

Title

Parallel Processing in Numerical Integration

All Authors

Myint Myint Thein

Publication Type

Local Publication

Publisher

(Journal name,

issue no., page no

etc.)

Universities Research Journal 2010, Vol. 3, No.3

Abstract

Numerical Integration is a method of computing an approximation of the area

under the curve of a function. The area under the curves is approximated

the sum of the area of the subinterval rectangles. The difference between the

sum of the rectangle’s area and the area under the curve is reduced increasing

the number of subintervals. The trivial parallel implementation is that if p

threads are available, the sum is sliced into p pieces. One interval is

attached to each of intervals to compute a partial sum. The local sums are

collected into one processor, which will know the answer. The computations

are parallelized with OpenMP directives supported by Microsoft Visual

Studio 2008. Serial time Ts is the time to run the program on one thread and

parallel time T p is the time to run the program on p threads are obtained. By

comparing Ts and Tp of different threads, the parallel processing is faster than

serial processing.

Keywords
parallel processing, decomposition, OpenMP

Citation

Issue Date

2010

Universities Research Journal 2010, Vol. 3, No.3

Parallel Processing in Numerical Integration
Myint Myint Thein

1

Abstract
Numerical Integration is a method of computing an approximation of the

area under the curve of a function. The area under the curves is

approximated the sum of the area of the subinterval rectangles. The

difference between the sum of the rectangle’s area and the area under the

curve is reduced increasing the number of subintervals. The trivial

parallel implementation is that if p threads are available, the sum is

sliced into p pieces. One interval is attached to each of intervals to

compute a partial sum. The local sums are collected into one processor,

which will know the answer. The computations are parallelized with

OpenMP directives supported by Microsoft Visual Studio 2008. Serial

time Ts is the time to run the program on one thread and parallel time Tp

is the time to run the program on p threads are obtained. By comparing

Ts and Tp of different threads, the parallel processing is faster than serial

processing.

 Keyword: parallel processing, decomposition, OpenMP

Introduction
Processing of multiple tasks simultaneously on multiple processors

is called parallel processing. The parallel program consists of multiple

active processes simultaneously solving a given problem. A given task is

divided into multiple subtasks using divide-and-conquer technique and each

one of them are processed on different CPU programming on

multiprocessor system .Given the computation-intensive nature of many

application areas (such as encryption, physical modeling, and multimedia),

parallel processing will continue to thrive for years to come.

Stages of designing parallel algorithms are partitioning

(decomposition), communication, agglomeration and mapping. Parallel

programming can be implemented in distributed memory systems and

shared memory systems.

The process of dividing a computation into smaller parts, some or all

of which may potentially be executed in parallel is called decomposition.

The number and size of tasks into which a problem is decomposed

determines the granularity of the decomposition. Decomposition into a

small number of large tasks is called coarse-grained and decomposition into

a large number of small tasks is called fine-grained.

Lecturer, Department of Computer Studies, Dagon University

 Universities Research Journal 2010, Vol.3, No.3

308

OpenMP (Open Multiple- Processing) is an application

programming interface(API) that supports multiplatform shared memory

multiprocessing programming in C/C++ and Fortran on many architectures,

including Unix and Microsoft Windows platforms. It consists of a set of

compiler directives, library routines, and environment variables that

influence run-time behavior. OpenMP is a portable, scalable model that

gives programmers a simple and flexible interface for developing parallel

applications for platforms ranging from the desktop to the supercomputer.

An application built with the hybrid model of parallel programming can run

on a computer cluster using both OpenMP and Message Passing

Interface(MPI). OpenMP is shared memory and MPI is distributed memory.

OpenMP programming Model

OpenMP is based upon the existence of multiple threads in the

shared memory programming paradigm. A shared memory process consists

of multiple threads. OpenMP is explicit (not automatic) programming

model, offering the programmer full control over parallelization. OpenMP

uses the fork-join model of parallel execution. All OpenMP programs begin

as a single process: the master thread.

The master thread executes sequentially until the first parallel region

construct is encountered.

 FORK: the master thread then creates a team of parallel threads.

The statements in the program that are enclosed by the parallel

region construct are then executed in parallel among the various

team threads.

 JOIN: When the team threads complete the statements in the

parallel region construct, they synchronize and terminate, leaving

only the master thread.

OpenMP uses the fork-join model of parallel execution (see Figure 1).

 Figure 1: Fork-join parallelism

Universities Research Journal 2010,Vol.3, No.3 309

To develop new applications, a programmer must analyze the

original problem, dissect it into tasks using both shared and local data,

determine the data dependencies, and then reorder the tasks into execution

units, which are coded using a parallel programming environment (see

Figure 2).

Figure 2: Methodology for writing parallel program

 Numerical Integration

Numerical Integration is a method of computing an approximation

of the area under the curve of a function, especially when the exact integral

cannot be solved. For example, the value of the constant Pi can be defined

by the following integral .However, rather than solve this integral exactly,

the solution can approximate to the use of numerical integration:

The pi is almost perfectly parallel. The only communication occurs

at the beginning of the problem when the number of divisions needs to be

broadcast and at the end where the partial sums need to be added together.

The calculation of the area of each slice proceeds independently. This

 Universities Research Journal 2010, Vol.3, No.3

310

would be true even if the area calculation were replaced by something more

complex. Below are two serial applications, a numerical integration

algorithm and a sorting algorithm. The program pi computes in parallel

using numerical integration.

If the midpoint rule is used, the above integral can be computed as follows

(see Figure 3).

Figure 3: Numerical integration with midpoint rule

1

0 1 1
222

))
2

1((1

4

1

4

1

4 n

i

n

ii hi
h

x
hdx

x

The parallel program described in the following paragraphs

computes an approximation of pi using numerical integration to calculate

the area under the curve 4/(1+x
2
) between 0 and 1 (see Figure 3). The

interval [0,1] is divided into num_subintervals subintervals of width

1/num_subintervals. For each of these subintervals, the algorithm computes

the area of a rectangle with height such that the curve 4/(1+x
2
) intersects the

top of the rectangle at its midpoint. The area under the curves approximates

to the sum of the area of the subinterval rectangles. The difference between

the sum of the rectangle’s area and the area under the curve is reduced by

increasing the number of subintervals. The trivial parallel implementation is

that if p threads are available, the sum is sliced into p pieces. One interval is

attached to each of intervals to compute a partial sum. The local sums are

Universities Research Journal 2010,Vol.3, No.3 311

collected into one processor, which will know the answer. The

computations are parallelized with OpenMP directives supported by

Microsoft Visual Studio 2008.

(Speedup is defined as Sp = Ts / Tp , where Ts is the time to run the

program on one thread and Tp the time to run the program on p threads.)

Figure 4: OpenMP program to compute pi.

 The compiler directive inserted into the serial program in line 8

contains all the information needed for the compiler to parallelize the

program; #pragma omp is the directive’s sentinel. The parallel keyword

defines a parallel region (lines 9–12) that is to be executed by

NUM_THREADS threads in parallel. NUM_THREADS is defined in line

3, and the omp_set_num_threads function sets the number of threads to use

for subsequent parallel regions in line7. There is an implied barrier at the

end of a parallel region; only the master thread of the team continues

execution at the end of a parallel region. The pi program demonstrates only

the basic constructs and principles of OpenMP, though OpenMP is a large

and powerful technology for parallelizing applications.

1. #include <omp.h>
2. float num_subintervals = 10000; float subinterval;

3. #define NUM_THREADS 5

4. void main ()

5. {int i; float x, pi, area = 0.0;

6. subinterval = 1.0 / num_subintervls;

7. omp_set_num_threads (NUM_THREADS)

8. #pragma omp parallel for reduction(+:area) private(x)

9. for (i=1; i<= num_subintervals; i++) {

10. x = (i-0.5)*subinterval;

11. area = area + 4.0 / (1.0+x*x);

12. }

13. pi = subinterval * area;

14. }

 Universities Research Journal 2010, Vol.3, No.3

312

Implementation

The following is serial program to compute PI calculation and figure 5

shows the flow chart for serial processing.

void Serial_Pi()

{ double x, sum = 0.0;

 int i;

 step = 1.0/(double) num_steps;

 for (i=0; i< num_steps; i++)

{ x = (i+0.5)*step;

 sum = sum + 4.0/(1.0

+ x*x);

}

 pi = step * sum;

}

Figure 5: Serial processing

flowchart

Initialize Step
Value

Start

Calculate i
th
 interval

value

Calculate approximation

for integral value

Display

Result

Compute Estimate

End

Universities Research Journal 2010,Vol.3, No.3 313

The following is parallel program for OpenMP to compute PI calculation

and figure 6 shows the flow chart for parallel processing.

void OpenMP_Pi()

{

double x, sum=0.0;

int i;

 step = 1.0 / (double)num_steps;

omp_set_num_threads(8);

#pragma omp parallel for private (x)

reduction(+:sum)

 for (i=0; i<num_steps; i++)

 { x = (i + 0.5)*step;

 sum = sum + 4.0/(1. + x*x);

 }

 pi = sum*step;

 }

 Figure 6: OpenMP coding and parallel processing flowchart

OpenMP starts with the header file (#include ―omp.h‖). The

schedule clause effects how loop iterations are mapped onto threads as

schedule (static [chunk]). It deals out blocks of iterations of size ―chunk‖ to

each thread. The flow chart shows how to calculate approximation for

integral value with OpenMP as shown in Figure (6). By comparing the

coding of serial and parallel program, assign num_step(n),

omp_set_num_threads(n) and # pragma omp parallel are add in the serial

program. Left of all coding is the same. To adjust the number of threads, the

desire number of processors are changed at n value in num_step(n) and

omp_set_num_threads(n).

Calculate ith interval

value

Calculate approximation

for integral value

Calculate approximation

for integral value

Initialize step

value

Calculate ith interval

value

Start

Fork

Compute Estimate

Display

Result

End

Join

 Universities Research Journal 2010, Vol.3, No.3

314

Results and Discussion

 The sample numerical integration program is implemented with

Microsoft visual studio 2008 and using OpenMP. The results of pi-program

(C coding) can be observed as follow:

Threads 2

Threads 4

Threads 6

Threads 8

Figure 7: Output result of pi calculation for serial time and OpenMP time

using 2, 4, 6 and 8 threads

Figure 8: The relation of number of threads, serial time and parallel time

Number of Threads Serial time (s) OpenMP time(s)

2 0.69 0.33

4 0.77 0.28

6 0.75 0.2

8 0.72 0.19

Universities Research Journal 2010,Vol.3, No.3 315

Figure 9: The relation of No.of threads, serial executing time and parallel

executing time

Figure 10: The relation of no. of threads, serial executing time and parallel

executing time.

Figure 11: The output data of no. of threads and speedup.

No. of Threads Speedup

2 2.09

4 2.75

6 3.75

8 3.79

 Universities Research Journal 2010, Vol.3, No.3

316

 Figure 12: Relationship of No. of threads and speedup

 Figure 13: Relationship of no. of threads and speedup

When the sample program are executed with Corei7 multiprocessor,

the elapsed time for serial processing Ts and the elapsed time for parallel

processing Tp are obtained for different processors such as two, four, six

and eight .When the number of threads increases , serial elapsed time Ts

has a little changes and it is nearly constant but parallel elapsed time Tp is

rapidly decreased as shown in figure(8) ,(9) and (10).

Universities Research Journal 2010,Vol.3, No.3 317

The finding results at Figure (11), (12) and (13) that the program run

with the more CPU, the speedup is rapidly high . So the parallel processing

is faster than serial processing when the program is executed with higher

threads. From Figure (14), parallel computing is more suitable for enormous

data or large program. It is no distinct in small program or data.

Figure 14:The values of Ts and Tp in pi calculation results for eight CPUs

Conclusion

 Parallel computing can even be made available to students in high

school and college, small software houses, and small-business start-ups.

Both shared-memory multiprocessors and distributed-memory processors

have advantages and disadvantages in terms of ease of programming.

Porting a serial program to a shared-memory system can often be a simple

matter by adding loop-level parallelism with OpenMP, but one must be

aware of race conditions, deadlocks, and other problems associated with the

paradigm that may arise. For programmers who are used to a thread

paradigm, moving to OpenMP is relatively straightforward. Adding

additional processors to a shared-memory multiprocessor increases the bus

 Universities Research Journal 2010, Vol.3, No.3

318

traffic on the system, slowing down memory access time and delaying

program execution.

 By computing with this sample program, the performance of parallel

processing is better than serial processing. Then OpenMP programs execute

serially until they encounter the parallel directive. This directive is

responsible for creating a group of threads. In addition to directives,

OpenMP also supports a number of functions that allow a programmer to

control the execution of threaded programs. Parallel programming is no

doubt much more tedious and error-prone than serial programming.

A variety of applications induce task-graph parallelism with coarse-

grain granularity. Task-graph parallelism occurs when independent program

parts are executed on different cores based on precedence relationships

among the threads. These applications must be exploited to achieve the best

possible performance on multicore processors.

Acknowledgement
 I would like to express my sincere gratitude to Professor Daw Nwe Nwe Win,

Head of Department of Computer Studies, University of Yangon for her kind permission

to carry out this research. I would like to thank Professor Dr Pho Kaung, Pro-rector and

Director, Universities' Research Centre, University of Yangon for his valuable suggestions.

References

Ami Marowka, communication of the ACM. September 2007/Vol.50.No.9: Parallel

Computing on any desktop

Grama, A. and Gupta, A. and Karypis, G. and Kumar, V. (2003), Introduction to Parallel

Computing, 2
nd

 Second Edition, Pearson Education, The

Benjamin/Cummings, ISBN: 7-111-12512—6/TP-2782

Science & Technology Support ,High Performance Computing, Ohio Super computer

Center 1224 Kinner Road,Columbus, OH 43212-1163: Parallel

Programming with MPI.

Website:
https://computing.llnl.gov/tutorials/parallel_comp/ Introduction to Parallel Computing,

Edward Chrzanowski, May 2004

 http://openmp.org/

 http://www.ece.ucsb.edu/ Introduction to Parallel Processing Algorithms and

Architectures, Parhami@ece.ucsb.edu

https://computing.llnl.gov/tutorials/parallel_comp/
http://openmp.org/
http://www.ece.ucsb.edu/

