for time series model. They are 

ordinary least squares (OLS), maximum likelihood (ML) and moment methods. 

Among them, the maximum likelihood method was chosen for this study. The 

maximization of likelihood function can be achieved by using three methods: leading 

to exact maximum likelihood, conditional maximum likelihood and unconditional 

maximum likelihood functions. The most commonly used method is a conditional 

maximum likelihood method which can be seen as below. 

 

Conditional Maximum likelihood Estimation  

This method was developed by Box and Jenkin (1970). For the general 

stationary ARMA(p, q) model which was described in (5.5), the joint probability 

density of a = ( )′naaa ,...,, 21 is given by 

 ( ) ( ) .
2

1exp2,,,
1

2
2

2/22








−= ∑

=

−
n

t
t

a

n
aa aaP

σ
πσσθµφ                     (5.13) 

Rewrite the Equation (5.5) as 

  .~~~
1111 ptpttqtqtt ZZZaaa −−−− −−−+++= φφθθ                      (5.14) 
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The likelihood function of parameters ( )2,,, aσθµφ  is seen as follows. Let 

( )′= nZZZZ ,...,, 21 and assume the initial conditions ( )′= −− 011* ,,..., ZZZZ p and 

( )′= −− 011* ,,..., aaaa q . The conditional log-likelihood function 

 

                  (5.15) 

where 

 

                        (5.16) 

 is the conditional sum of squares function. The quantities ,ˆand ,ˆ,ˆ θµφ which 

maximize Equation (5.15) are called the conditional maximum likelihood estimators. 

Since ( )2
* ,,,ln aL σθµφ  involves the data only through ( )θµφ ,,*S , these estimators are 

the same as the conditional least squares estimators obtained from minimizing the 

conditional sum of squares function ( )θµφ ,,*S , which does not contain the 

parameter 2
aσ . 

 There are a few alternatives for specifying the initial conditions *Z  and *a . 

Based on the assumptions that {Zt} is stationary and { a t} is a series of i.i.d. ( )2,0 aN σ  

random variables, the unknown Zt is replaced by the sample mean Z and the 

unknown ta  by its expected value of 0. For the model in (5.5), it is assumed that 

011 ==== −+− qppp aaa   and calculates ta  for t ≥ (p + 1) using the afore mentioned 

model (5.5) thus it becomes 

 ( ) ( ),,,,,
1

2
* ZaS

n

pt
t θµφθµφ ∑

+=

=                                 (5.17) 

which is mostly used in computer programs. 

 After obtaining the parameter estimates ,ˆand ,ˆ,ˆ θµφ the estimate 2ˆaσ of 2
aσ is 

calculated from 
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a
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σ = ,                               (5.18) 
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where the number of degrees of freedom (d.f.) equals the number of terms used in the 

sum of )ˆ ,ˆ,ˆ(* θµφS  minus the number of parameters estimated. If (5.17) is used to 

calculate the sum of squares, d.f. = (n – p) – (p + q + 1) = n – (2p + q + 1). For other 

models, the d.f. should be adjusted accordingly. 

 

5.4 Robust Estimates for ARMA Model 

In real data application, OLS and ML estimates are very sensitive to the 

various types of outliers. They are not efficient and inconsistent when data contain 

outlying observations. Therefore, robust estimation methods are necessary because 

these estimates are not much affected by outliers. In this section, the computation 

algorithms of four robust estimators were discussed. The M-estimator and GM-

estimator were described in subsection 5.4.1 and 5.4.2. Subsection 5.4.3 and 5.4.4 

mention ACM estimators as well as RA estimators. 

 

5.4.1 Algorithm for Computing of M-Estimates 

The M-estimators algorithm is an iterative procedure and it contains three 

steps. They are described as follows: 

1. Obtain an initial estimate of φ , say Oφ̂ , from OLS. 

2. Based on Oφ̂  in step 1, the initial weights are computed  

( ) ( )
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0
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1
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+
+ =
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ψ
 

     where 01
0

1 φ̂ttt ZZe −= ++ , for t = 1,...,T-1. 

3. For j = 0 to convergence do 
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Convergence can be defined in several ways: relative change in the estimates, relative 

change in the scaled residuals, relative change in weights, and preselected number of 

steps. 
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5.4.2 Algorithm for Computing of GM-Estimates 

An iterative procedure is necessary to find GM-estimates for time series. They 

are solved by an IRLS method. The GM-estimation algorithm can be described as 

follows: 

1. To obtain an initial estimate of φ , say Oφ̂ , it is necessary to use OLS. 

2. Given Oφ̂ , compute the initial weights as 

( ) ( ) iterjZZwZZW jT
tt

j
tt

n

pt
t ,...,1,0,0ˆ. 1

1

1

==− +
+

−

=
∑ φ  

where iter is the desired number of iterations. 

3. j
eŝ  at iteration j = 0,1,2,… is obtained. 

4.  Repeat steps 1 until 3, and keep convergence have been reached.  

 

5.4.3 Algorithm for Computing of ACM Estimates 

  The ACM estimation algorithm consists of five steps and computes the GM-

estimates as an initial estimate. A detailed description of the algorithm is as follows: 

1. Compute initial estimates of φ  and es using GM-estimates. 

2. Compute the Ψ-function is given by (3.70).  

3. Obtain the scale estimate ts  and tm . 

4.  Use a robust filter cleaner to obtained the cleaned observations tẐ .  

5. Compute new estimates using the cleaned observations tẐ . 

 

5.4.4 Algorithm for Computing of RA Estimates 

The iteration algorithm used for RA estimates for a stationary and invertible 

ARMA(p, q) is as follows. Suppose that in the i th iteration we have estimates ( )iφ̂ and 
( )iσ̂ respectively. The estimate for the (i + 1) th iteration is, 

1. Compute the residuals ( )( )i
te φ̂ ,  for p + 1 ≤  i  ≤ T. 

2. Modify the residuals by applying the Ψ-function, 

( )
( )( )
( ) 








= i

i
ti
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ee
σ
φψσ
ˆ
ˆ

ˆ*  

            where Ψ are given by (3.60) and (3.61). 
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3.   Calculate a new “pseudo-observations” process *
tZ , using ( )iφ̂  and the                         

            modified residuals *
te , by putting 

( ) ( )( ) ( ) ( ) .ˆˆˆ *1*
t

ii
t eBBZ θφµ

−
+=  

4. Compute ( )1ˆ +iφ as the OLS of φ  for *
tZ . 

5.  At this stage, compute the scale estimate ( )1ˆ +iσ .  

In this computation, the median of the absolute values of the residuals divided 

by 0.6745 was considered as a robust scale estimate of residuals in step (5).  

 

5.5 Simulation and Real Data Study  

The effect of the outlier in time series model was analyzed using the ML 

method and robust methods in this section. Thus, a simulation study was conducted to 

compare the ML method with the robust methods for AR(1) and MA(1) models with 

AO and IO. The statistical software package S-PLUS 2000 was available and it was 

used to obtain the desire robust estimates throughout the analyses. In the following 

subsections, the performances of the ML estimator and robust estimators by 

simulations of AR(1) and MA(1) models with AO and IO outliers were analyzed first. 

Then, the real data study was followed up with it.  

 

5.5.1 Simulation Study 

In order to study the effect of outliers in estimation of parameters in time 

series model, each of 30 outlier free series of AR(1) with 50.0=φ , MA(1) with 

50.0=θ  for n = 50, μ = 0 were generated using S-PLUS software. In this simulation 

study, let Y t is an observed series and Zt is an outlier free series. We consider the 

observed series{ }tY  were contaminated by two scenarios, given by 

(i) tttt vXZY +=   for AO 

(ii) ttt vZY +=   for IO 

where { }tZ , { }tX  and { }tv  are independent and identically distributed (i.i.d.) series. 

For AR(1) model, the { }tZ  assumed to be a stationary, 

 t1tt aZZ += −φ                                                (5.19) 
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where φ is the autoregressive parameter and the ta  is the error term with mean 0 and 

variance 1. For MA(1) model, the { }tZ  assumed to be an invertible, 

                                             (5.20) 

 

where θ is the moving average parameter. 

In first scenario, the Bernoulli process { }tX  satisfies ( ) γ== 1txP  and 

( ) γ−== 10xP t so that the fraction of contamination is γ. This contamination fraction 

was set at 0%, 1%, 5 % and 10%.  The { }tv  has the form 

 



 ==

=
.,0

50,40,30,20,10,1,10
otherwise

tforxfor
v t

t  

For 1% contaminated, 10 is added to 10Z , for 5% contaminated, 10 is added to 10Z and 

20Z  and for 10% contaminated, 10 is added to 10Z , 20Z , 30Z , 40Z  and 50Z . For the 

second scenario, the { }tv  has the following mixture density 

( ) ( ) ( )22 ,0,01 τγσγ NNF +−=  

 

with γ = 0.01, 0.05 and 0.10 and σ = 1 and  τ = 3. 

For each estimator and for each type of simulated series, the mean error (ME) 

and the mean squared error (MSE) were computed using the following formulas 

φφ −= jj
aveME ˆ   ,   ,ˆ 2

φφ −= jj
aveMSE  

where jave  denotes the average across the 30 replications and .  is the Euclidian 

norm operator. The words “efficient” and “robust” for the same concept of 

performance, that is an efficient (or robust) estimator is called so when its sample 

MSE is low.  

For each of these models, five different estimates: the ML estimate, the GM-

estimate, the ACM type robust filter, the RA estimate based on the Huber family 

chr,Hψ  given by (3.60) (RAH-estimate) and the RA estimate based on the bisquare 

family cbr,Bψ given by (3.61) (RAB-estimate) were computed. In this study, the tuning 

constant c in the Huber family is 1.645 and in the bisquare family is 5.58.  

1ttt aaZ −−= θ
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The estimators included in the simulations as well as real data applications are 

as follows: 

 ML: The maximum likelihood estimates; 

            MH: M-estimates with Ψ(.) of the Huber type, c = 1.345; 

            MB: M-estimates with Ψ(.) of the bisquare type, c = 4.685; 

GM: GM-estimates; 

         ACM: Approximate conditional mean etsimates; 

         RAH: RA-estimates with Ψ(.) of the Huber type, c = 1.645; and 

         RAB: RA-estimates with Ψ(.) of the bisquare type, c = 5.58. 

To study the effect of outlier contamination on the bias and efficiency of the 

maximum likelihood (ML) and the robust estimators, model (5.19) is used. Tables 

(5.1) to (5.3) show the results of the simulation study with 30 replications of sample 

of size 50 for purely AR(1) model and for an AR(1) model with additive outliers 

(ARAO) and for an AR(1) model with innovation outliers (ARIO). The tables contain 

the average of the 30 estimators obtained for φ = 0.50, the corresponding MSEs as 

well as relative efficiencies (REF), defined as the ratio of the MSE of the ML 

estimator to the MSE of the robust estimator under consideration. The results shown 

in Table (5.1) suggest that there are no outliers, the MSE of ML and robust estimates 

are quite close to each other.  

According to Table (5.2), it is clear that the resulting large MEs show just how 

sensitive the ML estimates are when the observations contain a small fraction of AO 

and IO. It is found that, the MEs and MSEs of ML estimates of AR(1) are not able to 

cope with contaminated situations, neither AO nor IO. It is clear that even a small 

fractions of outliers (γ = 1%) has a very large influence on the ML estimates. These 

estimators show a less resistance in terms of the mean value, it also has smaller 

efficiency than the robust estimators.   

Moreover, the GM-estimator can handle both AO and IO quite successfully in 

the AR (1) model in line with the Monte Carlo results of Martin and Yohai (1985). 

Besides, the RA estimator based on the bisquare family compare favorably with the 

ML, GM and ACM estimators. From Table (5.3), it is clear that when the percentage 

of contamination increased to 5%, the RA estimator based on the Huber family yield a 

mean that is close to the true parameter for ARIO(1) model.  
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Tables (5.4) and (5.5) give the results of simulation study using 30 replications 

corresponding to (i) an MA(1) model with additive outliers (MAAO) model, and (ii) 

an MA(1) model with innovation outliers (MAIO) model. The tables contain the 

average of the 30 estimators obtained for θ = 0.50. It is found out that the ML 

estimates are not very sensitive to the presence of innovation outliers. These results 

are in line with the Monte Carlo simulation results of Busto and Yohai (1986). 

For MAAO model with γ = 0.01 and 0.05, the RAB performs much better than 

the ML estimates. However, under the MAIO model with γ = 0.01, the RAB is more 

robust than the ML estimates. When moving average terms are present, the GM-

estimates are neither resistant nor robust. The simulation results indicate that the RA 

provides a good approximation to the true parameter of AR and MA models with AO 

and IO in line with the Monte Carlo simulation results of Busto and Yohai (1986). 

 

Table (5.1) Simulation Results for the AR(1) Model with φ  = 0.5   

Estimates 
γ  = 0 % 

ME MSE REF 
ML 
GM 
ACM 
RAH 
RAB 

0.2681 
0.2583 
0.2608 
0.1244 
0.2522 

0.0922 
0.0853 
0.0926 
0.0847 
0.0865 

1.0000 
1.0809 
0.9957 
1.0885 
1.0659 

            Source: Calculation Based on Simulation Data Sets 

 

Table (5.2) Simulation Results for the ARAO(1) Model with φ  = 0.5 

Estimates γ = 1% γ = 5% γ = 10% 
ME           MSE          REF   ME           MSE          REF   ME           MSE        REF  

ML 
GM 
ACM 
RAH 
RAB 

0.3672     0.1514      1.0000 
0.2545     0.0910      1.6637 
0.2592     0.0950      1.5937 
0.1295     0.1138      1.3304 
0.2380     0.0837      1.8088 

0.4336     0.2000       1.0000 
0.2663     0.0882       2.2673 
0.2554     0.0876       2.2829 
0.1496     0.0899       2.2245 
0.2278     0.0711       2.8127 

0.5240     0.2826     1.0000 
0.2661     0.0948     2.9810 
0.2732     0.1066     2.6510 
0.4417     0.0532     5.3120 
0.1003     0.0304     9.2961 

Source: Calculation Based on Simulation Data Sets 
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Table (5.3) Simulation Results for the ARIO(1) Model with φ  = 0.5 

Estimates γ = 1% γ = 5% γ = 10% 
ME           MSE          REF  ME           MSE          REF  ME           MSE       REF   

ML 
GM 
ACM 
RAH 
RAB 

0.3493       0.1380      1.0000 
0.2749       0.0934      1.4775 
0.2742       0.0946      1.4588 
0.3340       0.1068      1.2921 
0.2602       0.0881      1.5664 
 

0.4053      0.1935      1.0000 
0.2669      0.0985      1.9645 
0.2794      0.1087      1.7801 
0.1414      0.0658      2.9407 
0.2759      0.0961      2.0135 
 

0.3577     0.1665     1.0000  
0.2812     0.1081     1.5402 
0.3004     0.1220     1.3648 
0.2202     0.1332     1.2500 
0.2815     0.1088     1.5303 
  

Source: Calculation Based on Simulation Data Sets 

 
 
 

Table (5.4) Simulation Results for the MAAO(1) Model with θ  = 0.5 
 

Estimates γ = 1% γ = 5% γ = 10% 
ME           MSE          REF   ME           MSE          REF   ME           MSE        REF  

ML 
GM 
ACM 
RAH 
RAB 

0.3409     0.1298        1.0000 
0.7888     0.6377        0.2035 
0.7898     0.6373        0.2037 
0.3156     0.1501        0.8648 
0.2499    0.0781       1.6620 

0.3287   0.1275       1.0000                 
0.7952     0.6501        0.1961 
0.7851   0.6293       0.2026   
0.3994   0.1863       0.6844 
0.2882     0.1047       1.2178 

0.2852   0.0987     1.0000 
0.7936     0.6513     0.1515 
0.7741     0.6163     0.1601 
0.4855     0.2555     0.3863 
0.5097     0.2824     0.3495 

Source: Calculation Based on Simulation Data Sets 

 
 

Table (5.5) Simulation Results for the MAIO(1) Model with θ  = 0.5 
 

Estimates γ = 1% γ = 5% γ = 10% 
ME           MSE          REF   ME           MSE          REF   ME           MSE        REF  

ML 
GM 
ACM 
RAH 
RAB 

0.1989   0.0640       1.0000  
0.7769   0.6219       0.1029 
0.7738     0.6172       0.1037 
0.2743     0.1343       0.4765 
0.1923     0.0599       1.0684 
 

0.2001   0.0581      1.0000 
0.7752     0.6150      0.0945 
0.7529     0.5893      0.0986 
0.2710     0.1230      0.4724 
0.2260     0.0810      0.7173 
 

0.2119     0.0682      1.0000 
0.7474     0.5653     0.1206  
0.7478     0.5658     0.1205 
0.3227     0.1387     0.4917 
0.2246     0.0742     0.9191 

Source: Calculation Based on Simulation Data Sets 

 
5.5.2 Real Data Study 

The performance of robust procedures in the presence of outlier in an ARMA 

model was evaluated in this section. So, the outlier contaminated series had to be 

selected. Besides, the performances of robust estimates and ML estimates were 

compared based on MSE criterion.  

Two series such as a daily average number of defects per truck and a yearly 

export of maize in Myanmar were chosen to analyze the effect of outliers in 

estimation of parameters of time series model in this section. The truck data set is a 

very popular data set and several statisticians studied it from time to time. To analyze 
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the effect of outliers in parameter estimation, we consider the truck data shown in 

Appendix B, Figure B.5.1 analyzed earlier by Wei (1990). According to the studied of 

Wei (1990), it was found out that this series contained two AO outliers and two IO 

outliers based on the results of outlier detection procedure. He pointed out that an AO 

occurs at time point t = 30 in first iteration, an IO occurs at time point t = 9 in second 

iteration, an AO occurs at time point t = 7 in third iteration and an IO occurs at time 

point t = 4 in fourth iteration.  

 
(a) Analysis of Daily Average Number of Defects per Truck 

Manufacturing defects of Truck series is a daily average number of defects per 

truck found in the final inspection at the end of the assembly line of a truck 

manufacturing plant. The data consist of 45 observations of consecutive business day 

during November 4 to January 10, as reported in Wei (1990). The Appendix Figure 

B.5.1 suggests a stationary process with constant mean and variance. For the 

identification of the order of p and q, the sample autocorrelation function (sacf) and 

sample partial autocorrelation function (spacf) are computed and plotted as shown in 

Appendix A, Table (A.5.2) and Figure 5.2. It shows that the sacf decays exponentially 

and the spacf has a single spike at lag 1 indicates that the series is likely to be an 

AR(1) or ARMA(1, 0) model. Hence, the tentative model is  

 

                                     (5.21) 

 

and the parameters of model (5.21) are estimated using the ML method. The 

following result is obtained: 

  

                                (5.22) 

where the values in the parentheses under the estimates refer to the standard errors of 

those estimates. They are all highly significant at 1% level. Moreover, the sacf and 

spacf for the fitted model (5.22) as shown in Appendix A, Table (A.5.3) and 

Appendix B, Figure B.5.2 which indicate that the estimated residuals are a white noise 

process. From this result, it can be concluded that there is no outlier at all.  

Although the AR(1) model is an adequate model for data, it contains four 

outliers according to the studied of Wei (1990). Therefore, the robust procedures are 

( )( ) tt aZB1 =−− µφ

( )( )
( )076.0)136.0(

79.143.01 tt aZB =−−
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required for this study. The parameters of Equation (5.21) are estimated using the M- 

estimator (Huber and bisquare), the GM-estimator, ACM type robust filter method, 

and RA estimators (Huber and bisquare) and the results are presented in Table (5.6). 

This table suggests that there is an evident that the data contain some outliers because 

the classical estimate and robust estimates differ each other. Besides, the MSE of RA 

estimate based on bisquare family (RAB) is the smallest, followed by the MSE of RA 

estimate based on Huber family (RAH), ACM, M-estimate based on bisquare, GM 

and M-estimate based on Huber respectively. In this study, RAB-estimate is more 

robust for a contaminated ARMA(1, 0) model. Thus, the estimated model become 

 

 
( )( )

( )076.0)1351.0(
79.144.01 tt aZB =−−

                            (5.23) 

where the values in the parentheses under the estimates refer to the standard errors of 

those estimates. 

To check model adequacy, the residual acf and pacf of the fitted model as 

shown in Appendix A, Table (A.5.4) are all small and exhibit no patterns. Moreover, 

the values of Box-Ljung statistic are not significant at 5% level for all lags. Thus, the 

fitted ARMA(1, 0) model in (5.23) is adequate for the data using RA procedure based 

on bisquare family. In this study, it is found that the RAB-estimate is more robust for 

AR(1) model.  
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Figure 5.2  The sacf and spacf of the Truck Series  

Source:         Appendix Table (A.5.2) 
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Table (5.6) Summary Results of the Truck Series 

Estimates φ̂  Se( φ̂ ) MSE 
ML 
MH 
MB 
RAH 
RAB 
GM 
ACM 

0.4289 
0.4465 
0.4503 
0.4350 
0.4436 
0.4662 
0.5172 

0.1362 
0.1240 
0.1133 
0.1357 
0.1351 
0.4470 
0.4063 

0.2103 
0.1249 
0.1185 
0.1059 
0.1047 
0.1200 
0.1173 

 
Source: Appendix Table (A.5.1) 
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Figure 5.3 The sacf and spacf for the Residual of the RAB-AR(1) Model 
Source: Appendix Table (A.5.4) 
 

 

(b) Analysis of Yearly Export of Maize  

In this study, the data were also obtained from the Statistical Year Books 

which are published by the Central Statistical Organization (CSO) over the period of 

1976 to 2008.  A plot of this series is shown in Appendix B, Figure B.5.3. This plot 

indicates that the series is nonstationary both in the mean and the variance. First, this 

series was transformed by taking a logarithmic transformation. Then, the transformed 

data are plotted in Appendix B, Figure B.5.4 and it shows a trend with a constant 

variance. This trend has to be removed by differencing before a model can be 

identified. The very slowly decaying sacf was shown in Appendix A, Table (A.5.7) 

and Figure 5.4 further support to need for differencing. Hence, the sample sacf and 

spacf for the differenced series are calculated in Appendix A, Table (A.5.8) with their 

plots in Appendix B, Figure B.5.5. The sacf tails off and the spacf cuts off after lag 1. 

It suggests that an ARIMA(1, 1, 0) or ARI(1, 1) is a possible model. Whether the 
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deterministic trend term 0θ is needed or not, the t-ratio is examined wSWt /=  = 

0.09195 / 0.08942 =1.0283, which is not significant. Hence, the following ARIMA(1, 

1, 0) model is considered as our proposed model: 

 

                           (5.24) 

 

and the estimated model is 

 
( )( )( )

)1486.0(
69.3ln156.01 tt aZBB =−−+

                            (5.25) 

where the value in the parenthesis under the estimate refers to the standard error of 

this estimate. 

The residual acf of this fitted model as shown in Appendix A, Table (A.5.9) 

are small and exhibit no patterns. In other words, the residuals from this modified 

model are white noise. Thus, the fitted ARIMA(1, 1, 0) model is adequate. Although 

the results all indicate a white noise phenomenon, a white noise series is itself an 

outlier contaminated series1. Appendix Figure B.5.4 shows a single outlier (AO) 

occurs at time t =1988. So, the ML estimate as shown in (5.25) is not robust in the 

presence of AO. Therefore, the robust procedures are used to estimate the parameters 

of the ARIMA(1, 1, 0) model and results are shown in Table (5.7). Due to the 

presence of a single AO outlier, the ML and robust estimates differ substantially. The 

MSE of ML and robust estimates are greatly different. Besides, the robust estimates 

are not markedly affected by outlier, whereas the ML procedure is. The ML estimate 

has the largest MSE among the robust methods in the presence of a single AO outlier. 

The MSE of RA estimate based on bisquare family (RAB) is the smallest, followed 

by the MSE of RA estimate based on Huber family (RAH), ACM, GM and M-

estimate based on Huber and bisquare respectively. In this study, RAB-estimate is 

more robust for ARIMA(1, 1, 0) model with a single AO outlier. Therefore, the 

estimated model becomes 

 

                  (5.26) 

1  Wei (1990),  Time Series Analysis Univariate and Multivariate Methods, U.S.A: 
Addison-Wesley Publishing Co., Chapter 9, section 9.5, pp. 203 
 

( )( )( ) tt aZlnB1B1 =−−− µφ

( )( )( )
)1468.0(

69.3ln158.01 tt aZBB =−−+
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where the value in the parenthesis under the estimate refers to the standard error of 

this estimate. 

To check model adequacy, the residual acf and pacf and of the fitted model as 

shown in Appendix Table (A.5.10) are small and exhibit no patterns. Moreover, the 

values of Box-Ljung statistic are not significant at 5% level for all lags. So, the fitted 

ARIMA (1, 1, 0) model in (5.26) is adequate for the data using RA procedure based 

on bisquare family. In this study, it is observed that the RAB-estimate is more robust 

for ARIMA(1, 1, 0) model.  

 

Table (5.7) Summary Results of the Maize Export Series 

 

Estimates φ̂  Se( φ̂ ) MSE 
ML 
MH 
MB 
RAH 
RAB 
GM 
ACM 

-0.5597 
-0.6887 
-0.7648 
-0.5651 
-0.5758 
-0.7068 
-0.6794 

0.1488 
0.0984 
0.0875 
0.1494 
0.1468 
0.6283 
0.5610 

0.6025 
0.2104 
0.2283 
0.1268 
0.1249 
0.2065 
0.1727 

Source: Appendix Table (A.5.6) 
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Figure 5.4 The sacf and spacf for Natural Logarithms of the Export Maize  

Source: Appendix Table (A.5.7) 
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Figure 5.5      The sacf and spacf for the Residual of the RAB-ARIMA(1, 1, 0) 
Model 

 
Source:            Appendix Table (A.5.10)  

 
 



CHAPTER VI 

CONCLUSION 

Many classical statistical procedures are known for not being robust, because 

results violate stochastic assumptions and rely on a few sample observations. These 

procedures are optimal when the assumed model is exactly satisfied, but they are 

biased and/or inefficient when small deviations from the model are present. The 

results obtained by classical procedures can therefore mislead when it comes to 

applications. Consequently, it may cause issues when the classical methods are used 

for the underlying model. 

Outliers may appear in data due to gross errors, wrong classification of the 

data, grouping, and correlation in the data. Gross errors or outliers are data severely 

deviating from the pattern set by the majority of the data. This type of error usually 

occurs due to mistakes in copying or computation. They can also be due to part of the 

data not fitting the same model, as in the case of data with multiple clusters. Gross 

errors are often the most dangerous type of errors. In fact, a single outlier can 

completely spoil the least squares estimate, causing it to break down. Consequently, 

the estimators may not be efficient estimators. Some outliers are genuine and may be 

the most important observations of the sample.  

Rounding and grouping errors result from the inherent inaccuracy in collecting 

and recording data which are usually rounded, grouped, or even roughly classified. 

The departure from an assumed model means that real data can deviate from the 

assumed distribution. The departure from the normal distribution can manifest itself in 

many ways, for instance, in the form of skewed or longer-tailed distributions. Hence, 

one would naturally like to employ an estimation method that is sufficiently resistant 

to outliers.  

Robust statistics is concerned with the construction of statistical procedures 

which are still reliable and reasonably efficient in a neighborhood of the model. 

Robust statistics is the generalization of the classical theory: it takes into account of 

model misspecification, and the inferences remain valid not only at the parametric 

model but also in the neighborhood model. 

Two major problems such as data robustness and distributional robustness 

usually arise in regression analysis. In time series analysis, outliers can cause biases in 
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parameter estimation as well as misspecification, resulting in misleading conclusion. 

Robust procedures in linear regression and time series, that can overcome the above 

two problems, have been investigated by many researchers. The present dissertation 

tries to analyze these problems and explore suitable methods for contaminated data 

sets in regression and time series analysis. In order to analyze the effect of outliers on 

the estimation of parameters in regression and times series model, the classical and 

the robust estimation techniques are used. The performances of these estimators are 

analyzed by simulations as well as real data. Major findings can be summarized as 

follows: 

 From the study of outlier robustness, the multiple linear regression with three 

explanatory variables is used to generate the data sets. These clean data sets are 

transformed into outlier contaminated data sets. In this simulation study, two 

scenarios are analyzed.  According to the findings of the first scenario, it is shown that 

the MM-estimates (with a 70%, an 85% and a 95% efficiency), Huber and Turkey M- 

estimates, and LAV estimates are more resistant and efficient in the presence of 

vertical outliers. The OLS estimates provide poor estimates of true parameters of the 

regression model. Similarly, the Huber and Turkey M-estimates and MM-estimates 

are in line with the asymptotic robustness properties in the presence of both vertical 

and bad leverage points. As expected, OLS is a less efficient estimator whatever the 

type of outliers present in the data.   

 For the study of distribution robustness in regression, the performances of six 

regression methods for two important classes of distributions namely symmetric and 

skewed are investigated. Different error structures like normal, logistic, exponential, 

Cauchy and gamma distributions are used. It is found that, the OLS method is more 

efficient than the robust methods under normal error distribution. In this case, the 

LMS method performs much worst. In logistic distribution, the Turkey-M estimator is 

more robust than other estimation methods. Although no preferred robust method can 

be chosen in exponential and Cauchy distributions, the robust methods clearly 

outperform the OLS method. Moreover, it is shown that the OLS method performs 

much worst in the study of gamma distribution. The LMS method is more resistant in 

this distribution.  

 The simulation results indicate that when outliers exist, other alternatives of 

the OLS are more appropriate. Selecting a more efficient alternative to the OLS 

method is closely related to the type of data and so it is advisable to use several 
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alternative methods in data analysis. In cases of skewed distributions, the performance 

of OLS is inferior as compared to other methods. Based on bias and MSE criteria, the 

LMS is more suitable for the exponential and gamma distributions.  

 In symmetric distributions investigated here, the MSEs are very close to one 

another for the sample sizes larger than 50 and so none of the estimation methods is 

superior in such circumstances. However, this is not true for the cases of the skewed 

distributions where the OLS method has shown to be far inferior from the other 

methods of estimation. Compared to MSE criterion, the bias criterion fluctuated more 

and this fluctuation persists even for larger sample sizes. This instability of biases 

created some difficulties and confusion in finding the optimum estimation in some 

situations. 

 When series are outlier contaminated (γ = 0.01, 0.05 and 0.10), an overall 

result is that outliers adversely affect the bias as well as MSE of OLS estimators. It is 

found that OLS estimation under a heavy-tailed distribution does not yield outlier 

robust estimates. Indeed, not only with the Gaussian distribution but also with the 

skewed distributions, OLS estimators collapse in the presence of small levels of 

outlier contamination. 

 Moreover, it is illustrated that the RDL1 method clearly outperforms the OLS 

and LTS methods in the regression model involved with dummy variables. In this 

study, the RDL1 and LTS methods detect several outliers whereas the least squares 

residuals do not reveal any outlier. Based on the mean squared error (MSE) criterion, 

the RDL1 estimator is more resistant but it suffers from swamping effect. The OLS 

method is much worst in this case. According to the result of LTS analysis, the 

observations (25, 26, 27, and 28) gained from the simulated data are excluded and the 

remaining data are rerun using the OLS method. It is found that there is no outliers in 

the data OLS estimators are more robust.  

 In analysis with real data, a curvilinear regression model is fitted to the 

production and export of maize data. It is found that the estimated residuals of fitted 

model do not follow the normality assumption. In this study, both variables have to be 

transformed to meet basic assumptions. However, the transformation does not 

eliminate or attenuate the leverage of influential outliers that bias the prediction and 

distort the significance of parameter estimates. Even though the curvilinear effect is 

included in the model, the reliable results are not obtained from the OLS fit. In such a 
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situation, the LMS estimation methods provide good results in estimating the true 

parameters. Similarly, a multiple regression model with three explanatory variables is 

fitted to the maternal mortality ratio data. It is found that the residuals of the fitted 

model do not satisfy the normality assumption. The LMS estimation method is more 

robust in this study.  

Outliers in an economic time series include deviations that occur because of 

unusual events such as policy changes, environmental regulations, economic changes, 

advertising promotions, supply interruptions, natural disasters, wars, strikes and 

similar events. In time series, outliers can take several forms. Among than additive 

outlier (AO) and innovation outlier (IO) are focused in this study. The difference 

between AO and IO is that in fact an AO is interpreted as an outlying observation 

added after the realization to affect a single observation and an IO as an outlying 

observation added during the realization with influence on all succeeding 

observations.  

In the case of an AR(1) model, one IO yields one outlier in the response 

variable and a number of "good" leverage points ("good" refers to the fact that the 

leverage points lie close to the fitted line determined by the majority of the data), 

which actually improve the accuracy of the parameter estimate. Therefore, one IO 

only affects one residual. On the other hand, one AO results in one outlier in the 

vertical direction and one "bad" leverage point ("bad" refers to the fact that the 

leverage point does not lie close to the fitted line determined by the majority of the 

data). Thus, AO also affects the next residual inflating two consecutive residuals. The 

presence of such outliers in a time series can also have substantial effects on 

parameters estimation. 

 The effect of outliers on estimation of parameter in time series models is 

analyzed by using simulation. In this simulation study, the time series models such as 

AR(1) with AO outlier, AR(1) with IO outlier, MA(1) with AO outlier and MA(1) 

with IO outlier are investigated and the parameters of each model is estimated by 

using ML method and robust methods. The results from simulation comparisons 

indicate that the RA estimates based on bisquare family have very good robustness 

properties for AR(1) with AO outlier and AR(1) model with IO outlier and they 

compare favorably with the GM-estimates. When the percentage of contamination 

increased to 5%, the RA estimator based on the Huber family yielded a mean that is 

close to the true parameter for AR(1) with IO outlier model. 
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 Moreover, the GM-estimator can handle both AO and IO quite successfully in 

the AR(1) model. The ML estimates of AR(1) are not able to cope with contaminated 

situations, neither AO nor IO. It is clear that even a small fraction of outliers (γ = 1%) 

has a very large influence on the ML estimates. The RA estimates also behave 

robustly in terms of efficiency for the MA(1) model with AO when γ = 0.01 and 0.05. 

When moving average terms are present, the GM-estimates are neither resistant nor 

robust. Under the MA(1) model with IO outlier, it is preferable to use the ML 

estimates. On the other hand, the ML estimate is extremely sensitive to the presence 

of AOs. Since small fraction of AOs may cause a large bias in the ML estimates, they 

are more dangerous than IOs. 

 In real data application, two series namely a daily average number of defects 

per truck and a yearly export of maize in Myanmar are chosen to analyze the effect of 

outliers in estimating parameters in the time series model. The truck data set is a very 

popular data set and several statisticians studied it from time to time. It is noted that 

the truck data contained both the AO as well as the IO. The result of truck data points 

out that the RA estimate based on bisquare family is more efficient under the AR(1) 

with AO and IO. Under the AR(1) model with AO and IO, the MSEs of MH, MB, 

RAH, RAB, GM and ACM estimators are quite close to each other. The RA estimates 

perform better than the ML estimates and other robust methods. The estimate based 

on bisquare performs better than those based on Huber.  

 A similar result is obtained from the analysis of data about export of maize. 

This data set contains an AO outlier and the ARIMA(1,1,0) model is fitted to it. Due 

to the presence of a single AO outlier, it is found that the ML and robust estimates 

differed substantially. The ML estimate has the largest MSE among the robust 

methods in the presence of a single AO outlier. The MSE of RA estimate based on 

bisquare family (RAB) is found to be the smallest; it is followed by the MSE of RA 

estimate based on Huber family (RAH), ACM, GM and M-estimate based on Huber 

and bisquare respectively. In this study, the RA estimate based on bisquare family is 

found to be more robust under the ARIMA(1,1,0) model with a single AO outlier. 

 To sum up, when there are no outliers in the data, the robust and classical 

methods both worked well, indicating that the values of MSE are quite close to each 

other. When there are outliers in the data, the robust methods perform better than the 

classical method. 
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APPENDIX A 

 

Table (A.4.1) Bias and MSE for OLS and Robust Methods 

of Simulated Data with Vertical Outliers 
Sample 

Size Estimation Method 0β  1β  2β  3β  

n = 30 OLS 
 

Bias                                                                                       
MSE 

1.9748 
4.4833 

0.9043 
1.7279 

1.0060 
1.6046 

1.1331 
2.0718 

 LAV 
 

Bias 
MSE 

0.3237 
0.3378 

0.3173 
0.3391 

0.2570 
0.1148 

0.2460 
0.1133 

M-H 
 

Bias 
MSE 

0.3151 
0.3284 

0.2832 
0.3018 

0.2277 
0.0916 

0.2381 
0.0958 

M-T 
 

Bias 
MSE 

0.2354 
0.2809 

0.2419 
0.2519 

0.1813 
0.0625 

0.1787 
0.0574 

MM-(0.70) 
 

Bias 
MSE 

0.2481 
0.2905 

0.2794 
0.2940 

0.2143 
0.0934 

0.2081 
0.0762 

MM(0.85) 
 

Bias 
MSE 

0.2403 
0.2800 

0.2513 
0.2744 

0.1914 
0.0690 

0.1892 
0.0647 

MM-(0.95) 
 

Bias 
MSE 

0.2387 
0.2827 

0.2506 
0.2744 

0.1932 
0.0729 

0.1813 
0.0593 

n = 40 OLS 
 

Bias                                                                                       
MSE 

2.0424 
5.2361 

0.9613 
1.4872 

0.7830 
1.0443 

0.8337 
1.3226 

LAV 
 

Bias 
MSE 

0.3744 
0.9587 

0.1748 
0.0454 

0.2479 
0.1463 

0.2070 
0.1095 

M-H 
 

Bias 
MSE 

0.3800 
1.0227 

0.1810 
0.0544 

0.2233 
0.1283 

0.1918 
0.1095 

M-T 
 

Bias 
MSE 

0.2994 
0.8796 

0.1446 
0.0346 

0.2092 
0.1100 

0.1579 
0.0643 

MM-(0.70) 
 

Bias 
MSE 

0.3171 
0.8723 

0.1702 
0.0455 

0.2202 
0.1151 

0.1726 
0.0696 

MM(0.85) 
 

Bias 
MSE 

0.3099 
0.8772 

0.1543 
0.0407 

0.2111 
0.1081 

0.1599 
0.0602 

MM-(0.95) 
 

Bias 
MSE 

0.2999 
0.8763 

0.1511 
0.0380 

0.2153 
0.1107 

0.1556 
0.0585 

 

Simulation setup:  simulations = 100,  contamination = 10% 

Source: Calculations based on simulation data 
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Table (A.4.2) Bias and MSE for OLS and Robust Methods of Simulated 

Data with Vertical Outlier and Bad Leverage Points 

 
Sample 

Size Estimation Method 0β  1β  2β  3β  

n = 30 OLS 
 

Bias                                                                                       
MSE 

0.7798 
1.1732 

0.1761 
0.0558 

0.1618 
0.0464 

0.6959 
0.8442 

LAV 
 

Bias 
MSE 

0.3016 
0.6038 

0.0832 
0.0135 

0.0983 
0.0166 

0.2025 
0.0829 

M-H 
 

Bias 
MSE 

0.2894 
0.5636 

0.0796 
0.0124 

0.0855 
0.0120 

0.1934 
0.0743 

M-T 
 

Bias 
MSE 

0.2896 
0.5688 

0.0926 
0.0201 

0.0932 
0.0180 

0.1814 
0.0624 

MM-(0.70) 
 

Bias 
MSE 

0.3057 
0.6098 

0.1286 
0.0397 

0.1261 
0.0387 

0.2095 
0.0852 

MM-(0.85) 
 

Bias      
MSE 

0.2966 
0.5638 

0.1175 
0.0309 

0.1165 
0.0315 

0.1872 
0.0665 

MM-(0.95) 
 

Bias 
MSE 

0.2905 
0.5686 

0.1218 
0.0387 

0.1112 
0.0262 

0.1841 
0.0674 

LMS 
 

Bias 
MSE 

0.3150 
0.5869 

0.0992 
0.0233 

0.0999 
0.0215 

0.2046 
0.0762 

LTS 
 

Bias 
MSE 

0.4382 
0.7850 

0.2175 
0.1027 

0.2680 
0.1484 

0.3365 
0.1802 

n = 40 OLS 
 

Bias                                                                                       
MSE 

0.4899 
0.2817 

0.1193 
0.0240 

0.1449 
0.0556 

0.1400 
0.0357 

LAV 
 

Bias 
MSE 

0.1614 
0.0462 

0.0775 
0.0097 

0.0855 
0.0170 

0.0762 
0.0094 

M-H 
 

Bias 
MSE 

0.1408 
0.0352 

0.0637 
0.0067 

0.0714 
0.0152 

0.0708 
0.0082 

M-T 
 

Bias 
MSE 

0.1432 
0.0362 

0.0786 
0.0163 

0.0804 
0.0177 

0.0769 
0.0099 

MM-(0.70) 
 

Bias 
MSE 

0.1559 
0.0444 

0.1138 
0.0296 

0.1013 
0.0242 

0.0944 
0.0172 

MM(0.85) 
 

Bias 
MSE 

0.1546 
0.0407 

0.1016 
0.0253 

0.0886 
0.0182 

0.0905 
0.0144 

MM-(0.95) 
 

Bias 
MSE 

0.1462 
0.0366 

0.0962 
0.0252 

0.0887 
0.0203 

0.0800 
0.0107 

LMS 
 

Bias 
MSE 

0.1701 
0.0515 

0.1078 
0.0290 

0.0953 
0.0228 

0.0855 
0.0129 

LTS 
 

Bias 
MSE 

0.3212 
0.1621 

0.2157 
0.0978 

0.1847 
0.0715 

0.1872 
0.0750 

 
Simulation setup: simulations = 100, contamination = 10% 

            Source:        Calculations based on simulation data 
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Table (A.4.3 ) Performances of OLS and Robust Methods of Normal Distribution 
 

Sample 
Size 

Estimation Method 
0β  1β  2β  3β  

n =10 OLS 
 

Bias                                                                                       
MSE 

0.3086 
0.1757 

0.2048 
0.0644 

0.2738 
0.1107 

0.2051 
0.1176 

LAV 
 

Bias 
MSE 

0.4002 
0.2544 

0.2181 
0.0695 

0.3676 
0.2465 

0.2434 
0.0907 

M-H 
 

Bias 
MSE 

0.2974 
0.1453 

0.2060 
0.0685 

0.2266 
0.0938 

0.2026 
0.1038 

M-T 
 

Bias 
MSE 

0.3015 
0.1488 

0.3553 
0.3310 

0.3434 
0.2575 

0.3000 
0.1934 

LTS 
 

Bias 
MSE 

0.3432 
0.1584 

0.2608 
0.1668 

0.3072 
0.1986 

0.2854 
0.1045 

LMS 
 

Bias 
MSE 

0.5234 
0.4554 

0.5989 
0.5986 

0.5645 
0.5141 

0.4626 
0.8200 

n =20 
 
 

OLS 
 

Bias                                                                                       
MSE 

0.1912 
0.0602 

0.1865 
0.0617 

0.2020 
0.0744 

0.1403 
0.0276 

LAV 
 

Bias 
MSE 

0.2116 
0.0602 

0.2230 
0.0777 

0.2501 
0.1012 

0.2515 
0.1050 

M-H 
 

Bias 
MSE 

0.2020 
0.0701 

0.2012 
0.0647 

0.2022 
0.0720 

0.1145 
0.0226 

M-T 
 

Bias 
MSE 

0.1963 
0.0641 

0.1941 
0.0634 

0.2146 
0.0719 

0.1186 
0.0235 

LTS 
 

Bias 
MSE 

0.2531 
0.1131 

0.2828 
0.1352 

0.2812 
0.1375 

0.2082 
0.0776 

LMS 
 

Bias 
MSE 

0.5271 
0.4082 

0.4909 
0.3397 

0.4668 
0.3225 

0.3154 
0.1779 

n =30 
 
 

OLS 
 

Bias                                                                                       
MSE 

0.1642 
0.0376 

0.1703 
0.0494 

0.1450 
0.0304 

0.1526 
0.0334 

LAV 
 

Bias 
MSE 

0.2056 
0.0603 

0.2868 
0.1480 

0.1536 
0.0319 

0.1546 
0.0306 

M-H 
 

Bias 
MSE 

0.1940 
0.0473 

0.1567 
0.0446 

0.1554 
0.0286 

0.1365 
0.0249 

M-T 
 

Bias 
MSE 

0.1860 
0.0443 

0.1578 
0.0441 

0.1491 
0.0273 

0.1342 
0.0255 

LTS 
 

Bias 
MSE 

0.2227 
0.0677 

0.1474 
0.0400 

0.1598 
0.0319 

0.0857 
0.0132 

LMS 
 

Bias 
MSE 

0.2395 
0.0948 

0.1996 
0.0549 

0.3296 
0.1444 

0.3494 
0.2118 

n=50 
 
 
 

OLS 
 

Bias                                                                                       
MSE 

0.1609 
0.0328 

0.2201 
0.0588 

0.1345 
0.0265 

0.0908 
0.0104 

LAV 
 

Bias 
MSE 

0.1434 
0.0284 

0.2307 
0.0807 

0.1200 
0.0200 

0.0979 
0.0132 

M-H 
 

Bias 
MSE 

0.1602 
0.0315 

0.2016 
0.0586 

0.1367 
0.0254 

0.0905 
0.0097 

M-T 
 

Bias 
MSE 

0.1643 
0.0331 

0.1964 
0.0550 

0.1331 
0.0242 

0.0857 
0.0090 

LTS 
 

Bias 
MSE 

0.1679 
0.0388 

0.2641 
0.0878 

0.1527 
0.0316 

0.0923 
0.0106 

LMS 
 

Bias 
MSE 

0.2383 
0.0977 

0.3356 
0.1592 

0.1687 
0.0445 

0.2540 
0.1204 
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Table (A.4.3 ) (Contd.)  
 

Sample 
Size 

Estimation Method 
0β  1β  2β  3β  

n =80 
 
 

OLS 
 

Bias                                                                                       
MSE 

0.1396 
0.0232 

0.1424 
0.0279 

0.0917 
0.0110 

0.0710 
0.0108 

LAV 
 

Bias 
MSE 

0.1446 
0.0266 

0.1501 
0.0358 

0.1034 
0.0161 

0.0653 
0.0075 

M-H 
 

Bias 
MSE 

0.1358 
0.0231 

0.1374 
0.0294 

0.0877 
0.0106 

0.0641 
0.0098 

M-T 
 

Bias 
MSE 

0.1413 
0.0252 

0.1304 
0.0273 

0.0893 
0.0108 

0.0611 
0.0010 

LTS 
 

Bias 
MSE 

0.1184 
0.0207 

0.1761 
0.0478 

0.1093 
0.0168 

0.1218 
0.0268 

LMS 
 

Bias 
MSE 

0.2239 
0.0748 

0.1566 
0.0343 

0.1329 
0.0397 

0.2327 
0.0876 

n =100 
 

OLS 
 

Bias                                                                                       
MSE 

0.1253 
0.0229 

0.1307 
0.0217 

0.0826 
0.0089 

0.0697 
0.0092 

LAV 
 

Bias 
MSE 

0.1559 
0.0395 

0.1067 
0.0184 

0.0858 
0.0108 

0.0728 
0.0080 

M-H 
 

Bias 
MSE 

0.1308 
0.0255 

0.1307 
0.0230 

0.0742 
0.0080 

0.0696 
0.0090 

M-T 
 

Bias 
MSE 

0.1330 
0.0266 

0.1255 
0.0217 

0.0777 
0.0086 

0.0705 
0.0091 

LTS 
 

Bias 
MSE 

0.1249 
0.0290 

0.1651 
0.0333 

0.0681 
0.0070 

0.0894 
0.0102 

LMS 
 

Bias 
MSE 

0.2392 
0.0761 

0.2121 
0.0825 

0.2529 
0.0919 

0.1743 
0.0394 

 Source: Calculations based on simulation data 
 

 
Table (A.4.4) Performances of OLS and Robust Methods of Logistic Distribution 

Sample 
Size 

Estimation Method 
0β  1β  2β  3β  

n = 10 OLS 
 

Bias                                                                                       
MSE 

0.6008 
0.5172 

0.5992 
0.6685 

0.6534 
0.6845 

0.6685 
0.7979 

LAV 
 

Bias 
MSE 

0.6979 
0.8873 

0.7139 
0.9214 

0.8887 
1.1780 

0.8093 
1.0937 

M-H 
 

Bias 
MSE 

0.6727 
0.8082 

0.5797 
0.7134 

0.7264 
0.8194 

0.7172 
0.9156 

M-T 
 

Bias 
MSE 

0.7320 
0.8665 

0.6707 
1.0874 

0.7471 
0.8327 

0.8297 
1.3582 

LTS 
 

Bias 
MSE 

0.8595 
1.1525 

0.5997 
0.7990 

0.9042 
1.1726 

0.9234 
1.2751 

LMS 
 

Bias 
MSE 

1.3391 
2.3115 

0.7972 
1.1169 

1.1474 
1.4996 

1.3129 
2.7096 

n = 20 OLS 
 

Bias                                                                                       
MSE 

0.2985 
0.1225 

0.4272 
0.2685 

0.4600 
0.2970 

0.3331 
0.1586 

LAV 
 

Bias 
MSE 

0.3014 
0.1230 

0.4991 
0.4735 

0.4726 
0.4369 

0.4228 
0.2700 

M-H 
 

Bias 
MSE 

0.2786 
0.1150 

0.4063 
0.2573 

0.4641 
0.3216 

0.3586 
0.1796 

M-T 
 

Bias 
MSE 

0.2655 
0.1071 

0.4036 
0.2581 

0.4596 
0.3210 

0.3478 
0.1744 

LTS 
 

Bias 
MSE 

0.3326 
0.1207 

0.5109 
0.5581 

0.6293 
0.5929 

0.4290 
0.2601 

LMS 
 

Bias 
MSE 

0.4507 
0.2784 

0.6996 
0.8511 

1.0963 
1.6086 

0.9802 
1.6227 
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Table (A.4.4 ) (Contd.)  

 
Sample 

Size 
Estimation Method 

0β  1β  2β  3β  

n =30 OLS 
 

Bias                                                                                       
MSE 

0.2664 
0.1078 

0.2581 
0.2136 

0.3643 
0.1852 

0.1759 
0.0522 

LAV 
 

Bias 
MSE 

0.2543 
0.0914 

0.3313 
0.2682 

0.3976 
0.1793 

0.2949 
0.1186 

M-H 
 

Bias 
MSE 

0.2501 
0.0871 

0.2630 
0.2155 

0.3493 
0.1685 

0.1980 
0.0577 

M-T 
 

Bias 
MSE 

0.2459 
0.0787 

0.2625 
0.2153 

0.3455 
0.1732 

0.1945 
0.0555 

LTS 
 

Bias 
MSE 

0.2799 
0.1065 

0.3272 
0.1966 

0.4033 
0.1945 

0.4543 
0.2414 

LMS 
 

Bias 
MSE 

0.5637 
0.3630 

0.9437 
1.1606 

0.5797 
0.4564 

0.3814 
0.2530 

n =50 
 
 

OLS 
 

Bias                                                                                       
MSE 

0.1597 
0.0493 

0.2760 
0.1430 

0.2470 
0.0891 

0.3024 
0.1107 

LAV 
 

Bias 
MSE 

0.2593 
0.0869 

0.3333 
0.1754 

0.2142 
0.0626 

0.2767 
0.1248 

M-H 
 

Bias 
MSE 

0.1625 
0.0448 

0.2748 
0.1357 

0.2582 
0.1042 

0.2643 
0.0886 

M-T 
 

Bias 
MSE 

0.1554 
0.0403 

0.2684 
0.1312 

0.2747 
0.1154 

0.2420 
0.0813 

LTS 
 

Bias 
MSE 

0.2061 
0.0819 

0.2707 
0.1287 

0.2730 
0.1338 

0.2834 
0.1440 

LMS 
 

Bias 
MSE 

0.5312 
0.3731 

0.5433 
0.5662 

0.6406 
0.8952 

0.4673 
0.3356 

n =80 
 
 

OLS 
 

Bias                                                                                       
MSE 

0.1427 
0.0305 

0.1660 
0.0381 

0.2487 
0.0849 

0.1713 
0.0392 

LAV 
 

Bias 
MSE 

0.1856 
0.0646 

0.1278 
0.0230 

0.2423 
0.1177 

0.1935 
0.0472 

M-H 
 

Bias 
MSE 

0.1496 
0.0329 

0.1269 
0.0248 

0.2279 
0.0833 

0.1816 
0.0421 

M-T 
 

Bias 
MSE 

0.1524 
0.0328 

0.1208 
0.0219 

0.2276 
0.0862 

0.1701 
0.0384 

LTS 
 

Bias 
MSE 

0.1775 
0.0520 

0.1307 
0.0251 

0.2478 
0.1040 

0.1787 
0.0510 

LMS 
 

Bias 
MSE 

0.3531 
0.1638 

0.2450 
0.0851 

0.2971 
0.1457 

0.3855 
0.1698 

n=100 
 
 
 

OLS 
 

Bias                                                                                       
MSE 

0.1248 
0.0185 

0.1285 
0.0285 

0.1792 
0.0525 

0.1459 
0.0304 

LAV 
 

Bias 
MSE 

0.1408 
0.0289 

0.0968 
0.0160 

0.1893 
0.0593 

0.2056 
0.0569 

M-H 
 

Bias 
MSE 

0.1349 
0.0228 

0.0985 
0.0192 

0.1723 
0.0559 

0.1672 
0.0364 

M-T 
 

Bias 
MSE 

0.1412 
0.0249 

0.0949 
0.0163 

0.1700 
0.0568 

0.1670 
0.0373 

LTS 
 

Bias 
MSE 

0.1737 
0.0422 

0.1063 
0.0196 

0.2237 
0.0996 

0.2346 
0.0734 

LMS 
 

Bias 
MSE 

0.3532 
0.1769 

0.2339 
0.0805 

0.2436 
0.1291 

0.3622 
0.1676 

 
Source: Calculations based on simulation data 
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Table (A.4.5 ) Performances of OLS and Robust Methods of Exponential 
Distribution 

 
 

Sample 
Size 

Estimation Method 
0β  1β  2β  3β  

n =10 OLS 
 

Bias                                                                                       
MSE 

0.8869 
0.8400 

0.4223 
0.3801 

0.1918 
0.0503 

0.2208 
0.0698 

LAV 
 

Bias 
MSE 

0.8068 
0.7369 

0.4030 
0.3578 

0.1430 
0.0402 

0.1966 
0.0632 

M-H 
 

Bias 
MSE 

0.7993 
0.6795 

0.4430 
0.4550 

0.1904 
0.0454 

0.2118 
0.0675 

M-T 
 

Bias 
MSE 

0.7601 
0.6432 

0.4563 
0.4974 

0.2263 
0.0705 

0.2151 
0.0734 

LTS 
 

Bias 
MSE 

0.6763 
0.5482 

0.5282 
0.7216 

0.2992 
0.1790 

0.2817 
0.2005 

LMS 
 

Bias 
MSE 

0.7246 
0.6232 

0.7137 
0.8143 

0.3599 
0.1961 

0.4490 
0.3464 

n =20 
 
 

OLS 
 

Bias                                                                                       
MSE 

0.9875 
1.0145 

0.1521 
0.0323 

0.2115 
0.0713 

0.1170 
0.0157 

LAV 
 

Bias 
MSE 

0.7316 
0.6027 

0.1719 
0.0533 

0.1408 
0.0362 

0.1462 
0.0288 

M-H 
 

Bias 
MSE 

0.8483 
0.7599 

0.1322 
0.0231 

0.1651 
0.0450 

0.1312 
0.0207 

M-T 
 

Bias 
MSE 

0.8008 
0.6883 

0.1512 
0.0425 

0.1453 
0.0403 

0.1400 
0.0273 

LTS 
 

Bias 
MSE 

0.7500 
0.6225 

0.2065 
0.0678 

0.1719 
0.0560 

0.1410 
0.0298 

LMS 
 

Bias 
MSE 

0.4050 
0.1790 

0.1926 
0.0509 

0.2943 
0.1541 

0.2452 
0.1608 

n =30 
 
 

OLS 
 

Bias                                                                                       
MSE 

0.9582 
0.9524 

0.1562 
0.0279 

0.1160 
0.0216 

0.1363 
0.0311 

LAV 
 

Bias 
MSE 

0.7201 
0.5627 

0.1580 
0.0354 

0.1097 
0.0169 

0.1080 
0.0189 

M-H 
 

Bias 
MSE 

0.8055 
0.7929 

0.1222 
0.0246 

0.1107 
0.0208 

0.1184 
0.0207 

M-T 
 

Bias 
MSE 

0.7354 
0.5590 

0.1253 
0.0254 

0.1247 
0.0232 

0.0962 
0.0136 

LTS 
 

Bias 
MSE 

0.7095 
0.5175 

0.1063 
0.0238 

0.0962 
0.0126 

0.1040 
0.0150 

LMS 
 

Bias 
MSE 

0.4909 
0.2991 

0.1890 
0.0686 

0.1376 
0.0308 

0.1206 
0.0281 

n=50 
 
 
 

OLS 
 

Bias                                                                                       
MSE 

0.9627 
0.9419 

0.1069 
0.0137 

0.1066 
0.0165 

0.1008 
0.0132 

LAV 
 

Bias 
MSE 

0.6673 
0.4551 

0.0875 
0.0127 

0.1037 
0.0142 

0.0739 
0.0090 

M-H 
 

Bias 
MSE 

0.7972 
0.6482 

0.0706 
0.0073 

0.0975 
0.0123 

0.0903 
0.0099 

M-T 
 

Bias 
MSE 

0.6945 
0.4922 

0.0716 
0.0081 

0.1055 
0.0143 

0.0732 
0.0077 

LTS 
 

Bias 
MSE 

0.6937 
0.4889 

0.0684 
0.0068 

0.1143 
0.0170 

0.1075 
0.0161 

LMS 
 

Bias 
MSE 

0.4415 
0.2040 

0.0908 
0.0117 

0.0847 
0.0140 

0.1069 
0.0188 
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Table (A.4.5 ) (Contd.)  
Sample 

Size 
Estimation Method 

0β  1β  2β  3β  

n =80 
 
 

OLS 
 

Bias                                                                                       
MSE 

0.9860 
0.9849 

0.0661 
0.0060 

0.0961 
0.0132 

0.0642 
0.0046 

LAV 
 

Bias 
MSE 

0.6673 
0.4537 

0.0854 
0.0134 

0.0918 
0.0118 

0.0806 
0.0091 

M-H 
 

Bias 
MSE 

0.8195 
0.6854 

0.0667 
0.0063 

0.0769 
0.0097 

0.0513 
0.0030 

M-T 
 

Bias 
MSE 

0.6996 
0.4996 

0.0743 
0.0083 

0.0823 
0.0093 

0.0474 
0.0037 

LTS 
 

Bias 
MSE 

0.7229 
0.5319 

0.0657 
0.0064 

0.0987 
0.0175 

0.0494 
0.0035 

LMS 
 

Bias 
MSE 

0.4021 
0.1784 

0.0549 
0.0052 

0.0550 
0.0055 

0.0742 
0.0101 

n =100 
 

OLS 
 

Bias                                                                                       
MSE 

0.9979 
1.0088 

0.0574 
0.0052 

0.0942 
0.0132 

0.0614 
0.0061 

LAV 
 

Bias 
MSE 

0.6812 
0.4737 

0.0877 
0.0142 

0.1129 
0.0162 

0.0625 
0.0055 

M-H 
 

Bias 
MSE 

0.8355 
0.7119 

0.0667 
0.0058 

0.0767 
0.0097 

0.0415 
0.0022 

M-T 
 

Bias 
MSE 

0.7175 
0.5241 

0.0704 
0.0080 

0.0853 
0.0102 

0.0385 
0.0025 

LTS 
 

Bias 
MSE 

0.7280 
0.5378 

0.0683 
0.0066 

0.0822 
0.0118 

0.0420 
0.0026 

LMS 
 

Bias 
MSE 

0.4288 
0.1981 

0.0730 
0.0077 

0.1042 
0.0156 

0.0431 
0.0032 

Source: Calculations based on simulation data 
 

 
Table (A.4.6 ) Performances of OLS and Robust Methods of Cauchy Distribution 

 
Sample 

Size Estimation Method 0β  1β  2β  3β  

n = 10 OLS 
 

Bias                                                                                       
MSE 

2.6781 
22.0394 

1.7431 
8.3795 

2.8656 
19.2347 

2.4600 
17.3125 

LAV 
 

Bias 
MSE 

0.9250 
1.3160 

1.1730 
2.7178 

1.2433 
3.2583 

1.2245 
2.4527 

M-H 
 

Bias 
MSE 

1.1229 
2.0275 

1.0392 
1.6833 

1.7524 
9.6928 

1.2515 
2.2957 

M-T 
 

Bias 
MSE 

1.0268 
1.7355 

0.7001 
0.8209 

1.6003 
10.472 

1.0101 
1.5833 

LTS 
 

Bias 
MSE 

0.9644 
1.4443 

0.7875 
1.0583 

1.2490 
3.2550 

1.2296 
2.6758 

LMS 
 

Bias 
MSE 

0.7397 
1.0858 

0.8135 
1.2536 

0.9280 
1.5602 

1.2161 
3.3787 

n = 20 OLS 
 

Bias                                                                                       
MSE 

2.2200 
8.3993 

1.7870 
6.6070 

1.6756 
3.9963 

1.2306 
3.4722 

LAV 
 

Bias 
MSE 

0.3561 
0.2330 

0.2274 
0.0982 

0.5412 
0.4833 

0.3553 
0.1745 

M-H 
 

Bias 
MSE 

0.3121 
0.2045 

0.2656 
0.1198 

0.5713 
0.6117 

0.3249 
0.1842 

M-T 
 

Bias 
MSE 

0.3683 
0.1670 

0.3388 
0.1502 

0.5146 
0.4428 

0.3765 
0.1782 

LTS 
 

Bias 
MSE 

0.3011 
0.1566 

0.3056 
0.1157 

0.5078 
0.4263 

0.2908 
0.1383 

LMS 
 

Bias 
MSE 

0.3995 
0.2390 

0.2609 
0.1140 

0.4618 
0.3158 

0.4490 
0.2748 
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Table (A.4.6 ) (Contd.)  
 

Sample 
Size 

Estimation Method 
0β  1β  2β  3β  

n =30 OLS 
 

Bias                                                                                       
MSE 

4.3323 
97.9254 

5.8791 
235.9916 

1.5400 
5.4072 

1.5029 
9.3752 

LAV 
 

Bias 
MSE 

0.2233 
0.0657 

0.2265 
0.0824 

0.4099 
0.2798 

0.1742 
0.0398 

M-H 
 

Bias 
MSE 

0.2551 
0.0884 

0.1866 
0.0459 

0.5672 
0.4956 

0.2752 
0.1044 

M-T 
 

Bias 
MSE 

0.1766 
0.0427 

0.1929 
0.0554 

0.5003 
0.3877 

0.3177 
0.1151 

LTS 
 

Bias 
MSE 

0.2158 
0.0806 

0.2688 
0.1131 

0.6248 
0.6523 

0.3137 
0.1682 

LMS 
 

Bias 
MSE 

0.3576 
0.2412 

0.3978 
0.2607 

0.5022 
0.3258 

0.4450 
0.3863 

n =50 
 
 

OLS 
 

Bias                                                                                       
MSE 

2.4380 
23.9028 

3.3922 
67.9288 

1.2825 
4.1653 

2.1126 
20.6503 

LAV 
 

Bias 
MSE 

0.1430 
0.0331 

0.1777 
0.0488 

0.2044 
0.0637 

0.2255 
0.0804 

M-H 
 

Bias 
MSE 

0.1170 
0.0227 

0.1531 
0.0377 

0.2824 
0.1051 

0.2241 
0.0967 

M-T 
 

Bias 
MSE 

0.1387 
0.0314 

0.1916 
0.0454 

0.2494 
0.0846 

0.2393 
0.0848 

LTS 
 

Bias 
MSE 

0.1595 
0.0418 

0.2127 
0.0522 

0.3489 
0.1596 

0.2284 
0.0937 

LMS 
 

Bias 
MSE 

0.2338 
0.0738 

0.2931 
0.1162 

0.2854 
0.1304 

0.2233 
0.1053 

n =80 
 
 

OLS 
 

Bias                                                                                       
MSE 

1.5801 
8.4181 

2.3042 
31.4442 

1.0224 
3.7895 

1.4368 
7.2829 

LAV 
 

Bias 
MSE 

0.1200 
0.0197 

0.1266 
0.0213 

0.0915 
0.0193 

0.1574 
0.0388 

M-H 
 

Bias 
MSE 

0.1139 
0.0231 

0.1350 
0.0249 

0.1586 
0.0342 

0.1872 
0.0622 

M-T 
 

Bias 
MSE 

0.1237 
0.0361 

0.2073 
0.0481 

0.1480 
0.0401 

0.2121 
0.0670 

LTS 
 

Bias 
MSE 

0.1428 
0.0561 

0.2518 
0.0658 

0.1406 
0.0374 

0.2555 
0.0884 

LMS 
 

Bias 
MSE 

0.3140 
0.1215 

0.3346 
0.1532 

0.1615 
0.0465 

0.1461 
0.0392 

n=100 
 
 
 

OLS 
 

Bias                                                                                       
MSE 

1.5374 
6.4297 

2.0641 
22.3868 

1.0080 
2.9185 

1.0555 
3.0349 

LAV 
 

Bias 
MSE 

0.1039 
0.0154 

0.1206 
0.0180 

0.0469 
0.0073 

0.1557 
0.0350 

M-H 
 

Bias 
MSE 

0.0824 
0.0112 

0.1186 
0.0188 

0.1001 
0.0162 

0.1559 
0.0421 

M-T 
 

Bias 
MSE 

0.1182 
0.0206 

0.1855 
0.0421 

0.1105 
0.0205 

0.1698 
0.0457 

LTS 
 

Bias 
MSE 

0.1355 
0.0280 

0.2186 
0.0627 

0.1286 
0.0240 

0.1704 
0.0406 

LMS 
 

Bias 
MSE 

0.2323 
0.0838 

0.1966 
0.0522 

0.1657 
0.0391 

0.2029 
0.0536 

 
Source: Calculations based on simulation data 
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Table (A.4.7 ) Performances of OLS and Robust Methods of Gamma 
Distribution 

 
Sample 

Size 
Estimation Method 

0β  1β  2β  3β  

n =10 OLS 
 

Bias                                                                                       
MSE 

2.3935 
7.3810 

0.8216 
1.2113 

0.6492 
0.7848 

0.5599 
0.4866 

LAV 
 

Bias 
MSE 

2.3062 
7.3690 

1.1021 
2.8982 

0.6106 
0.5796 

0.7862 
1.0408 

M-H 
 

Bias 
MSE 

2.2569 
6.8373 

0.8284 
1.2261 

0.6746 
0.8309 

0.5358 
0.4439 

M-T 
 

Bias 
MSE 

2.0283 
5.6560 

0.9482 
2.1358 

0.6500 
0.7479 

0.5055 
0.3862 

LTS 
 

Bias 
MSE 

2.1743 
6.5913 

1.0324 
2.3942 

0.9422 
2.3276 

0.6483 
0.5631 

LMS 
 

Bias 
MSE 

1.5070 
2.7178 

0.8757 
1.8015 

0.6243 
0.4890 

0.4788 
0.3060 

n =20 
 
 

OLS 
 

Bias                                                                                       
MSE 

2.1462 
4.9348 

0.3684 
0.2569 

0.3527 
0.2105 

0.5616 
0.4424 

LAV 
 

Bias 
MSE 

1.5007 
2.4972 

0.4235 
0.2949 

0.3415 
0.2167 

0.5842 
0.4840 

M-H 
 

Bias 
MSE 

1.9125 
4.0267 

0.3363 
0.2019 

0.3164 
0.1985 

0.4549 
0.2724 

M-T 
 

Bias 
MSE 

1.7407 
3.5293 

0.3463 
0.2229 

0.3121 
0.1919 

0.4594 
0.2590 

LTS 
 

Bias 
MSE 

1.8206 
3.8613 

0.4639 
0.3158 

0.4945 
0.6900 

0.5835 
0.4384 

LMS 
 

Bias 
MSE 

1.0030 
1.3840 

0.3097 
0.1284 

0.4122 
0.3720 

0.5455 
0.5856 

n =30 
 
 

OLS 
 

Bias                                                                                       
MSE 

2.0303 
4.2804 

0.3283 
0.1445 

0.1996 
0.0567 

0.4099 
0.3006 

LAV 
 

Bias 
MSE 

1.4922 
2.4788 

0.2176 
0.0725 

0.1931 
0.0701 

0.3677 
0.2350 

M-H 
 

Bias 
MSE 

1.7707 
3.2870 

0.2070 
0.0587 

0.1685 
0.0403 

0.3525 
0.1965 

M-T 
 

Bias 
MSE 

1.5254 
2.5688 

0.1952 
0.0571 

0.1656 
0.0462 

0.2685 
0.1467 

LTS 
 

Bias 
MSE 

1.5158 
2.3865 

0.2370 
0.0768 

0.2220 
0.0645 

0.2505 
0.1009 

LMS 
 

Bias 
MSE 

1.1215 
1.7866 

0.3789 
0.3366 

0.3694 
0.2039 

0.5825 
0.5754 

n=50 
 
 
 

OLS 
 

Bias                                                                                       
MSE 

1.9751 
4.0195 

0.2472 
0.0927 

0.1459 
0.0295 

0.2949 
0.1209 

LAV 
 

Bias 
MSE 

1.4359 
2.2758 

0.1300 
0.0249 

0.1245 
0.0304 

0.3035 
0.1276 

M-H 
 

Bias 
MSE 

1.6864 
2.9755 

0.1899 
0.0484 

0.0695 
0.0103 

0.2437 
0.0785 

M-T 
 

Bias 
MSE 

1.4592 
2.3139 

0.1921 
0.0459 

0.0731 
0.0086 

0.2034 
0.0483 

LTS 
 

Bias 
MSE 

1.4650 
2.2362 

0.1921 
0.0463 

0.0969 
0.0173 

0.2202 
0.0793 

LMS 
 

Bias 
MSE 

0.9384 
1.0656 

0.1761 
0.0455 

0.2219 
0.0657 

0.3415 
0.3257 
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Table (A.4.7 ) (Contd.) 
 

Sample 
Size 

Estimation Method 
0β  1β  2β  3β  

n =80 
 
 

OLS 
 

Bias                                                                                       
MSE 

1.9789 
3.9942 

0.1801 
0.0428 

0.1203 
0.0223 

0.1844 
0.0474 

LAV 
 

Bias 
MSE 

1.3392 
1.8845 

0.1363 
0.0277 

0.1095 
0.0202 

0.2038 
0.0717 

M-H 
 

Bias 
MSE 

1.6679 
2.8548 

0.1108 
0.0245 

0.0727 
0.0174 

0.1702 
0.0448 

M-T 
 

Bias 
MSE 

1.4060 
2.0780 

0.1706 
0.0372 

0.0934 
0.0183 

0.1567 
0.0435 

LTS 
 

Bias 
MSE 

1.4632 
2.1798 

0.1718 
0.0401 

0.1490 
0.0340 

0.1665 
0.0429 

LMS 
 

Bias 
MSE 

0.8983 
0.8930 

0.1404 
0.0288 

0.2250 
0.0967 

0.1698 
0.0487 

n =100 
 

OLS 
 

Bias                                                                                       
MSE 

1.9481 
3.8355 

0.1523 
0.0294 

0.1187 
0.0225 

0.1160 
0.0207 

LAV 
 

Bias 
MSE 

1.2564 
1.6309 

0.0945 
0.0162 

0.0857 
0.0115 

0.1388 
0.0342 

M-H 
 

Bias 
MSE 

1.6520 
2.7621 

0.0876 
0.0117 

0.0825 
0.0142 

0.1111 
0.0183 

M-T 
 

Bias 
MSE 

1.3776 
1.9417 

0.1100 
0.0149 

0.0821 
0.0130 

0.1111 
0.0227 

LTS 
 

Bias 
MSE 

1.4092 
1.9995 

0.1065 
0.0141 

0.1148 
0.0183 

0.1262 
0.0282 

LMS 
 

Bias 
MSE 

0.7951 
0.6746 

0.1509 
0.0380 

0.1847 
0.0673 

0.1000 
0.0146 

 
Source: Calculations based on simulation data 
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 Table (A.4.8) Simulated Data Set 
 

Case x1 x2 x3 y 
1 0.92 0.04 0 10.05 
2 -0.11 1.23 0 9.77 
3 1.39 1.2 1 12.45 
4 0.13 -1.12 0 8.66 
5 0.25 -0.86 0 8.28 
6 -1.44 0.26 0 7.96 
7 2.18 0.3 1 12.65 
8 -0.48 -1.65 0 7.28 
9 -1.75 0.59 1 9.36 
10 1.64 1.17 1 13.28 
11 -0.2 0.55 0 9.05 
12 0.87 0.7 1 11.31 
13 -1.39 2.01 0 9.33 
14 0.18 -0.7 1 9.95 
15 -1.21 -1.29 0 6.89 
16 -0.56 1.15 0 9.46 
17 0.94 -1.72 1 9.33 
18 -1.46 1.13 1 9.38 
19 1.2 -1.16 0 8.9 
20 -1.29 0.15 0 8.62 
21 -1.7 1.04 0 9.01 
22 0.17 -0.1 0 9.17 
23 -1.09 -0.3 0 7.43 
24 -1.27 0.15 0 7.93 
25 0.06 -2.92 1 14.16 
26 0.45 -1.97 1 14.54 
27 8.89 0.22 0 9.52 
28 6.87 -1.15 1 7.19 
29 10.96 8.26 0 28.35 
30 10.37 9.21 1 29.28 

 
 Source:  Simulation Data Sets 
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Table (A. 4.9) Production and Export of Maize  
 

Year Production of Maize (X) 
(in thousand metric ton) 

Export of Maize(Y) 
(in thousand metric ton) 

1976 57.4 6.2 
1977 74.1 10.3 
1978 75.6 10.1 
1979 124.5 20.3 
1980 163.7 9.7 
1981 202.8 22.2 
1982 235.4 33.5 
1983 304.7 17.6 
1984 298.5 30 
1985 294.1 21.9 
1986 280.9 15.5 
1987 220.1 20.8 
1988 189.9 0.9 
1989 190.7 13.9 
1990 184.1 20 
1991 188.1 41 
1992 205 44.4 
1993 201.4 40.4 
1994 251.5 70.4 
1995 270.4 62 
1996 281.4 102.5 
1997 303.4 50 
1998 297.9 174.3 
1999 343.6 88.8 
2000 358.9 147.9 
2001 524 90.1 
2002 593.4 219.2 
2003 692.9 150.9 
2004 771.1 254.8 
2005 903.5 90 
2006 1015.8 183.3 
2007 1128.1 156 

  
 Source: Central Statistical Organization (CSO), Ministry of National 

Planning, Statistical Yearbook (various issues)  
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Table (A.4.10) Summary of Various Regression Models Fitted to the  

Production and Export of Maize Data  

Model β0 β1 R2 
Standard Error of 

Estimates 
F- Value D.W. 

Originala 2.700 

 (0.198) 

0.190*** 

 (6.158) 

0.558 46.7654 37.943*** 1.77 

Newb -1.549*** 

(2.954) 

0.559*** 

 (6.028) 

0.548 0.3695 36.330*** 1.28 

Cochrane-

Orcutt 

- - ρ̂ =0.36 - - - 

Transformedc -0.948* 

(1.739) 
0.546*** 
(3.688) 

0.32 0.3503 13.604*** 2.27 

Note: (1) a. Original Model  

Predictors: (Constant), PROD   

Dependent Variable: EXP 

  b.  New Model 

Predictors:(Constant), lnPROD 

Dependent Variable: lnEXP 

  c. Transformed Model 

Predictors:(Constant), PROD*  

Dependent Variable: EXP*  

              (2) Absolute values of t statistics in parentheses. 

              (3) Significant at *** 1%, ** 5%, * 10% 

Source: Appendix Table (A.4.9)  

 

Table (A.4.11) Summary of Curvilinear Regression Model Fitted to the 

Production and Export of Maize Data  

Model β0 β1 β11 R2 
Standard Error 

of Estimates 
F- Value D.W. 

Centered d 88.6880*** 

 (8.430) 

0.3008*** 

 (5.950) 

-0.0003** 

(2.641) 

0.644 42.707 26.235*** 2.197 

Note: (1) d.  Predictors: (Constant), (PROD- mean), (PROD- mean)2 

                      Dependent Variable: EXP 

 (2) Absolute values of t statistics in parentheses. 

            (3) Significant at *** 1%, ** 5%, * 10% 

Source: Appendix Table (A.4.9)  
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Table (A.4.12) Maternal Mortality Ratio for Selected Countries 

 
Country Maternal 

Mortality 
ratio 

Contracep-
tive 

prevalence 
rate 

Adult 
literacy 

rate 

Birth 
attended 

by skilled 
health 

personnel 

Total 
fertility 

rate 

Life 
expecta-

ncy 

Physicians Public 
expendit-

ure on 
education 

Canada 7 75 99 98 1.5 80.3 214 6.8 
Sweden 3 78 99 100 1.7 80.5 328 7.7 
Japan 6 56 99 100 1.3 82.3 198 6.3 
Netherlands 6 79 99 100 1.7 79.2 315 5.7 
France 8 75 99 99 1.9 80.2 337 8.2 
United States 11 76 99 99 2 77.9 256 6.9 
Austria 4 51 99 100 1.4 79.4 338 7.8 
United 
Kingdom 8 84 99 99 1.7 79 230 7 
New Zealand 9 75 99 100 2 79.8 237 6.5 
Germany 4 75 99 100 1.3 79.1 337 8.2 
Singapore 14 62 92.5 100 1.4 79.4 140 1.3 
Korea 14 81 99 100 1.2 77.9 157 2.9 
Kuwait 4 50 93.3 98 2.3 77.3 153 2.2 
Malaysia 62 55 88.7 97 2.9 73.7 70 2.2 
Thai 110 79 92.6 99 1.8 69.6 37 2.3 
China 45 87 90.9 97 1.7 72.5 106 1.8 
Philippines 230 49 92.6 60 3.5 71 58 1.4 
Paraguay 150 73 93.5 77 3.5 71.3 111 2.6 
Georgia 66 47 100 92 1.5 70.7 409 1.5 
Jamaica 26 69 79.9 97 2.6 72.2 85 2.8 
EL Salvador 170 67 80.6 92 2.9 71.3 124 3.5 
Viet Nam 150 77 90.3 85 2.3 73.7 53 1.5 
Indonesia 420 57 90.4 72 2.4 69.7 13 1 
Mongolia 46 69 97.8 97 2.1 65.9 263 4 
South Africa 400 60 82.4       92 2.8 50.8 77 3.5 
Morocco 240 63 52.3 63 2.5 70.4 51 1.7 
India 450 47 61 43 3.1 63.7 60 0.9 
Cambodia 590 24 73.6 32 3.6 58 16 1.7 
Myanmar 380 34 89.9 57 2.2 60.8 36 0.3 
Bhutan 440 31 47 37 2.9 64.7 5 3 
Pakistan 320 28 49.9 31 4 64.6 74 0.4 
Bangladesh 570 58 47.5 13 3.2 63.1 26 0.9 
Nepal 830 38 48.6 11 3.7 62.6 21 1.5 
Uganda 550 20 66.8 39 6.7 49.7 8 2.5 

Source: Human Development Report by UNDP (2007/2008) 
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Table (A.4.13) Summary of Original Model Fitted to the Maternal Mortality 

Data 

 
 

Coefficients 

Value of 

Coefficients 

Standard 

Errors of 

Coefficients 

 

t 

Statistics 

 

Significance 

of  t 

 

Collinearity  Statistics 

Tolerance VIF 
Constant 5.802*** 0.833 6.968 0.000 - - 

CPR 0.007 0.004 1.599 0.122 0.374 2.672 
ALR 0.002 0.006 0.286 0.777 0.225 4.451 
BABSHP -0.010** 0.004 -2.449 0.021 0.161 6.219 
TFR -0.017 0.079 -0.214 0.832 0.323 3.095 

LE -0.046*** 0.010 -4.568 0.000 0.320 3.129 

PHY -0.001 0.001 -1.462 0.156 0.288 3.475 
PEOH -0.084** 0.032 -2.648 0.014 0.366 2.734 

 
Note: (1)  Dependent variable: lnMMR 
            (2) Significant at *** 1%, ** 5%, * 10% 

Source: Appendix Table (A.4.12) 
 

 

Table (A.4.14)  Summary of New Model Fitted to the Maternal Mortality Data 

 
 

Coefficients 

Value of 

Coefficients 

Standard 

Errors of 

Coefficients 

 

t 

Statistics 

 

Significance 

of  t 

 

Collinearity  Statistics 

Tolerance VIF 
Constant 5.863*** 0.513 11.437 0.000 - - 
LE -0.044*** 0.009 -4.927 0.000 0.452 2.215 
PEOH -0.110*** 0.026 -4.263 0.000 0.588 1.702 
BABSHP -0.008*** 0.003 -3.118 0.004 0.474 2.108 

 
Note: (1)  Dependent variable: lnMMR 
            (2) Significant at *** 1%, ** 5%, * 10% 

Source: Appendix Table (A.4.12) 
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Table (A.4.15) Performance of Models Fitted to the Maternal Mortality Data 

 
Model Adjusted  R2 Standard Error of 

Estimates 

F- Value Significance 

 of  F 

Original 0.882 0.2802 36.196 0.000 

New  0.873 0.2904 76.645 0.000 

  
 Source: Appendix Table (A.4.12) 
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Table (A.5.1) Daily Average Number of Defects per Truck 
Day No of Defect 

November 4 1.2 
                 5 1.5 
                 6 1.54 
                 7 2.7 
                 8 1.95 
                 9 2.4 
                10 3.44 
                11 2.83 
                12 1.76 
                13 2 
                14 2.09 
                15 1.89 
                16 1.8 
                17 1.25 
                18 1.58 
                19 2.25 
                20 2.5 
                21 2.05 
                22 1.46 
                23 1.54 
                24 1.42 
                25 1.57 
                26 1.4 
                27 1.51 
                28 1.08 
                29 1.27 
                 30 1.18 
December 1 1.39 
                 2 1.42 
                 3 2.08 
                 4 1.85 
                 5 1.82 
                 6 2.07 
                 7 2.32 
                 8 1.23 
                 9 2.91 
                10 1.77 
                11 1.61 
                12 1.25 
                13 1.15 
                14 1.37 
                15 1.79 
                16 1.68 
                17 1.78 
                18 1.84 

Source:  Wei,(1990), “Time Series Analysis Univariate and Multivariate Methods” 
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Table (A.5.2) The sacf and spacf of the Truck Series 

 
k 1 2 3 4 5 6 7 8 9 10 

kρ̂  0.43 0.26 0.14 0.08 -0.09 -0.07 -0.21 -0.11 -0.05 -0.01 

Std Err 0.15 0.15 0.17 0.18 0.19 0.19 0.19 0.19 0.19 0.19 

kkφ̂  0.43 0.09 0.00 0.00 -0.16 0.00 -0.18 0.07 0.05 0.01 

Std Err 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

 Source:  Appendix Table (A.5.1) 
 
 

Table (A.5.3) Residual acf and pacf of the ARMA(1,0) Model  

 
k 1 2 3 4 5 6 7 8 9 10 

kρ̂  -.044 .077 .025 .086 -.128 .048 -.205 -.023 -.014 .040 

Std Err .144 .143 .141 .139 .138 .136 .134 .132 .130 .129 

kkφ̂  -.044 .075 .032 .084 -.126 .025 -.195 -.041 .028 .044 

Std Err .149 .149 .149 .149 .149 .149 .149 .149 .149 .149 

 Source:  Appendix Table (A.5.1) 
 

 
Table (A.5.4) Residual acf and pacf of the RAB-AR(1) Model   

 
k 1 2 3 4 5 6 7 8 

kρ̂  -0.057 0.068 0.089 0.075 -0.098 0.141 -0.191 -0.052 

Std Err 0.146 0.144 0.142 0.141 0.139 0.137 0.135 0.133 

kkφ̂  -0.057 0.065 0.097 0.082 -0.103 0.113 -0.186 -0.076 

Std Err 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.151 

k 9 10 11 12 13 14 15 16 

kρ̂  0.001 0.058 -0.075 0.054 0.016 0.044 -0.093 0.023 

Std Err 0.132 0.130 0.128 0.126 0.124 0.122 0.120 0.118 

kkφ̂  0.009 0.081 -0.006 0.004 0.049 0.024 -0.121 -0.028 

Std Err 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.151 

       Source:     Appendix Table (A.5.1) 
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Table (A.5.5) Box-Ljung Statistic of the RAB-AR(1) Model  
 

 
k 

Box-Ljung Statistic 
 

Value 
 Sig. p value 

1 0.154 0.695 
2 0.377 0.828 
3 0.766 0.858 
4 1.049 0.902 
5 1.549 0.907 
6 2.615 0.855 
7 4.610 0.707 
8 4.763 0.783 
9 4.763 0.854 
10 4.965 0.894 
11 5.314 0.915 
12 5.501 0.939 
13 5.518 0.962 
14 5.650 0.975 
15 6.254 0.975 
16 6.293 0.985 

   Source:  Appendix Table (A.5.1) 
 

 
 
Table (A.5.6 ) Export of Maize  
 

Year Export (Thousand metric tons) 
1976 6.2 
1977 10.3 
1978 10.1 
1979 20.3 
1980 9.7 
1981 22.2 
1982 33.5 
1983 17.6 
1984 30 
1985 21.9 
1986 15.5 
1987 20.8 
1988 0.9 
1989 13.9 
1990 20 
1991 41 
1992 44.4 
1993 40.4 
1994 70.4 
1995 62 
1996 102.5 
1997 50 
1998 174.3 
1999 88.8 
2000 147.9 
2001 90.1 
2002 219.2 
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Table (A.5.6 ) Export of Maize (Contd.) 
 

Year Export (Thousand metric tons) 
2003 150.9 
2004 254.8 
2005 90 
2006 183.3 
2007 156 
2008 120.3 

Source: Central Statistical Organization (CSO), Ministry of 
National Planning, Statistical Yearbook (various issues) 

  
 

Table (A.5.7) The sacf and spacf for Natural Logarithms of the Export of Maize 
 

k 1 2 3 4 5 6 7 8 9 10 

kρ̂  .672 .661 .498 .468 .380 .281 .246 .242 .184 .116 

Std Err .166 .164 .161 .158 .156 .153 .150 .147 .144 .141 

kkφ̂  .672 .383 -.070 .050 .010 -.130 .033 .135 -.071 -.126 

Std Err .174 .174 .174 .174 .174 .174 .174 .174 .174 .174 

  Source:  Appendix Table (A.5.6) 
 

Table (A.5.8) The sacf and spacf for the Differenced Series of Natural 
Logarithms of the Export of Maize 

 
k 1 2 3 4 5 6 7 8 9 10 

kρ̂  -.557 .256 -.169 .000 .090 -.112 -.070 .105 .009 -.112 

Std Err .169 .166 .163 .160 .158 .155 .152 .149 .145 .142 

kkφ̂  -.557 -.079 -.086 -.172 .025 -.051 -.273 -.065 .106 -.202 

Std Err .177 .177 .177 .177 .177 .177 .177 .177 .177 .177 

Source:  Appendix Table (A.5.6) 
 

 
Table (A.5.9) Residual acf and pacf of the ARIMA(1,1,0) Model 

 
k 1 2 3 4 5 6 7 8 9 10 

kρ̂  -.045 -.108 -.111 -.077 .077 -.195 -.136 .149 .016 -.171 

Std Err .169 .166 .163 .160 .158 .155 .152 .149 .145 .142 

kkφ̂  -.045 -.110 -.123 -.105 040 -.231 -.188 .084 -.058 -.274 

Std Err .177 .177 .177 .177 .177 .177 .177 .177 .177 .177 
 

Source:  Appendix Table (A.5.6) 
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Table (A.5.10) Residual acf and pacf of the RAB-ARIMA(1,1,0) Model 
 

k 1 2 3 4 5 6 7 8 

kρ̂  -.032 
 

-.127 -.103 -.083 .066 -.190 -.138 .154 

Std Err .171 .168 .165 .162 .159 .156 .153 .150 

kkφ̂  -.032 -.128 -.114 -.112 .028 -.232 -.187 .077 

Std Err 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 

k 9 10 11 12 13 14 15 16 

kρ̂  .027 -.172 .041 .056 .084 -.089 -.093 -.066 

Std Err .147 .143 .140 .136 .133 .129 .125 .121 

kkφ̂  -.054 -.267 .017 -.002 -.067 -.130 -.043 -.246 

Std Err 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 

      Source:  Appendix Table (A.5.6) 
 
 
 
 

Table (A.5.11) Box-Ljung Statistic of the RAB-ARIMA(1,1,0) Model 
 

 
k 

Box-Ljung Statistic 
 

 
Value 

 
Sig. p value 

1 0.035 0.851 
2 0.607 0.738 
3 0.994 0.803 
4 1.252 0.870 
5 1.424 0.922 
6 2.894 0.822 
7 3.711 0.812 
8 4.762 0.783 
9 4.795 0.852 

10 6.234 0.795 
11 6.318 0.851 
12 6.487 0.890 
13 6.891 0.908 
14 7.366 0.920 
15 7.917 0.927 
16 8.218 0.942 

                          Source:  Appendix Table (A.5.6) 
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APPENDIX B 

 
Intercept 

(a)                                                                      (b)                                                                      

              
First Predictor 

(c)              (d)                                              

    
Second Predictor 

(e)        (f) 

 
        Third Predictor 

(g)         (h) 
 
Figure B.4.1 Bias and MSE for 10 Simulations from Normal (0,1) Distribution 
Source: Appendix Table (A.4.3) 
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Intercept 

(a)           (b)                                                     

 
First Predictor 

(c)         (d) 
 

 
Second Predictor 

(e)         (f) 

                                                     
         Third Predictor 

   (g)      (h) 
 
Figure B.4.2 Bias and MSE for 10 Simulations from Logistic (0,1) Distribution 
Source: Appendix Table (A.4.4) 
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Intercept 
   (a)         (b) 
 

First Predictor 
   (c)         (d) 
 

    
Second Predictor 

(e)         (f) 

 
            Third Predictor 

   (g)         (h) 
 
Figure B.4.3 Bias and MSE for 10 Simulations from Exponential (1) 

Distribution 
Source: Appendix Table (A.4.5) 
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                                                           Intercept 
   (a)         (b) 
 

 
First Predictor 

(c)        (d) 

Second Predictor 
(e)       (f) 

 
          Third Predictor 

   (g)      (h) 
 
 
Figure B.4.4 Bias and MSE for 10 Simulations from Cauchy (0,1) Distribution 
Source: Appendix Table (A.4.6) 
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Intercept 

  (a)                (b) 

 
       First Predictor 

   (c)      (d) 

  
   Second Predictor 

                                 (e)      (f) 

                                                    
               Third Predictor 

                                (g)      (h) 
 
 
 
 
Figure B.4.5 Bias and MSE for 10 Simulations from Gamma (1,0.5)          

Distribution 
Source:    Appendix Table (A.4.7)   
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 (c)                                                                    (d) 

Figure B.4.6 Simulated Data Set Using the RDL1 Procedure: (a) plot of the 

standardized residuals; (b) plot of weights; (c) diagnostic plot 

and (d) least squares residuals without cases 25, 26, 27, and 28 

Source:   Appendix Table (A.4.8) 
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Figure B.4.7     Simulated Data Set Using the LTS Robust Procedure: (a) plot of    
the standardized residuals; and (b) diagnostic plot 

Source: Appendix Table (A.4.8) 
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Figure B.4.8 Production and Export Maize Data Set Using the OLS: (a) 

normal probability plot and (b) standardized residual versus 

predicted value of original model; (c) normal probability plot 

and (d) standardized residual versus predicted value of 

transformed model 

Source:                Appendix Table (A.4.9) 
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Figure B.4.9  Curvilinear Model Fitted to the Production and Export Maize 

Data Set Using the OLS: (a) scatter plot with the fitted line; (b) 

quantiles standard normal plot; and (c) standardized residual 

versus predicted value 

Source:              Appendix Table (A.4.9) 
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  (a)      (b) 
 

 

Figure B.4.10 Maternal Mortality Data Set Using the OLS: (a) normal 

probability plot; and (b) standardized residual versus 

predicted value of new model 

Source:                 Appendix Table (A.4.12) 
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Figure B.5.1 Daily Average Number of Truck Manufacturing Defects 
Source: Appendix Table (A.5.1) 

 

 
Figure B.5.2 The sacf and spacf for the Residual of the Fitted AR(1) Model 

Source: Appendix Table (A.5.3) 
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Figure B.5.3 The Yearly Export of Maize from 1976 to 2008 
Source: Appendix Table (A.5.6) 
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Figure B.5.4 Natural Logarithms of the Export Maize from 1976 to 2008 

Source: Appendix Table (A.5.6) 
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Figure B.5.5    The sacf and spacf for the Differenced Natural Logarithms   of         

the Export Maize  

Source:    Appendix Table (A.5.8) 
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          Figure B.5.6 The sacf and spacf for the Residual of the Fitted ARIMA (1,1,0) 

Model  

 Source:    Appendix Table (A.5.9) 
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