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ON USE OF DUMMY VARIABLES IN REGRESSION ANALYSIS 

EI THANDA 

ABSTRACT 

 This purpose of this paper is to present the role of qualitative explanatory variables in 

regression analysis. The nature of dummy variables is described in Chapter II .Among its 

various applications, some are considered in Chapter III. These include (1) comparing two (or 

more) regression, (2) deseasonalizing time series data and (3) piecewise linear regression 

models. It will be show that introduction of qualitative variables, often called dummy 

variables, makes the linear regression model an extremely flexible tool is capable of handling 

many interesting problems encountered in empirical studies. 

Chapter - 1  

Introduction  

 In a research work it may be found that may variables are useful in explaining the 

value of the dependent variable. For example, years of education, training, and experience are 

instrumental in determining the level of a person's income. These variables can be easily 

measured numerically, and readily lend themselves to statistical analysis. 

 However, such is not the case with many other variables that are also useful in 

explaining income levels. Studies have shown that gender and geography also carry 

considerable explanatory power. A woman with the same number of years of education and 

training as man will not have the same income. A worker in the Northeast may not earn the 

same as worker in the south doing a similar job. Gender and geography can prove to be 

highly useful explanatory variables in the effort to predict one's income. But, neither 

variables can readily be expressed numerically, and cannot be directly included in a 

regression model. These non numeric variables must be modified into the numeric form and 

can be included in the model and there by gain the additional explanatory power they offer.  

 Variables that are not expressed in a direct, quantitative fashion are called qualitative 

fashion are called qualitative variable or dummy variables.  

 According to Allen L. Webster, dummy variable is a variable that accounts for the 

qualitative nature of a variable and incorporate its explanatory power into the model is known 

as a dummy variable.  

 According to James L. Kendel, dummy variables are specially constructed variables 

that indicate the presence or absence of some characteristic. They assume a value of 1 or 0 

depending upon whether a certain characteristics are present.  
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 Since such qualitative variable usually indicate the presence or absence of a "quality" 

or an attribute, such as male or female, black or white or catholic or non-catholic one method 

of "quantifying" such attributes is by constructing artificial variables that take on values of 1 

or 0, 0 indicating the absence of an attribute and 1 indicating the presence (or possession) of 

that attribute.  

 Variables that assume such 0 and 1 values are called dummy variables. Alternative 

names are indicator variables, binary variables, categorical variables, qualitative variable and 

dichotomous variables. 

 If a dummy variable has more than two possible responses, it cannot be encoded as 

1,2,3 and so on. A variable with possible responses will be expended to encompass a total of 

r-1 variables.  

Objective of Studies 

    The purpose of the study, as set out in terms of reference, is 

(1) To present the role of qualitative explanatory variables in regression analysis. 

(2) Qualitative variables, often called dummy variables. 

(3) Comparing two (or more) regression / deseasonalizing  time series data and piecewise  

linear regression models. 

 

Chapter - II  

The Nature of Dummy Variables  

 In this chapter the nature of dummy variables is discussed. In the regression analysis 

the dependent variable is frequently influenced not only by variable that can be readily 

quantified on some well-defined scale but also by variables that are essentially qualitative in 

nature. (for example sex, color, religion, nationality, wars, earthquakes, strikes, political 

upheavals, and changes in government economic policy.)  

 Since such qualitative variables usually indicate the presence or absence of a "quality" 

or a attribute, such as a male or female, black or white, or Catholic or non-Catholic, one 

method of "quantifying" such attributes is by constructing artificial variables that takes on 

values of 1 or 0, 0 indicating the absence of an attribute and 1 indicating the presence (or 

possession) of that attribute. Variables that assume such 0 and 1 values are called dummy 

variables. Alternative names are indicator variables, binary variables, categorical variable 

qualitative variables and dichotomous variables.  
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2.1 Regression on One Qualitative variable with two classes  

 Dummy Variables can be used in regression models just as easily as quantitative 

variables. As a matter of fact, a regression model may contain explanatory variables that are 

exclusively dummy, or qualitative, in nature. Such models are called analysis - of - variance 

(ANOVA) models. As a example, consider the following model:  

  1 1 1Y  =  + D  +U   (2.1)  

 where Y = annual salary of a college professor  

  D1 = 1 if male college professor  

       = 0 otherwise  

 The above equation (2.1) is like the two-variable regression models encountered 

previously except that instead of quantitative X variable a dummy variable D is included.  

 Model (2.1) may enable to find out whether sex makes any difference in a college 

professor's salary, assuming of course, that all other variables such as age, degree attined, and 

years of experience are held constant.  

The regression equation of the annual salary for female college professor (Di = 0) is 

  i iY  =  + U  

The regression equation of the annual salary for male college professor (Di = 1) is 

  1 1Y  =  +  + U   

 Assuming that the disturbances satisfy the usual assumptions of the classical linear 

regression model, the mean salary for male and female are obtained from Eq.(2.1) as  

 Means Salary of female college professor: E (Yi / Di = 0) =  

 Means Salary of male college professor: E (Yi / Di = 1) =  +    

that is, the intercept term  gives the mean salary of a male college professor differs from the 

mean salary of this female counterpart,  +     reflecting the mean salary of the male college 

professor.  

 

2.2 Regression on one Quantitative Variable and one Qualitative Variable with two 

Classes, or Categories  

 ANOVA models Eq.(2.1), although common in fields such as sociology, psychology, 

education, and market research, are not that common in economics. Typically, in most 

economic research as regression model contains some explanatory variables that are 

quantitative and some that are qualitative. Regression models containing on admixture of 
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quantitative and qualitative variables are called analysis of covariance (ANCOVA) models. 

In this section these such models would be discussed with an example. 

 For an example of the ANCOVA model, model (2.1) can be modified as follows.  

  i 1 2 i i iY  =  + D   + X  + U    (2.2) 

 Where Yi = annual salary of a college professor  

  Xi = years of teaching experience  

  Di = 1 if male  

      = 0 otherwise  

 Model (2.2) contains one quantitative variable (years of teaching experience) and one 

qualitative variable (sex) that has two classes (or levels, classifications, or categories), 

namely, male and female. Assuming, as usual that E(Ui) = 0, it can be seen that  

 Mean salary of a female college professor:  

  1E (Yi / Xi, Di = 0) =  + X;   

 Mean salary of a male college professor:  

  1 2E (Yi / Xi, Di = 1) = (  + ) + Xi    

 In words, model (2.2) postulates that the male and female college professor's salary 

functions in relation to the years of teaching experience have the sample slope ( ) but 

different intercepts. In other words, it is assumed that the level of the male professor's mean 

salary is different from that of the female professor's mean salary (by 2 ) but the rate of 

change in the mean annual salary by years of experience is the same for both sexes.  

 In this section, the following features of the dummy variable regression model is 

noted.  

 (1) To distinguish the two categories and female, only one dummy variable in needed 

to introduce, say Di. For Di = l always denotes a male, when Di = 0 we know that it is a 

female since that are only two possible outcomes. Hence, one dummy variable suffices to 

distinguish two categories. The general rule is that of a qualitative variable has r categories, 

introduced only r-1 dummy variable.  

 (2) The assignment of 1 and 0 values to two categories, such as male and female, is 

arbitrary in the sense that in our example we could assigned D = 1 for female and D = 0 for 

male. In this situation, the two regressions obtained from (2.2) will be  

 Female professor: 1 2E (Yi / Xi, Di = 1) = (  + ) + Xi    

 Male professor: 1E (Yi / Xi, Di = 1) =  + Xi   
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 (3) The group, category, or classification that is assigned the value of 0 is often 

referred to as the base, benchmark, control, comparison, reference, or omitted category. It is 

base in sense that comparisons are made with that category.  

 (4) The coefficient 2 attached to the dummy variable D can be called the differential 

intercept coefficient because it tells by how much the value of the intercept term of the 

category that receives the value of 1 differs from the intercept coefficient of the base 

category.  

 

2.3 Regression on one Quantitative Variable and one Qualitative Variable with 

More than two Classes  

 In this sub-section, the regression analysis of the dependent variable on one 

quantitative variable and one qualitative variable with more than two classes is discussed 

with an assumed example. Suppose that, on the basis of the cross-sectional data, the annual 

expenditure on health care by an individual is regressed on the income and education of the 

individual. Since the variable education is qualitative in nature, suppose the level of 

education can be considered three mutually exclusive levels: less than high school, high 

school and college. Now, unlike the previous case, we have more than two categories of the 

qualitative variable education. So, following the rule that the number of dummies be one less 

than the number of categories of the variable. Two dummies should be introduce to care of 

the three levels of education. Assuming that the three educational groups have a common 

slope but different intercepts in the regression of annual expenditure on health care on annual 

income, the following model can be used.  

  1 2 2i 3 3i i iYi =  + D  + D  + X  + U     (2.3) 

 Where Yi = annual expenditure on health care  

  Xi = annual income  

  D2 = 1 if high school education  

       = 0; otherwise  

  D3 = 1 if college education  

       = 0 otherwise  

 In the above model, it is noted that "less than high school education" category as the 

base category. Assuming E(Ui) = 0 the following equations are obtained  

  i 2 3 i 1 iE (Y  / D = 0 , D  = 0, X ) =  + X   

  i 2 3 i 1 2 iE (Y  / D = 1 , D  = 0, X ) = (  + ) + X    
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  i 2 3 i 1 2 iE (Y  / D = 0 , D  = 1, X ) = (  + ) + X    

 which are, respectively, the mean health care expenditure functions for the three 

levels of education, namely, less than high school, high school, and college.  

 The interpretation of regression (2.3) would change if we were to adopt a different 

scheme of assigning the dummy variables. If D2 = 1 to "less high school education" category 

and D3 = 1 to "high school education category" the reference category will then be "college 

education" and all comparisons will be in relation to this category.  

 

2.4 Regression on one Quantitative Variable and two Qualitative Variables 

 In this sub-section, the regression analysis of the dependent variable on one 

quantitative variable and two qualitative variables is explained with an assumed example. 

The technique of dummy variable can be easily extended to handle more than one qualitative 

variable. In the college professor's salary regression (2.2), it is assumed that in addition to 

years of teaching experience and sex, the skin color of the teacher is also an important 

determinant of salary. For simplicity, assume that color has two categories black and white, 

model (2.2) can be written as  

  i 1 2 2i 3 3i i iY  =  + D  + D  + X  + U     (2.3) 

 Where  

  Yi = annual salary  

  Xi = years of teaching experience  

  D2 = 1 if male  

       = 0 otherwise  

  D3 = 1 If white 

      = 0 otherwise 

 Notice that each of two qualitative variables, sex and color, has two categories and 

hence needs one dummy variable for each. Note also that the omitted or base, category now is 

"black female professor".  

 Assuming E(Ui) = 0, the following regression can be obtained from model (2.3). 

 Mean salary or black female professor:  

  2 3 1E (Yi/ D  = 0, D  = 0, Xi) =  + Xi    

 Mean salary for black male professor:  

  2 3 1 2E (Yi/ D  = 1, D  = 0, Xi) =(  + ) + Xi     

 Mean salary for white female professor:  
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  2 3 1 2E (Yi/ D  = 0, D  = 1, Xi) =(  + ) + Xi     

 Mean salary for white male professor:  

  2 3 1 2 3E (Yi/ D  = 1, D  = 1, Xi) =(  +  + ) + Xi      

 Ocean again, it is assumed that the preceding regressions differ only in the intercept 

coefficient but not in the slope coefficient  . 

 An OLS estimation of (2.3) will enable to test a variety of hypothesis. Thus, if 3 is 

statistically significant, it will mean that color does affect a professor's salary. Similarly, if 

2 is statistically significant, it will mean that sex also affects a professor's salary. If both 

these differential intercepts are statistically significant it would mean sex as well as color is 

an important determinant of professor's salaries. 

 It is found that from the preceding discussion, a model can be extended to include 

more than one quantitative variable and more than two qualitative variables. The only 

precaution to be taken is that the number of dummies for each qualitative variable should be 

one less than the number of categories of that variable.  

 

Chapter (III)  

Some Uses of Dummy Variables  

 In this section some use of dummy variables in regression analysis are discussed. 

Dummy variables may be used to represent and compare factors such as the following:  

1. Temporal effect: Examples include wartime versus peacetime, Christmas season non-

Christmas season, summer versus nonsummer, strike period nonstrike period, and different 

quarters of the year.  

2. Spatial effects: Examples include north versus south, urban versus rural, City A versus 

City B, developed versus underdeveloped countries and farm versus nonfarm communities.  

3. Qualitative variables: Examples include male versus female, college graduate versus non-

college graduate, skilled versus unskilled employee, married versus single, renter versus 

home-owner, employed versus unemployed, and white versus nonwhite. 

4. Broad groupings of quantitative variables: Examples include income over 550,000 

versus income under 550,000 age over 25 versus age under 25,3 or more children versus 

fewer than 3 children, and sales less than $1 million per year versus sales greater than $1 

million per year. 
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3.1 The Use of Dummy Variables in Seasonal Analysis  

 Many economic time series based on monthly or quarterly data exhibit seasonal 

patterns (regular oscillatory movement). Examples are sales of department stores at 

Christmas time, demand for money (cash balances) by households at holiday times, demand 

for ice cream and soft drinks during the summer, and prices of crops right after the harvesting 

season. Often it is desirable to remove the seasonal factor, or component, from a time series 

so that one may concentrate on the other component, such as the trend.  

 The process of removing the seasonal component from a time series is known as 

deseasonalization, or seasonal adjustment, and the time series thus obtained is called the 

deseasonalized, or seasonally adjusted, time series. Important economic time series, such as 

the consumer price index, the wholesale price index, the index of industrial production, are 

usually published in the seasonably adjusted form.  

 There are several methods of deseasonalizing a time series, but one of these methods, 

namely, the method of dummy variable in consider in this chapter. To illustrate how to 

dummy variables can be used to deseasonalize economic time series.  

 The following model in considered, 

  1 2 2i 3 3i 4 4i t iYi =  + D  + D  + D  +  (sales)  + U        (3.1) 

 Where Yi = profit  

  D2 = 1 for second quarter  

       = 0 otherwise  

  D3 = 1 for third quarter  

       = 0 otherwise  

  D4 = 1 for fourth quarter  

       = 0 otherwise  

 Note that it is assumed that the variable "season" has four classes, the four quarters of 

a year, there by requiring the use of three dummy variables. Thus, if there is a seasonal 

pattern present in various quarters, the estimated differential intercepts 2 3 4 ,  and    , it 

statistically significant, will reflect it. It is possible that only some of these differential 

intercepts are statistically significant so that only some quarters may reflect it. In this case 

first quarter of the year is treated as the base year.  
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3.2 The Use of Dummy Variables in Piecewise Linear Regression  

 Most of the econometric models studied have been continuous, with small change in 

one variable having a measurable effect on another variable. This framework as modified 

when the dummy variables are used to account for shifts in either slope or intercept or both. It 

is therefore reasonable to extend the analysis one further step: to allow for changes in slope, 

with the restriction that the line being estimated be continuous. A simple example is drawn in 

following Fig. 3.1 

 

 

 

                                                 

 

 

Figure 3.1 Piecewise-linear-regression model.  

 The true model is continuous, with a structural break. This piecewise linear model 

consists of two straight-line segments.  

 Piecewise linear models are special cases of a much larger set of models or 

relationships, called spline functions. Spline functions are functions and not necessarily a 

straight line. In a typical case, the spline is chosen to be a polynomial of the third degree and 

the procedure guarantees that the first and second derivatives will be continuous.  

 The estimate the model given in Fig. (3.1), consider the expression  

  
ot 1 2 t 3 t t t tC  =  + Y  +  (Y  - Y ) D  +      (3-2) 

 Where Ct = consumption  

  Yt = income 

  Yt0 = income in year in which structural break occurs and  

  Dt=  1 If t >  t0 

          0  otherwise  
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 For years before and including the break Dt = 0, so that  

  t 1 2 tE (C ) =  + Y   

However, after the break, Dt = 1, so that  

  
0t 1 2 t 3 t 3 tE (C ) =  + Y  + Y  - Y     

 or 
0t 1 3 t 2 3 tE (C ) = (  - Y ) + (  + ) Y     

Before the break, the line has slope 2 , but the slope changes to 2 3    afterward (and the 

intercept changes as well). Note however, that there is no discontinuity since  

  
0t 1 2 tE (C ) =  + Y   

Note also that when 3  = 0 , the consumption equation reduces to a single straight-line 

segment, so that a t test of 3  = 0 provides a simples test for structural change.  

 If there were two structural breaks, occurring at times t0 and t1, the appropriate model 

would then be  

  
0 1t 1 2 t 2 t t 3 t t tC =  + Y  + (Y  - Y ) D + (Y  - Y ) D' +       

where
1t

Y represents the income at which a second structural break occurs, and  

  D' = 1  if t > t1 

         0 otherwise  

 The equations of each of the three line segments are then  

  
0

0 1

1 2 t 0

t 1 3 t 2 3 t 0 1

1 3 t 4 t 2 3 4 t 1

 + Y                                                       0 < t  t

E(C ) = (  - Y ) + (  + )Y                             t   t  t

(  - Y  - Y ) + (  +  + ) Y       t > t

 

   

     

 

 





 

 

 

Chapter IV  

Conclusion  

 In regression analysis the dependent variable is frequently influenced not only by 

variables that can be reading quantified on some well-defined scale, but also by variables that 

are essentially quantitative in nature. Since such qualitative variables usually indicates the 

presence or absence of a quality or an attribute, one method of quantifying such attributes is 

by constructing artificial variables that take on values of 1 or 0, 0 indicating the absence of an 

attribute and 1 indicating the presence of that attribute variables that assume such 0 and 1 
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value are called dummy variables. Alternative names are indicator variables, binary variables, 

categorical variables, qualitative variable and dichotomous variables. 

 Dummy variables can be used in regression models just as quantitative variables. As a 

matter of fact, a regression model may contain explanatory variables that are exclusively 

dummy, or qualitative, in nature. Such models are called analysis of variance (ANOVA) 

models.  

 In most economic research a regression model contain some explanatory variables 

that are quantitative and some that are qualitative. Regression models containing an 

admixture of quantitative and qualitative variables are called analysis-of-covariance 

(ANCOVA) models. 

 In this dissertation, how to incorporate dummy variables into the multiple regression 

model and how to interpret the estimated coefficient of the dummy variables are explained. 

The findings of this study are concluded as follows.  

1.  Dummy variables taking values of 1 and 0 (or their linear transforms) are a means of 

introducing qualitative reqressors in regression analysis.  

2. If dummy variables have more than two possible responses, one cannot encode it as 0, 

1, 2, 3 and so on. A variable with r possible responses will be expanded to encompass 

a total of r-1 variables. 

3. Dummy variables are a data-classifying device in that they divide a sample into 

various subgroups based on qualities or attributes (sex, marital status, race, religion, 

etc) and implicitly allow one to run individual regressions for each subgroup. If there 

are differences in the response of the regressand to the variation in the quantitative 

variables in the various subgroups, they will be reflected in the differences in the 

intercepts or slope coefficients, or both, of the various subgroup regressions.  

4. Although a versatile tool, the dummy variable technique needs to be handled 

carefully. First, if the regression contains a constant term, the number of dummy 

variables must be less than the number of classifications of each qualitative variable. 

Second, the coefficient attached to the dummy variables must always be interpreted in 

relation to the base, or reference, group, that is the group that gets the value of zero. 

Finally if a model has several qualitative variables with several classes, introduction 

of dummy variables can consume a large number of degrees of freedom. Therefore, 

one should always weight the number of dummy variables to be introduced against 

the total number of observations available for analysis. 
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