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Abstract 

 

In this paper, the forward-difference formula, the backward-difference formula and the central-difference 

formula are studied. Firstly, the explicit formula of one finite-difference approximation to heat equation is 

derived. Then we calculate the numerical solutions of heat equation by using Matlab programming. We also 

discuss the Crank-Nicolson implicit formula. Finally, the solution of the second-order parabolic equation with 

initial-boundary conditions is derived by using Crank-Nicolson implicit method.  
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Introduction 

Three basic types of partial differential 

equations are distinguished: parabolic, hyperbolic and 

elliptic. The solution of the equation pertaining to each 

of the types has their own characteristic qualitative 

differences. 

Finite-difference approximations to derivatives 

 Assume that U is a function of the 

independent variables x and t. Subdivide the x-t plane 

into sets of equal rectangles of sides x = h, t = k, by 

equally spaced grid lines parallel to OY, defined by

ix = ih, i = 0, 1, 2, …, and equally spaced grid lines 

parallel to OX, defined by
jy = jk, j = 0, 1, 2, …, as 

shown in Figure 1. 

Denote the value of U at the representative 

mesh point P(ih, jk) by 

p
U = 

i, j
U(ih, jk)=U . 

 
When a function U and its derivatives are 

single-valued, finite and continuous functions of x, 

then by Taylor’s theorem,  

U(x+h) = 2 31 1
U(x) +hU (x)+ h U (x)+ h U (x)+...

2 6
   ,(1) 

And  U(x h) = 

2 31 1
U(x) hU (x)+ h U (x) h U (x)+...

2 6
    .              (2) 

Addition (1) and (2), we get 

U(x h)+U(x h)  = 2 42U(x) +h U (x)+O(h ),
          

(3) 

where 4O(h )  denotes terms containing fourth and 

higher powers of h.  

Assuming these are negligible, 

U (x)  =  
2

2 2

d U 1
U(x h) 2U(x)+U(x h) .

dx h
   

     
(4) 

Subtracting (2) from (1) and neglecting terms of  
3O(h ) ,  

U (x) =  
dU 1

U(x h) U(x h)
dx 2h

    .                   (5) 

Equation (5) clearly approximates the slope of the 

tangent at P by the slope of chord AB, and is called a 

central-difference approximation. We can also 

approximate the slope of the chord PB, giving the 

forward-difference formula, 

U (x)   
1

U(x h) U(x)
h

 
                                     

(6) 

and the slope of chord AP giving the backward-

difference formula, 

U (x)   
1

U(x) U(x h) .
h

 
                             

(7) 

Both (6) and (7) can be written down from (1) and 

(2)respectively, assuming second and higher power of 

h are negligible. This shows that leading errors in 

these forward-difference and backward-difference 

formulae are both O(h). 
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Figure  2   The slope of the tangent at P 
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Notation for functions of several variables 

Assume U is a function of the independent 

variables x and t. Subdivide the x-t plane into 

setsofequal rectangles of sides x = h, t = k, by 

equally spaced grid lines parallel to OY, defined by 

ix = ih, i = 0, 1, 2, … and equally spaced grid lines 

parallel to OX, defined by 
jt = jk, j = 0, 1, 2, … as 

shown in Figure  3. 

Denote the value of U at the representative 

mesh point P(ih, jk) by 

P
U  = 

i,j
U(ih, jk)=U . Then (4) becomes, 

2

2

P

U

x

 
 
 

 = 
2

2

i, j

U

x

 
 
 



     
2

U (i+1)h, jk 2U ih, jk U (i 1)h, jk

h

  
, 

2

2

U

x




 i+1, j i, j i 1, j

2

U 2U U

h


 

,  

with a leading error of  2O(h ) . Similarly, 

2

2

i, j

U

t

 
 
 


i, j+1 i, j i, j 1

2

U 2U U

k


 

,  

with a leading error of 2O(k ) . 

The forward-difference approximation for 
U

t




 at P is 

U

t






i, j+1 i, j
U U

,
k



 
 

With a leading error of O(k). 

 .

 

Finite-Difference Methods 

 Finite-difference methods are approximate in 

the sense that derivatives at a point are approximated 

by different quotient over a small interval. 

Explicit method 

 One finite-difference approximation to heat 

equation
2

2

U U

t x

 


 
is 

i, j+1 i, j
u u

k


=

i 1, j i, j i+1, j

2

u 2u u

h


 

. This can be written as   

i, j+1
u  =  i 1, j i, j i+1, j

r u 1 2r u r u ,

  

                           
(8) 

where
2

k
r = ,

h
and gives a formula (three-points 

formula) for the unknown temperature
i,j+1

u   at the     

(i, j + 1)th mesh point in terms of known temperatures 

along the jth time-row. A method such as (11) which 

express one unknown pivotal value directly in terms 

of known pivotal values is called Explicit method. 

 

Crank-Nicolson implicit method 

 Crank, J. and Nicolson, P. (1947) considered 

the partial differential equation as being satisfied at 

the point 
1

ih, j+ k
2

  
  
  

. They approximated the 

equation  

1
i, j+

2

U

t

 
 
 

 = 
2

2
1

i, j+
2

U

x

 
 
 

 by   

i, j+1 i, j
u u

k


= 

i 1, j+1 i, j+1 i+1, j+1 i 1, j i, j i+1, j

2 2

u 2u u u 2u u1

2 h h

 
    

 
 

,  giving

 i 1, j+1 i, j+1 i+1, j+1
r u 2 2r u r u


      

 i 1, j i, j i+1, j
r u 2 2r u r u


                                          (9) 

 
 In general, the left side of (9) contains three 

unknown and the right side three known, pivotal 

values of u. If there are N internal mesh points along 

each time row then for j = 0 andi = 1, 2, . . ., N, 

equation (9) gives N simultaneous equations for the N 

unknown pivotal values along the first time-row in 

terms of known initial and boundary values. Similarly, 

j = 1 express N unknown values of u along the second 

time-row in terms of the calculated values along the 

first, etc. A method such as (9),where the calculation 

of an unknown pivotal value necessitates the solution 

of a set of simultaneous equations, is called a Crank-

Nicolson implicit method. 
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Figure 3  Equal rectangles of side x = h, t = k 
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Example (1) 

 As a numerical example we can solve (8) 

given that the ends of the rod are kept in contact with 

blocks of melting ice and that the initial temperature 

distribution in non-dimensional form is 

1
(a) U = 2x,   0 x

2

1
(b) U = 2(1 x), x 1.

2


  


  


 

In other words, we are seeking a numerical solution of  
2

2

U U

t x

 


 
 which satisfies  

(i) U = 0 at x = 0 and 1 for all t > 0. (The 

boundary conditions.) 

1
(ii) U = 2x   0 x

2

1
and U = 2(1 x) x 1.

2


  


  


 t = 0. (The initial 

conditions.) 

For x = h = 
1

10
, the problem is symmetric with 

respect to x = 
1

2
 so we need the solution only for        

0  x 
1

2
. 

 

Case I 

If we take  x = h = 
1

10
, t = k = 

1

1000
, so  

r = 
2

k

h
=

1

10
.  

Substituting r = 
1

10
 in (11), we get 

i,j+1
u  =  i 1,j i,j i+1,j

1
u 8u u .

10

 

 
 

By using given conditions and Matlab programming, 

we get the solution as shown in Table 1.  

Table 1 Solutions of Case I 

 i = 0i = 1i = 2i = 3i = 4i = 5i = 6      

x = 0 0.1 0.2  0.3        0.4       0.5 0.6  

(j = 0)t =0.000 

(j = 1)    0.001 

(j = 2)    0.002 

(j = 3)    0.003 

(j = 4)    0.004 

(j = 5)    0.005 

(j = 6)    0.006 

(j = 7)    0.007 

(j = 8)    0.008 

(j = 9)    0.009 

(j = 10)   0.010 

(j = 11)   0.011 

(j = 12)   0.012 

(j = 13)   0.013 

(j = 14)   0.014 

(j = 15)   0.015 

(j = 16)   0.016 

(j = 17)   0.017 

(j = 18)   0.018 

(j = 19)   0.019 

(j = 20)   0.020 

  0   0.2000  0.4000  0.6000  0.8000 1.0000  0.8000 

  0   0.2000 0.4000  0.6000  0.8000  0.9600   0.8000 

  0   0.2000 0.4000  0.6000  0.7960  0.9280   0.7960 

  0  0.2000 0.4000  0.5996  0.7896  0.9016   0.7896 

  0   0.2000 0.4000  0.5986  0.7818  0.8792  0.7818 

  0   0.2000 0.3998 0.5971  0.7732   0.8597  0.7732 

  0  0.2000 0.3996  0.5950  0.7643  0.8424   0.7643 

  0 0.1999  0.3992  0.5924 0.7551  0.8268   0.7551 

  00.1999  0.3986  0.5890   0.7460 0.8125  0.7460 

  0   0.1998  0.3978  0.5859  0.7370  0.7992  0.7370 

  0   0.1996  0.3968  0.5822  0.7281  0.7867  0.7281 

  0   0.1993  0.3956  0.5783  0.7194  0.7750  0.7194 

  0   0.1990  0.3942  0.5741  0.7108  0.7639  0.7108 

  0   0.1986   0.39270.5698  0.7025  0.7533  0.7025 

  0   0.1982  0.3910  0.5653  0.6943  0.7431  0.6943 

  0   0.1977  0.3892  0.5608  0.6863  0 .7333  0.6863 

  0   0.1970  0.3872  0.5562  0.6784  0.7239  0.6784 

  0   0.1963  0.3851  0.5515  0.6708  0.7148  0.6708 

  0   0.1956  0.3828  0.5468  0.6632  0.7060  0.6632 

  0   0.1948  0.3805  0.5420  0.6559  0.6975  0.6559 

  0   0.1939  0.3781  0.5373  0.6487  0.689   0.6487  

 

 

Matlab program is 

u(1,1)=0;u(2,1)=.2;u(3,1)=.4;u(4,1)=.6; 

u(5,1)=.8;u(6,1)=1;u(7,1)=.8;u(8,1)=.6; 

u(9,1)=.4;u(10,1)=.2;u(11,1)=0; 

for j =1:31 

fori =2:11 

ifi<7 

       u(i,j+1)=(u(i-1,j)+8*u(i,j)+u(i+1,j))/10; 

elseifi==7 

u(i,j+1)=u(5,j+1); 

elseifi==8 

u(i,j+1)=u(4,j+1);  

elseifi==9 

u(i,j+1)=u(3,j+1); 

elseifi==10 

u(i,j+1)=u(2,j+1); 

elsei==11 

u(i,j+1)=u(1,j+1); 

end 

end 

end 

u' 

Case II 

If we take x =h =
1

10
, t = k =

5

1000
, so    r = 

2

k

h
= 

1

2

. Substituting r = 
1

2
 in (11), we get 

i, j+1
u  =  i 1, j i+1, j

1
u u .

2



 
 

By using given conditions and Matlab programming, 

we get the solution as shown in Table 2. Matlab 

program is  

u(1,1)=0;u(2,1)=.2;u(3,1)=.4;u(4,1)=.6; 

u(5,1)=.8;u(6,1)=1;u(7,1)=.8;u(8,1)=.6;u(9,1)=.4;u(10,

1)=.2;u(11,1)=0; 

for j =1:31 

fori =2:11 

ifi<7 

 u(i,j+1)=(u(i-1,j)+u(i+1,j))/2; 

elseifi==7 

u(i,j+1)=u(5,j+1); 

elseifi==8 

u(i,j+1)=u(4,j+1);  

elseifi==9 

u(i,j+1)=u(3,j+1); 

elseifi==10 

u(i,j+1)=u(2,j+1); 

elsei==11 

u(i,j+1)=u(1,j+1); 

end 

end 

end 

u' 
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Table 2  Solutions of Case II 
 i= 0    i = 1     i = 2   i = 3      i = 4      i = 5       i = 6  

x = 0     0.1       0.2         0.3         0.4         0.5        0.6  

(j = 0)t =0.000 

(j = 1)    0.005 

(j = 2)    0.010 

(j = 3)    0.015 

(j = 4)    0.020 

(j = 5)    0.025 

(j = 6)    0.030 

(j = 7)    0.035 

(j = 8)    0.040 

(j = 9)    0.045 

(j = 10)   0.050 

(j = 11)   0.055 

(j = 12)   0.060 

(j = 13)   0.065 

(j = 14)   0.070 

(j = 15)   0.075 

(j = 16)   0.080 

(j = 17)   0.085 

(j = 18)   0.090 

(j = 19)   0.095 

(j = 20)   0.100 

0    0.2000    0.4000   0.6000   0.8000   1.0000   0.8000 

 0   0.2000    0.4000   0.6000   0.8000   0.8000   0.8000 

0   0.2000    0.4000   0.6000   0.7000   0.8000   0.7000 

 0   0.2000    0.4000   0.5500   0.7000   0.7000   0.7000 

  0   0.2000    0.3750   0.5500   0.6250   0.7000   0.6250 

  0   0.1875    0.3750   0.5000   0.6250   0.6250   0.6250 

  0   0.1875    0.3438   0.5000   0.5625   0.6250   0.5625 

  0   0.1719    0.3438   0.4531   0.5625   0.5625   0.5625 

  0   0.1719    0.3125   0.453    0.5078    0.5625   0.5078 

  0    0.1563    0.3125   0.4102   0.5078  0.5078   0.5078 

  0   0.1563    0.2832   0.4102   0.4590   0.5078   0.4590 

  0   0.1416    0.2832   0.3711   0.4590   0.4590   0.4590 

  0   0.1416    0.2563   0.3711   0.4150   0.4590   0.4150 

  0   0.1282    0.2563   0.3357   0.4150  0.4150   0.4150 

  0    0.1282    0.2319  0.3357  0.3754   0.4150    0.3754 

  0    0.1160    0.2319  0.3036  0.3754   0.3754    0.3754 

 0    0.1160    0.2098  0.3036  0.3395   0.3754    0.3395 

  0    0.1049    0.2098  0.2747  0.3395   0.3395    0.3395 

  0    0.1049    0.1898  0.2747   0.3071   0.3395   0.3071 

  0    0.0949    0.1898  0.2484   0.3071   0.3071   0.3071 

  0    0.0949    0.1717  0.2484   0.2778   0.3071   0.2778 

  

Example (2) 

Consider the equation  
2

2

U U
,

t x

 


 
  0 < x < 1, t > 0, 

where the boundary conditions and initial conditions 

are 

(i)     U = 0,  x = 0 and 1,  t  0, 

(ii) 
1

U = 2x,         0 x
2

  , t = 0, 

(iii) 
1

U = 2(1 x),   x 1
2

   ,  t = 0.  

Then we can calculate a numerical solution 

by using the Crank-Nicolson implicit method as 

follow: 

Take h = 
1

10
, r = 1, then k = 

1

100
.  And then, 

r = 1 in (13), we get, 

i 1, j+1 i, j+1 i+1, j+1 i 1, j i+1, j
u 4u u u u

 
    

                        
(10) 

 

Denote  
i , j+1

u  by 
i

u  (i = 1, 2, . . ., 9). 

Because of symmetry,
6

u = 
4

u ,  
7

u = 
3

u ,
8

u = 
2

u , 
9

u = 

1
u ,

10
u = 

0
u . 

j = 0 in (16) we get,     

i 1,1 i,1 i+1,1 i 1,0 i+1,0
u 4u u u u .

 
      

For  i = 1,  
0,1 1,1 2,1 0,0 2,0

u 4u u u u     , then 

1 2
4u u 0.4  , 

for  i = 2 ,  
1,1 2,1 3,1 1,0 3,0

u 4u u u u     , then 

1 2 3
u 4u u 0.8    , 

for  i = 3,  
2,1 3,1 4,1 2,0 4,0

u 4u u u u     ,  then  

2 3 4
u 4u u 0.4 0.8 1.2      , 

for  i = 4, ,    
3 4 5

u 4u u 0.6 1.0 1.6      ,  

for  i = 5,      
4 5 6

u 4u u 0.8 0.8 1.6      .  

We have,              
1 2

4u u 0.4  ,    

1 2 3
u 4u u 0.8    , 2 3 448

u 4u u 1.210    , 

3 4 5
u 4u u 1.6    ,   

4 5 6
u 4u u 1.6    .  

Then we get,    

1
u 0.1989 , 

2
u 0.3956 ,   

3
u 0.5834 ,   

4
u 0.7381 ,   

5
u 0.7691 . 

For second-time step, j = 1in (10) we get, 

for  i = 1,  
1 2

0 4u u 0 0.3956 0.3956      , 

fori= 2,  
1 2 3

u 4u u 0.1989 0.5834 0.7823      , 

for  i = 3, 
2 3 4

u 4u u 0.3956 0.7831 1.1337      , 

for  i = 4,  
3 4 5

u 4u u 0.5834 0.7691 1.3525      ,  

for  i = 5,  
4 5 6

u 4u u 0.7831 0.7831 1.4762       .  

Thus,   
1

u 0.1936 ,   
2

u 0.3789 ,   
3

u 0.5400 ,   

4
u 0.6461 ,   

5
u 0.6921 . 

For third-time step, j = 2 in (16) we get, 

for  i = 1, 
1 2

0 4u u 0 0.3789 0.3789      , 

for  i = 2,  
1 2 3

u 4u u 0.1936 0.5400 0.7336      , 

for  i = 3,  
2 3 4

u 4u u 0.3789 0.6461 1.0250      , 

for  i = 4,  
3 4 5

u 4u u 0.5400 0.6921 1.2321      , 

for  i = 5,   

4 5 6
u 4u u 0.6461 0.6461 1.2922       .   

Thus,  
1

u  0.1826,   
2

u   0.3515,    

3
u 0.4902,   

4
u  0.5843,   

5
u  0.6152. 

We get the solution of given differential equation as 

shown in Table 3. 

Table 3  Solutions of given differential equation 

 i = 0i = 1   i  = 2   i = 3    i = 4      i = 5 

x =0     0.1      0.2      0.3      0.4       0.5 

t = 0.0 0 

t = 0. 01 

t = 0. 02 

t = 0. 03 

0   0.2000  0.4000   0.6000   0.8000   1.0000 

0  0.1989   0.3956   0.5834   0.7381   0.7691 

0  0.1936   0.3789   0.5400   0.6461   0.6921 

0  0.1826   0.3515   0.4902   0.5843   0.6152 

  

Example (3) 

We applied finite difference methods to the 

problem of the cooling of a homogeneous rod of one 

unit length by radiation from its ends into air at a 

constant temperature, the rod being at a different 

constant temperature initially and thermally insulated 

along its length, satisfying the initial condition,                 

U = 1 for 0 x  1 when t = 0,  and the 

boundary conditions,    

U
U

x





at  x = 0,   for all t, 

–1 

i–1, j+1 

= 

i+1, j i –1, j  

Figure  6    Crank-Nicolson implicit method 

i, j+1 i+1, j+1 

4 –1 

1 1 
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U
U

x


 


at x = 1,    for all t. 

 Now we will find the temperature  at  each time 

along the rod. 

 We can calculate a numerical solution by using an 

explicit method and employing central-differences for 

the boundary conditions. 

 One explicit finite-difference representation of the 

given equation is  

i, j+1
u  =  i, j i 1, j i, j i+1, j

u r u 2u u ,


  
                           

(11) 

where  
 

2

t
r =

x




. 

Analytical solution of the partial differential equation 

satisfying these boundary and initial condition is  

 
2t
n4αn

n2
n=1 n

secα 1
U=4 e cos2α x

3+4α 2




   
  

   
  0 x 1   

where
n

α are the positive roots of
1

tan .
2

    

Because of symmetry,    

6
u = 

4
u , 

7
u = 

3
u , 

8
u = 

2
u ,  

9
u = 

1
u , 

10
u = 

0
u .  

At x = 0 (i = 0), (17) becomes 

0, j+1
u  =  0, j 1, j 0, j 1, j

u r u 2u u


   .   

The boundary condition at x = 0, in terms of central-

differences, can be written as 

1, j 1, j
u u

2 x





 = 

0, j
u .   

1, j 1, j
u u


  = 

0, j
2 xu 

1, j 1, j 0, j
u u 2 xu

   . 

i = 0 in (17)  we get,          

0, j+1
u  =  0, j 1, j 0, j 0, j 1, j

u r u 2 xu 2u u ,      

0, j+1
u  =  0, j 1, j 0, j

u r 2u 2 1 x u     .                     (12) 

Let x = 0.1. Then at x = 1(i = 10), (11) becomes 

10, j+1
u =

10, j 9, j 10, j 11, j
u r u 2u u     ,                          (13)  

and the boundary condition is  

11, j 9, j
u u

2 x




 = 

10, j
u ,   

11, j
u  = 

9, j 10, j
u 2 xu . 

 
 

Equation (13) becomes,  

10, j+1
u  =  10, j 9, j 10, j

u 2r u 1 2 x u .       
 

If we choose 
1

r =
4

,  

we get 2 2t r( x) (0.25)(0.1) 0.0025     , 

and  (12) becomes, 

0, j+1
u =  0, j 1, j 0, j

1
u 2 u 1 x u

4
      , 

0, j+1
u  =  0, j 1, j

1
0.9u +u

2
.                                          (14) 

And also  (11) becomes,  

i, j+1
u  =  i, j i 1, j i, j i+1, j

1
u u 2u u

4


   ,  

i, j+1
u  =  i 1, j i, j i+1, j

1
u 2u u

4

  .                                 (15) 

For the first time step, taking j  = 0 in (13) we get  

0,1
u  =  0,0 1,0

1
0.9 u + u

2
=  0.95. 

For the first-time step,  taking  j = 0 and i = 1, 2, 3, 4, 

5 in (14) we get,  

1,1
u  =  0,0 1,0 2,0

1
u 2u u

4
   = 

4

4
 = 1, 

2,1
u  =  1,0 2,0 3,0

1
u 2u u

4
   = 

4

4
 = 1,           

3,1
u =  2,0 3,0 4,0

1 4
u 2u u 1

4 4
    ,  

4,1
u  =  3,0 4,0 5,0

1
u 2u u

4
   = 

4

4
 = 1,          

5,1
u =  4,0 5,0 6,0

1 4
u 2u u 1

4 4
    .  

For the second-time step, taking  j = 1 in (14) we get    

0,2
u  =  0,1 1,1

1
0.9 u +u

2
  = 0.9275. 

For the second-time step, taking  j = 1 and i =1, 2, 3, 

4, 5 in (15) we get, 

1,2
u  =  0,1 1,1 2,1

1
u 2u u

4
   = 0.9875, 

2,2
u  =  1,1 2,1 3,1

1
u 2u u

4
   = 1,     

3,2
u =  2,1 3,1 4,1

1
u 2u u

4
  =1, 

4,2
u =  3,1 4,1 5,1

1
u 2u u

4
  =1, 

5,2
u =  4,1 5,1 6,1

1
u 2u u

4
  =1. 

The solution of given equation is as below. 

Table 4 

 i = 0   i = 1 i = 2  i = 3  i = 4 

 x = 0   0.1      0.2      0.3     0.4 

t = 0.0000 

t = 0.0025 

t = 0.0050 

1.0000 1.0000   1.0000   1.0000   1.0000 

0.9500 1.0000   1.0000   1.0000   1.0000 

0.9275 0.9875   1.0000   1.0000   1.0000 

 

 

Conclusion 
In solving second-oeder parabolic equation with 

initial-boundary conditions, there are various methods. 

Among them finite-difference method, Crank-

Nicolson implicit and explicit are more reliable to get 

better solution. 
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