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Convergence of Non-negative Terms of the Series 

The The Khine 

 

Abstract 

In this paper, some concepts of the sequences are applied. Firstly, some definitions and 

theorems about the convergence of the sequences and limits of the sequences are 

presented. Finally, some definitions and theorems about the convergence of the series, 

especially the non-negative terms of the series are discussed. 
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1. Introduction 

 The Indian Mathematicians had interest in the study of series as early as the third  century 

A.D. Their work on series continued till late fourteen century, but they never took a systematic and 

critical study. In Europe, it was during the sixth century, A.D. that the wider significance of the 

infinite series was realized. The English Mathematicians made important contributions to the study 

of infinite series. This paper will show about some concepts of the convergence of non-negative 

terms of the series with some definitions, theorems and applications with some examples. 

2. Convergent Sequences 

2.1 Definitions 

 A sequence  nx  of real numbers can be defined by a function which maps each natural 

number n into the real number nx . A real number  is a limit of the sequence  nx  if for each > 0

, there is an integer N such that for all n N 
nx    . It is easily  proved that a sequence can 

have at most one limit, and denote this limit by 
nlim x  when it exists. In symbol 

nn
lim x


  if 0 

, nN such that n N implies that x     . 

 Extend this limit of a sequence  nx as 
nn

lim x


   if given , there is an integer N such 

that for all n N  implies that nx   . A sequence is called convergence if it has a limit. Convergence 

of sequence depends on whether or not a limit is a real number or an extended real number. It is 

more usual to use the restricted definition for convergence which requires a limit to be a real 

number. It is important to distinguish between the two concepts of a limit, explicitly, “converges 

to a real number” or “convergence” in the set of extended real numbers”. 

 In the case of a real number,  is the limit of  nx  if given 0  , all but a finite number of 

terms of the sequence  nx  are within  of , i.e., infinitely many terms of the sequence within  

of . In this case  is a cluster point of the sequence  nx .  is a cluster point of  nx  if, given 

0  , and given an integer N, n N   such that nx    . Thus if a sequence has a limit , 
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then  is a cluster point, but the converse is not usually true. Cluster points of a real sequence 

are also called accumulation or condensation points.  

2.2 Definition 

 The set of all distinct terms of a sequence is called its range. 

2.3 Definition 

A sequence  nx  is bounded if its range is bounded. 

 Hence  nx  is bounded, if there exist reals 
nk , k such that k x k , n N       or 

equivalently if there exist K 0  such that nx K , n N.    

2.4 Definition 

A sequence is said to be unbounded if it is not bounded. 

2.5 Theorem 

Limit of a sequence, if it exists, is unique. 

2.6 Theorem 

Every convergent sequence is bounded but the converse is not true. 

The following example shows that the converse of the theorem is not true. 

2.7 Example 

Let the sequence  nx  defined by  
n

nx 1  .  

 The sequence has two cluster points 1 and 1, and the sequence is bounded because its 

range set is  1, 1 . But the sequence is not convergent. 

2.8 Definition 

 A sequence  nx  is said to be monotonically increasing if 
n 1 nx x , n N

    and 

monotonically decreasing if 
n 1 nx x , n N

   . 

2.9 Theorem 

Suppose  nx  is monotonic. Then  nx  converges if and only if it is bounded. 

Proof: 

Suppose that  nx  is a monotonically increasing sequence. 

Then n n 1x x


 , for each n. Let E be the range of  nx .  

Suppose that  nx  is bounded, and x is the supremum of E. 

Then nx x , for each n. Since sup E x , there is an integer N such that 
Nx x x , 0       . 

Since  nx  is increasing, 
nx x x , for n N       and which shows that  nx  converges to x. 

By Theorem 2.6, the converse is true. 

2.10 Theorem 

 (i) If   p 0,  then  n
n
lim p 1


 . 

 (ii) If  n 0 , then n

n
lim n 1


  
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 (iii) If p 0,  and   is real, then 
nn

nlim 0
(1 p)







. 

 (iv) If x 1 , then n

n
lim x 0


 . 

Proof: 

(i) Take any 0  . 

 Choose an integer N such that 
1/p

1N  
  

 
. 

 Then p 1N 


 . Then n N  implies 
p p
1 10 , 0
n N

       . 

(ii) If n
n np 1 and let x p 1, then x 0     and by the binomial theorem, 

  
n

n n1 nx 1 x p    .  

 Thus n
p 10 x .

n


    

 Since p 1 0 as n
n


  , 
nx 0 as n .   

 If 
np 1, then x 0.   

 Thus 
nx 0 as n .   

 If 0 p 1 ,  then the result is obtained by choosing  n n

1
x 1

p
  . 

 (iii) Take n
nx n 1.   

 
nThen x 0  and by the binomial theorem,  

n 2
n n

n(n 1)n 1 x x .
2


    

 Then 
n

20 x for n 2.
n 1

  


  

 Hence 
nx 0 as n .    

(iv) Let k be an integer such that k and k 0.    For n 2k ,  

  
k kn k
k

n pn(n 1) (n k 1)1 p p .
k ! 2 k !

  
    

 Then 
k

n k k
1 2 k !0 .

(1 p) n p
 


  

 Thus 
k

n k k
n 2 k !0 n .

(1 p) n p


 


 

 Since 
k
1k , k 0 and 0 as n .

n 
        

(v) If x 0 , it is obvious. 

 If x 0 and x 1  , by (iv) we choose 1p 1, then p 0
x

    and  is real. 
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Take 0  . We get 
nn

1lim 0.
(1 p)




 

3. Convergence of Some Infinite Series 

3.1 Definition 

Given a sequence  na  and consider the sum 
p p 1 qa a a


   , we use the notation 

q

n
n p

a (p q).


   

With  na  an associate sequence  ns is chosen, where 
n

n k
k 1

s a


 (the partial sums of the series). 

 For  ns , k 1 2 3
n 1

a a a a




     is an infinite series or just a series. If  ns  converges to s 

the series converges and write n
n 1

a s




 (the sum of the series). 

 But it should be clearly understood that s is the limit of a sequence of sums, and is obtained 

simply by addition. 

 If  ns  diverges, the series diverges (does not converge). 

 Sometimes, we shall consider series of the form n
n 0

a




 , for convenience of notation. And 

frequently, we shall simply write na  in place of n
n 1

a




  or n
n 0

a




 . 

 It is clear that every theorem about sequences can be stated in terms of series (letting 

1 1 n n n 1a s , and a s s for n 1


    ) and vice versa. But it is nevertheless useful to consider both 

concepts. 

3.2 Examples 

(i) 1
n  diverges. 

 For the given series, n
1u .
n

  

 So 1 2 3
1 3 1 1s 1, s 1 1.5 , s 1 1.533,
2 2 2 3

          

 4 n
1 1 1 1 1s 1 1.783, , s 1 and so on.
2 3 4 2 n

          

 Then the partial sums ns  of the series are tends to  as n . 

(ii) 1
n(n 1)

  converges. 

 For the given series, n
1 1 1u

n(n 1) n n 1
  

 
. 

 1
1s 1
2

  , 
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2
1 1 1 1s (1 ) ( ) 1
2 2 3 3

      , 

 3
1 1 1 1 1 1s (1 ) ( ) ( ) 1 , ,
2 2 3 3 4 4

         

 n
1s 1

n 1
 


 and so on. 

 Then 
nn

lim s 1


 . 

 Thus the partial sums of the series converges to 1. 

 Hence the given series converges and its sum is 1. 

3.3 Theorem 

 na  converges if and only if for every 0   there is an integer N such that 

  
m

k
k n

a if m n N.


                

 In particular, taking m n , Equation (1) becomes na (n N).    

3.4 Theorem 

 If na  converges, then 
nn

lim a 0


 . 

Proof: 

 Let 
n 1 2 n nn

s a a a and lim s s


     . Since 
n n n 1 nn

a s s , lim a 0.



    

 Converse of the theorem is not true. We will show it by the following example. 

3.5 Example 

 The series 
n 1

1
n





  diverges. 

 For 
n

1lim 0
n
 . 

 But n
1 1 1 1 1s 1 n
2 n n n n

         . 

So 
ns as n .    

 Hence the series 
n 1

1
n





  diverges. 

3.6 Theorem 

 A series of non-negative terms converges if and only if its partial sums form a bounded 

sequence. 

3.7 Theorem 

(i) If  n n 0a c for n N , where 0N  is some fixed integer, and if nc  converges, then na  

converges. 

(ii) If 
n n 0a d 0 for n N   , and if nd  diverges, then na  diverges. 

Proof: 
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(i) Suppose that n n 0 0a c for n N , where N   is some fixed integer and nc converges. 

 By Theorem 3.3, given 0  , there exists an integer 0N N  such that 
m

k
k n

c


   if m n N.   

 Since 
m m

n n 0 k k
k n k n

a c for n N , a c .
 

       

 Again 
m m

k k
k n k n

a a .
 

     

 By Theorem 3.3,  na  converges. 

(ii) Since n n 0 n n 00 d a for n N , d a for n N .      

 By (i) if na  converges then nd  converges. 

 Suppose that nd  diverges. 

 Then by Theorem 3.6, its partial sums does not form a bounded sequence. So the partial 

sum of  na  cannot be a bounded sequence. 

 Then by Theorem 3.6, na  diverges. 

 Now consider the convergence of two non-negative terms of the series n
p
1x and
n

   

which will play an important part of the series. 

3.8 Theorem 

 If n

n 0

10 x 1, then x .
1 x





  


  

Proof: 

 If n

n 0

x 0, then x 1.




    

 If n 2

n 0

0 x 1 then x 1 x x




        and its sum is 1
1 x

. 

 If n

n 0

x 1, then x 1 1 1 .




      

 Hence n

n 0

x diverges if x 1.




   

 Similarly, if n

n 0

x 1, the series x diverges.




   

3.9 Theorem 

 
p
1 converges if p 1
n

  and diverges if p 1.  

Proof: 

 Let p 1 . 
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We have n2 n, n N.    Since ns  is the partial sum of the given series and the terms of the series 

are all non-negative, 
nn 2

s s .  

 n2 p p n p
1 1 1s
1 2 (2 )

     and 

 n 12 1 p p n 1 p
1 1 1s
1 2 (2 1)

  
   


 

 
p p p p p p p
1 1 1 1 1 1 1
1 2 3 4 5 6 7

   
         

   
 

   
n p n p n 1 p
1 1 1

(2 ) (2 1) (2 1)

 
    

  
 

  
n 12 1

s  
 

n

p p p n p
1 2 4 2
1 2 4 (2 )

      

 
p p 1 2(p 1) n(p 1)
1 1 1 1 .
1 2 2 2  

        

Thus on the right side is of the form of a geometric series and its sum is 

n 1

p 1

p 1

11
2 .

11
2







 
  
 



 

So 
n 1

n 1

p 1p 1

2 1 p 1

p 1

11
22s , n N.

1 2 11
2







 



 
  
 

   


  

Since n n 1
n n 1

2 2 1
2 2 1, 0 s s , n N.




       

Thus the partial sums of the given series form a bounded sequence. 

By Theorem 3.6, 
p
1 converges if p 1.
n

  

Now, take p 1 . Then the given series is 1
n . 

n2 n

n-1 n-1 n

1 1 1Consider s = 1 + + + ... +
2 3 2

1 1 1 1 1 1 1 1 1 1= 1 + + + + + + + ... + + + ... +
2 3 4 5 6 7 8 2 + 1 2 + 2 2

      
       

       

 

         
n-1

n
1 2 4 2 n> + + + ... + .
2 4 8 22

          

By taking n sufficiently large enough, the partial sums of the series are not bounded above. 

By Theorem 3.6, 
p
1 diverges if p 1
n

 . 

Next, put p 1 . Then pn n, n N.    

So 
p
1 1 , n N.

nn
     

From the above result, 1
n  diverges and by Theorem 3.7(ii), 

p
1 diverges if p 1.
n

  
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4. Result and Discussion 

 This result has 3 facts. The first is that a series of non-negative terms will converge if the 

partial sums of the series form a bounded sequence and vice-versa. The second is that the series 

n

n 0

x




  converges if 0 x 1  . The last is that the series 
p
1
n

  converges if p 1  and diverges if p 1 . 

Conclusion 

 Most of the people has been known the sum of the finite numbers of non-negative (positive) 

terms is an accurate number (finite number). From this research, the existence and uniqueness of 

the sum of the non-negative terms of the (infinite) series will be seen. 
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