
Software Size Evaluation Using Object Points

Thandar Zaw, Khine Khine Oo

University of Computer Studies, Yangon, Myanmar

thannarzaw@gmail.com

Abstract

Object-oriented technologies have emerged as a

dominant software engineering practice. The growth

of Object Oriented practices has required software

developers and they have been estimating the size of

their development projects. Several attempts have

been made to categorize the complexities of software

systems, and the complexity of software architectures

is a subject of ongoing research. Software reuse

limits the amount of new software that needs to be

produced. Most method for estimation effort requires

an estimate of the size of the software. The size of

software is estimated by using complexity weight of

object points. Object-oriented software is the process

of systematically building the software systems using

objects, types and classes. This paper presented the

calculation of reuse object points in the modified

software application by using object point estimation

model. This size of the software code is estimated by

using COCOMO-II object point analysis model. The

normal size estimated after object point analysis is

finalized to calculate the adjusted object points in

reusing modified software application.

Keywords: Effort estimation, Object point

analysis, COCOMO-II

1. Introduction

Software cost estimation is an important

activity during its development. Cost has to be

estimated continually during all the software

development phases. Software cost estimation

depends on the nature and characteristics of a project

[9]. At any phase, the accuracy of the estimate

depends on the amount of information known about

the final product.

Software size estimation is mainly dependent

on its size. Boehm [2] has developed Constructive

Cost Model (COCOMO) to establish a relationship

between the cost and size of software. The main

disadvantages of using Lines of Code (LOC) as a unit

of measure of software size are the lack of a

universally accepted definition and language

dependency.

For most companies trying to improve their

software development performance, objects and

software reuse must become key parts of their

software engineering strategy. Succeeding with

industrial-strength object-oriented software

engineering requires that the promise of large-scale

software reuse be realized in a practical way. [7].

Reuse efforts date back to 1994 when some divisions

began to develop reusable components in Instrument

Basic, Objective-C, and C++.

For the effective management of the resources

in a project, it is necessary to estimate the function

points of a system in the requirements, analysis and

design phases. At the requirements phase the

measurement is completely from users’ perspective.

Analysis phase is not only from an analyzers’

perspective, but also includes users’ perspective and

at the design phase the measurement is completely

from a designer’s perspective.

In recent years, Object Oriented technology

has emerged as a dominant software engineering

practice. As it happens with many new technologies,

the growth of Object Oriented practices has forced

software developers and their managers to rethink the

way they have been estimating the size of their

development projects [5]. To measure OO software,

the main components to be considered are raw

functionality of the software, communication among

objects and inheritance.

In this paper, a well defined estimation model

in COCOMO-II is proposed which can be used to

estimate the reuse object size required for developing

the next software application. This paper provides the

adjusted object point by estimating the sub-program

(client) to refer the reference program (server).The

model calculation is designed to help project manager

to estimate effort at the very early stage of

requirement analysis. For the size estimation of the

program, the different techniques such as function

point analysis, object point analysis and use case

analysis are used.

The rest of the paper is organized as follows.

In Section 2, we reviews related work. We show the

general architecture of the proposed system in

Section 3. Section 4 gives determine object points

and a description of estimation of size. Section 5

describes experimental results of this system and

section 6 draws some conclusion and future work.

2. Related Work and Background

As software grew in size and importance, it

also grew in its complexity, making it very difficult

to accurately predict the cost of the software

development. The better accuracy in estimation can

be achieved by developing the domain based useful

models that constructively explain the development

 2

life cycle and accurately predict the effort of

developing the software. [8].

Over the years, different approaches have been

suggested for the estimation of different types of

projects. These projects are categorized as

development projects, maintenance projects and

support services by keeping in mind that these

activities never occurred simultaneously. Most of

these approaches estimate the effort based on the size

of the development project and same approach is also

used in estimating the effort of projects.

Teologlou [5] has proposed Predictive Object

Points (POPs) based on the class hierarchy and

weighted methods per class. From the class hierarchy,

the counts of number of top level classes, average

depth of inheritance tree and average number of

children per base class are considered. Methods are

weighted according to five types (Constructors,

Destructors, Selectors, Modifiers and Iterators). At

the design phase, the information about the data,

aggregation and polymorphism is available but, this

information is not considered by the POPs measure.

IFPUG [1] considered classes as logical files

and methods as transactional functions from user’s

perspective during the analysis as well as design

phases. This counting procedure lacks the ability to

measure the inheritance and communication among

objects.

Baresi et al. [3] investigated whether estimated

effort provided by inexperienced developers can be

used to estimate actual effort. It was quite clear that it

is possible to use the estimated values as predictors

for the actual ones; however other variables, such as

size, also need to be incorporated to the model to

make it more realistic and meaningful.

Reifer et al [10] proposed an extension to the

COCOMO-II model by introducing WEBMO model.

Reifer proposed different cost drivers by keeping in

mind the demands of web projects. In WEBMO, size

is measured by using analytical Halstead’s formula

for volume.

3. Proposed System Architecture

Different reuse attributes are visible when

reuse is examined from different perspectives. In our

system, we consider a system where individual

modules access some set of existing software entities.

A program unit (header File) reused is considered as

a server and the unit accessing that program unit

(Program File) is considered as client. Reuse can be

observed from the perspectives of the server and the

client. Each of these perspectives is relevant for the

analysis and measurement of reuse in a system. A set

of potentially measurable attributes can be derived

for Object Oriented Programming Language based on

profiles of reuse from each perspective. As a result,

we can define measurement of object points that can

be derived; they are presented in a set of complexity

tables. Figure1 represent the proposed system

architecture.

Source

Program

Read Program

Extract Module

Identification Object

Point

User Interface

screen

User Interface

report
3GL component

(object oriented function)

Reference source

code program

Define type of classes

based on object point

Server class

(reuse direct

reference program)

Client class

(within reference

program)

3GL component

(object oriented function)

Calculate Complexity level

Module Generator

Calculate Number of Object

Point

Calculate Adjusted Object

Point

Start

End

Figure.1. Proposed System Architecture

4. Estimation of Size

For Size calculation, we have opted for the

Object point analysis. Object points are a measure of

the size of computer application and the projects that

build them. The size is measured from a components

point of view. It is independent of the computer

language, development methodology, technology or

capability of the project team used to develop the

application.

 3

4.1 Identify System Boundaries

Identification of system boundary means

limiting the scope of development. We can define

what application is to be developed and what is

outside the scope of development. This will help to

find the application objects to be included in the

system to count the total Object Points (OP).For each

features of the system, we can easily determine the

corresponding object points and their scope in the

system.

4.2 Determine Object Points

 The Object Points (OP) reflects the

countable objectivity provided to the user by the

application file/tool. Each tool has certain defined

ways using which we can quantify these object points.

The defined specific Objects should be evaluated in

terms of what is being delivered. This means count

only user defined and requested Objects. Do not

include any of the existing objects and trivial objects.

Object Point is the total of object points for all the

objects delivered in any file. Identify the different

objects from the business user’s point of view. In

each application, there are two types of objects, one

which are directly visible through user interface and

others which are not directly visible. The following

different categories of object have been identified:

 User Interface Screens

o Data Forms

o Message Boxes

o Error Messages

o Interactions with Databases

o No. of Java Script functions/

operations/Validations

o No. of style classes uses

 User Interface Reports

o Printed reports

o Graphics Analysis Reports

4.3 Object Points in Object Oriented

Design

 In Object Points procedure, methods and

data are separated while calculating the functionality

of software. But a class encapsulates both data and

methods. So, complexity of object oriented implies

that both data and methods should be considered as a

single entity. The functionality of the object oriented

software is decided according to the data processed

by the functions and communication among objects.

From the user’s perspective, we calculate class

hierarchies, inherited data, and aggregation and

method signatures.

4.4 Complexity of Each Object

All the objects are characterized by the

attributes they posses and their behavior in different

environments. The complexity if each object also

depends upon how it is interlinked with other objects

and number of instances it uses. Objects include

screens, reports and modules in third generation

programming languages. Object Points are not

necessarily related to objects in Object Oriented

Programming. The numbers of raw objects are

estimated, the complexity of each object is estimated,

and the weighted total (Object-Point count) is

computed. The percentage of reuse and anticipated

productivity are also estimated.

Table 1: Object Point Analysis-Screen

Table 2: Object Point Analysis-Reports

Table 1 and 2 represent the Object Points analysis for

Screen and Reports respectively. In each table, the

server means the number of data using in conjunction

with the SCREEN or REPORT in header file and the

client means the number of data using in conjunction

with the SCREEN or REPORT in program files

4.5 Complexity Weight

As Table 1 and 2 in this section, design of

the problem should be considered to estimate the

complexity of each object. Then each object is

classified into simple, medium and difficult

complexity levels depending on values of

 4

characteristic dimensions defined on the following

table 3:

Table 3: Object Point Analysis-Complexity Weight

4.6 Calculate Object Points

 To the total object points in a particular

feature or an application, we add up all the objects

multiplied by their complexities in it. This gives us

the total number of object points in the application.

Each application involves certain redundant features.

Further, object oriented development methodology

inherently promotes code reuse. We consider code

reuse as an important parameter while calculating

total project points. Although Code reuse parameter

vary from application to application and also depends

upon the design of an application but still following

factors may help us to determine this parameter:

 Number of views Screen

 Number of printed reports

 Number of function enhanced

 Amount of code used from previous application

having same features

According to table 1, for example, we

calculate one of program files has number of views

screen (screen objects) is less than three if this object

is less than four the total of header file and program

file and less than two in these two files, is called as

“Simple” type. Others type of objects is calculated in

this same way. According to table 2, for example, we

calculate one of program files has number of sections

(report functions) is less than two if this object is less

than four the total of header file and program file and

less than two in these two files, is called as “Simple”

type. Others type of objects is calculated in this same

way.

To evaluate complexity weight, if the type

of screen objects is “Simple” type, we multiply one

with these objects. If the type of report objects is

“Simple” type, we also multiply two with these

objects. Especially, the type of 3GL components has

only “Difficult” type; we multiply ten with these 3GL

objects.

Finally, the effect of reuse% is taken the

percentage of screens, reports, and 3GL components

reused from header file.

%reuse= (used components/total components)/100

…(1)

 The inputs are the NOP (Number of Object

Points) of reference file. The following formula is

used to estimate adjusted object points in our

subprogram.

 Adjusted OP=NOP* (1-reuse%/100) …(2)

5. Experimental Result

In this experiment, data is collected from the

two different types of file. Reference file contains all

screen , report and 3GL components function , is

called reference file(header file). Client files contain

some function reuse the reference file, is called class

file. This paper tested 3class file refer to the same

referenc file. Different class files have vary in the

complexity weight in their implementation. To

demonstrate the measurement, we designed and

implemented the prototype C++ language. Firstly, we

estimate the number of screens, reports and 3Gl

components from the header file that will comprise in

this program file.Second, we classify each object

instance into simple, medium and difficult

complexity levels depending on vales of

characteristic dimensions using Table 1 and 2. Third,

we weight the number in each cell using the Table 3.

The weights reflect the relative effort required to

implement an instance of that complexity level.

Fouth, we determine object points that add all the

weighted object instances to get one number, the

object-point count.Fifth, we estimate the percentage

of resue you expect to be achieved in next program

file, and then we will compute the adjusted object

point to be developed in each program file.

Client 1:
2 screens: 1 Simple+2 Difficult

60 3GL components: 60 functions

1 Simple screen *1 =1

2 Difficult screen *3 =6

60 3GL component *10 =600

NOP(number of Object Point)=607

%reuse= 2.970

Adjusted Object Point(AOP)=588.97

Client 2:

1 screens: 1 Simple

22 3GL components: 22 functions

1 Simple screen *1 =1

22 3GL component *10=220

NOP(number of Object Point)=221

%reuse= 10

Adjusted Object Point(AOP)=198.9

 5

Client 3:

1 screens: 1 Simple

2 report: 2 Simple

31 3GL components: 31 functions

1 Simple screen *1 =1

2 Simple report *2 =4

31 3GL component *10=310

NOP(number of Object Point)=315

%reuse= 6.0606

Adjusted Object Point(AOP)=295.909

6. Conclusion
An organization can also use the reuse

measures to monitor the success of a reuse program

in promoting reuse in development. The measures

can quantify precisely how much percentage of reuse

is taking place. Developers can use the reuse data and

representations to produce customized project to

satisfy specific goals. In this paper, object points

defined screens, reports and 3GL components in

testing program files. This paper calculates the

number of object points by analyzing the complexity

of weights for all objects. The percentage of reuse

estimated in header file and program files you expect

to be achieved in next program file, and then we

computed the adjusted object point to be developed

in each program file. Reuse measurement will also

help users to develop new software that is easily

reused. This system will use object point estimating

technique for cost effort approach. Currently, this

paper developed for measuring reuse components in

programs implemented in C#.

References
 [1] B. W. Boehm. “Software Engineering

Economics”,PrenticeHall, Inc., Englewood Cliffs,

New Jersey, USA, 1981.

[3] Baresi, Li, Morasa, S., & Paolini, P., “An

empirical study in the design effort for web

applications”, Proceedings of Web Information

System Engineering, 2002.

[4] D. Janaka Ram and S.V.G.K. Raju, “Object

Oriented Design Function Point”, Distributed

and Object Systems Lab, Indian Institute of

Technology Madras, IEEE, 2000.

[5] G. Teologlou, “Measuring object oriented

software with predictive object points”, In 10th

Conference on European Software Confrol and

Metrics, May 1999. Available at

http://www.escom.co.uk/publications.

[6] IFPUG. Function Point Counting Practices: Case

Studies Release 1.0 - Case Study 3 - Object

Oriented Analysis, Object Oriented Design.

International Function Point Users Group,

Westerville, OH, 1996.

[7] I.Jacobson, M.Griss and P. Jonsson,”Software

reuse: Architecture, process and organization for

business success”,1997.

[8] N. Aggarwal, N. Prakash and S. Sofat, “Content

Management System Effort Estimation Model

based on Object Point Analysis”, International

Journal of Computer Science and Engineering,

2008.

[9] P. Jalote. “An Integrated Approach to Software

Engineering”. Narosa Publishing House, New

Delhi, India, 1998.

[10]Reifer, D.J., “Web development: Estimating

quick-to-market software”, IEEE Software, Nov-

Dec 2000.

[11] S.Axwl, “Position Paper: Towards Complexity

Levels of Object Systems Used in Software

Engineering Education”,

http://www.escom.co.uk/publications

