XML Filtering for Publish/Subscribe System in a M obile Environment

Yi Yi Myint, Dr.Hnin Aye Thant
University of Technology (Yatanarpon Cyber City)
yiyimyint.utycc@gmail.com,hninayethant@gmail.com

Abstract subscribers. The first is to find the subscriberusing

the subscription information, and then send appatgr
Cdata to subscribers [8]. Data matching can be pedd
&ither at the source or at some centralized brokers
Several approaches for XML filtering have been
?eported in the literature.

Expressing highly personalized profiles need a
uerying power just like SQL provides on relational
atabases. Since the queries will be executed en th
Bocuments fetched over the Internet, it is natdoal
gexpect the documents to be in XML [3]. XML beingth
emerging standard for data exchange over the ktern
Then the user profiles need to be defined through a
XML query language. XML-QL is a good candidate in

The publish/subscribe model has gained acceptan
as a solution for the loose coupling of systemteims
of asynchronous communication enabling Selectiv
Dissemination of Information (SDI) to mobile client
The advent of Extensible Markup Language (XML) as
de facto standard for information exchange and theOI
development of query languages for XML data enabl
the development of more sophisticated filterin
mechanisms. The inherent limitations of mobile cki
necessitate information to be delivered to mobliikents
to be highly personalized according to user prafile

This paper proposes an approach that integrates[h. : .
. . LS is respect due to its expressive power as weltsas
publish/subscribe system and XML message filteiiing elaborate mechanisms for specifying query results

describing indexing mechanism to enhance Xf||terthrough the CONSTRUCT statement.

algorithm based on a modified Finite State Machine . . .
. The rest of the paper is organized as followstiSec
(FSM) approach that can quickly locate and evaluate2 briefly summarizes the related work. Section 3

relevant profiles. discusses the issues of XFilter to be used in raobil
) environment. In Section 4, the overall architeciofréhe
1. Introduction system is described. The operation of the systeah th
includes creating query index, operation of thdtdin
The number of applications using XML data State machine, proposed filtering algorithm and
representation is growing rapidly, thus the procebs generating customized results are explained ini@ect

XML filtering is becoming an essential need of diffnt g&/stseenifllgri]n eﬁlygg ee fti ;287 ce;rF:SI?thgs E’ﬁ éfg;rsznce of the
application areas such as publish/subscribe (phbp/su

system, peer-to-peer networks and web serviceszl Related Work

Publish/subscribe systems [4] grow rapidly, tamgpti

many areas such as news monitoring, ecommerce site L
y 9 The filtering mechanism described in this paper is

monitoring and alerting services for digital |I.|JEB’. influenced by the XFilter system [1]. XFilter issigned
XML pub/sub has emerged as a solution for looseyng jmplemented for pushing XML documents to users
coupling of disparate systems at both theaccording to their profiles expressed in XML Path
communication ~and content levels. At the|anguage (XPath). It takes the advantage of emlsedde
communication level, pub/sub enables loose couming schema information in the XML documents to create
senders and receivers based on the receivers’ dafatier user profiles compared to existing keywoadeul
interests. With respect to content, XML can be used gystems. While doing that, it provides efficieritefing
encode data in a generic format that senders a XML documents with the help of profile index
receivers agree upon due fo its flexible, extersibhd stryctures in its filter engine. XFilter convertsich
self-describing nature; this way, senders and vecei xpath query into a Finite State Machine (FSM) talde
can exchange data without knowing the datayith XpPath structures effectively. However as tiene
representation in individual systems. Therefores thimpjies, Xfilter is a filtering mechanism; it doemt
main purpose of an XML filtering system is to fiall eyecute the XPath queries to produce results. Torere
the user profiles that have a match with a spe®ML \yhen a document matches a users profile, the whole
document. document is pushed to the user. This requires dbts

In pub/sub systems, a subscriber registers @igrage capacity that a mobile device would noalbe
subscription that are of interest to them, calledfiles 5 handle.

to the pub/sub service and receives published rgessa yFilter [2] overcomes the disadvantage of XFilbgr

that match the subscription. Intuitively, the S@®IrC ,sing nondeterministic finite automata (NFA) to
(publishers) can allow their subscribers to retaingmphasize prefix sharing. However, the

whatever they want, and send all the data to alhncestor/descendant relationship introduces more

matching states, which may result in the number o4, Overall Architecture of the System

active states increasing exponentially. Postpracgss
required for YFilter. To deal with queries with texs
paths (complex queries), YFilter decomposes thetm in
simple queries and matches them separately.

BFilter [7] conducted the XML message filteringdan
matching by leveraging branch points in both thel XM
document and user query. It evaluates user quérégs

use backward matching branch points to delay fartheg

XML document and user query. In this way, XML
message filtering can be performed more efficieagy
the probability of mismatching is reduced. A numbér

experiments have been conducted and the results

demonstrate that BFilter has better performance tha
well-known YFilter for complex queries.

XFIS [9] proposed an efficient technique for
matching user profiles that is based on the ugmlidtic
twig-matching algorithms and was more effective, in

terms of time and space complexities, in comparison

with previous techniques. The proposed algorithns wa
able to handle order matching of user profiles,leviis
main positive aspect

the effective investigation of node relationships.

3. Issues of XFilter in M obile Environment

The XFilter for Mobile clients need to develop to
address several shortcomings in XFilter. One oféhe
was that on matching, the whole document is retutoe
the user. This feature prevents XFilter to be used
mobile environments since the limited capacity o t
mobile devices is not enough to handle or prockss t
entire document let alone to receive it. Furtheenor
XFilter does not exploit the commonalities betwélea

This system proposes the architecture for mobile
network to deliver highly personalized informatifsom
XML resources to mobile clients whenever the query
satisfied by incoming XML documents. There are two
important operations performed in a pub/sub system:
XML message filtering and multicast. This system
ocuses on techniques for XML message filteringe Th
Bverall architecture of the system is depicted iguFe

$
E 3
g Publish E
" |
= Y,
g
)) By
Fitered Engine i,
),
ity

Figure 1. Overall Architecture of the System

Data Sources
(XML Documents)

was the envisaging of a
representation based on Priifer sequences thattpermi

Data Sources contains the XML document files that
publish messages to the filtered engine componént o
the pub/sub system. Mobile users are also called
subscribers that register a subscription providihg
graphical user interfaces to define their profifesm
their mobile phones. These profiles are converted i
XML-QL queries. The queries can be change- baged. |
means they need to be activated when the related XM
documents change that causes the related FSMs to
change their states. The queries are grouped deded
such that each element in a query group corresponals

queries, i.e. it generates a FSM per query. ThiState inthe Finite State Machine (FSM). -
observation motivated us to develop mechanisms that Filtered engine first parses and creates quengesd

use only a single FSM for the queries which hav
common element structure.
Another point is that in case the user profiles ar

complex, a more powerful language than XPath i

needed, and in this case the choice was XML-QL. No

only is XML-QL more powerful than XPath, it is
considered the most powerful among all XML query
languages. In providing customized results to tobita
clients, the result construction features of XML-@lso
help. When such a system providing highly persaedli
services is deployed on the Internet, the perfooman
becomes a critical issue since the number of usans
easily grow dramatically. A key challenge is then t
efficiently and quickly process the potentially leuget
user profiles on XML resources. This boils down to
developing efficient ways of processing XML-QL
gueries on XML documents.

S

dor user profiles, and also parses the incoming XML

documents to obtain the query results. When XML
documents and user profiles match, the matchedadata
stored in a special content list, so that the whole
document need not be sent. The filtered engindiesti
bind sends filtered XML documents to the related iraob
clients. Extracting parts of an XML document camesa
bandwidth in a mobile environment.

4.1. Profile Language using XM L-QL

XML-QL [10] is one of the candidates being
considered by the World Wide Web Consortium (W3)
for the standard way of querying XML documents.
XML-QL has a SELECTWHERE construct, like SQL,
that can express queries, to extract pieces of foaita
XML documents. It can also specify transformations
that, for example, can map XML data between
Document Type Definitions (DTDs) and can integrate
XML data from different sources. Although XML-QL
shares some functionality with XML's style sheet
mechanism, it supports more data-intensive operstio
such as joins and aggregates, and has better $uppor

constructing new XML data or specifying query résul

drives the process of query execution through theryg

through the CONSTRUCT statement, which is requiredndex.

by transformations. XML-QL is implemented as a
prototype and is freely available in a Java version

XML-QL has very elaborate mechanisms for
specifying query results through the CONSTRUCT
statement. The design features of XML-QL are 1§ it
declarative, like SQL; 2) it is relational comple&eg. it
can express joins; 3) it can be implemented witbvkm
database techniques; 4) it can extract data frastieg
XML documents and construct new XML documents.
XML-QL can express queries as well as
transformations, for example, can map XML data
between DTDs and can integrate XML data from
different sources. A point to be noted here is that
users should not be expected to express theirlgsofi
through XML-QL but rather a user-friendly interface
should be provided to them to automatically crebte
XML-QL statements.

<Profile>
<address>...</address>
<XML-QL>
WHERE <course>
<major>ICT</>
<program>First Year</>
<syllabus>$n</>
</> IN “course.xml”
CONSTRUCT<result><syllabus>$n</></>
</XML-QL>
<PushMode><Every>
<PeriodSize>...</PeriodSize>
<PeriodType>...</PeriodType>
</Every>
<PushTo>
<address>...</address>
</PushTo>
</PushMode>
</Profile>

Figure 2. Profile Syntax represented in XML
containing XM L-QL query

Profiles defined through a graphical user intexfac
are transformed into XML documents which contain
XML-QL queries to provide user friendliness and
expressive power as depicted in Figure 2.

4.2. Filtered Engine

The basic components of the filtered engine are 1
an event-based XML parser which is implemented
using Simple API for XML (SAX) for XML documents;
2) a profile parser that has an XML-QL parser for user
profiles and creates the Query Index; 8)query
execution engine which contains the Query Index
which is associated with Finite State Machinesuery
the XML documents; 4a delivery component which
pushes the results to the related mobile clientz (s

User Profiles ~ [——] Profile Parser

lQuer,v
XML-QL Parser

Query nodes

Query Execution Engine
Delvery]gesults Query Index
vaems

XML Parser |« XML Document

Figure 3. Filtered Engine

5. Operation of the System

The system operates as follows: subscriber informs
Filtered Engine when a new profile is created or
updated; the profiles are stored in an XML file ttha
contains XML-QL queries, execution conditions
(change-base), and addresses to dispatch thesrésest
Figure 2). The Profile Parser component of thecFelt
Engine parses the profiles; XML-QL queries in the
profile are parsed by an XML-QL parser. While pagsi
the queries, the XML-QL parser creates FSM
representation of each query, if the query does not
match to any existing query group. Otherwise, tB&F
of the corresponding query group is used for thputin
query. FSM representation contains state nodesdohn
element name in the queries which are stored in the
Query Index.

When a new document arrives, the system alerts the
Filtered Engine so that the related XML document is
parsed. The event based XML parser sends the events
encountered to the Query Execution Engine. The
handlers in the Query Execution Engine respond to
these events. The handlers move the FSMs to theair n
states when current states succeed certain chiéeks |
evaluating the attributes, level checking or patter
matching for character data. In the mean time Hta th
the document that matches the variables are kept in
content lists so that when the FSM reaches it$ $itade,
all the necessary partial data to produce the tesue
here to be formatted and pushed to the relatedlenob
clients.

By enhancing XFilter with FSM, this system is
intended to develop to handle very large number of
queries and it is quite probable that there willgoeries
that have the same tree structure and the sameseiem
names, that is, the same FSM representation but
different constant values. In this case a singl®E3n
handle these queries and this greatly enhances the

Figure 3). When a document arrives at the Filtereherformance of the system.

Engine, it is run through an XML Parser, and then

5.1. Creating Query Index Query 1: Retrieve all syllabuses of first year program

for ICT major.
Consider an example XML document and its DTD
given in Figure 4. WHERE <major> <name>ICT</><program>First Year</><syllabus>$n</>
; / 6
<I-- DTD for Course --> laii] 2] [ai3]
| *
<IELEMENT root (course*)> . < IN “course xml”
<IELEMENT course (degree, major*)> CONSTRUCT<result><syllabus>$n</></>

<IELEMENT degree (#PCDATA)>
<IELEMENT major(name, program, semester,
syllabus*)>

<IELEMENT name (#PCDATA)>
<IELEMENT program (#PCDATA)>
<IELEMENT semester (#PCDATA)>
<IELEMENT syllabus (sub-code, sub-title, instrugtor | | Query 2: Find the instructor name of the subject code

FSM for Query 1

<IELEMENT sub-code (#PCDATA)> EM-101.
<IELEMENT sub-title (#PCDATA)>
<!IELEMENT instructor (#PCDATA)> WHERE <syllabus> <sub-code>EM-101</><instructor>$s</>
<root> ¥ ¥ ¥
<course> Q3
<degree>Bachelor</degree> </> IN “course.xml”
<major> CONSTRUCT<result><syllabus>$s</></>

<name>ICT</name>

<program>First Year</program>

<semester>First Semester</semester>

<syllabus>
<sub-code>001</sub-code>
<sub-title>English</sub-title>
<instructor>Dr. Thiri</instructor>

FSM for Query 2

Query 3. Retrieve all the instructors in first year
program for ICTmajor.

</syllabus>
</major> WHERE<major> <name>ICT</><program>First Year</><syllabus> <instructor>§s</></>
</course>...</root> * *
Figure 4. An Example XML Document and itsDTD

(course.xml) <>IN“course.xml”

CONSTRUCT<result><syllabus>$s</></>
The example queries and their FSM representatigns

are shown in Figure 5. Note that there is a nodénén

FSM representation corresponding to each element|i

In
the query and the FSM representation’s tree stract\l:’ @

(o |

follows from XML-QL query structure. Q34 Q3.5

The state changes of a FSM are handled through the N ‘FSM for Query 3
two lists associated with each node in the Quedgxn Figure5. Example Queriesand its FSM
(See Figure 6): The current nodes of each query are Representation
placed on the Candidate List (CL) of the index eifdr
its corresponding element name. All of the quergas in the Query Index satisfies level check and afteb
representing future states are stored in the WiitsL check, and then the nodes of the immediate child
(WL) of their corresponding element name. Copying s€lements of this node in the Query Index are copied
query node from WL to the CL represents a Statérom WL to CL. The purpose of the.level check is to
transition in the FSM. Notice that the node coptizthe ~ Make sure that the element appears in the docuahent
CL also remains in the WL so that it can be reusgd level that matches the level expected by the quEng.
the FSM in future executions of the query since thedttribute check applies any simple expressions that
same element name may reappear in another letietin reference the attributes of the element.

XML document.

When the query index is initialized, the first eoof =~ Start Element Handler checks whether the query
each query tree is placed on the CL of the inderyen element matches the element in the document. F®r th
for its respective element name. The remaining efesn Purpose it performs a level and an attribute chetk.
in the query tree are placed in respective WLs.rue these are satisfied, depending on the type of theyg
nodes in the CL indicate that the state of theyjugight ~ node it either enables data comparison or stariable
change when the XML parser processes the respecti@ntent generation. As the next step, the nodethen
elements of these nodes. When the XML parser catchdVL that are the immediate successors of this nade a
a start element tag and if a node in the CL ofleenent ~Moved to CL at this stage. Even in a single documen

the FSM may be executed more than once if the saEiltering Algorithm
element names reappear in the document. Thereforgput:
there is a need to reinitialize the FSM. Furtheenof Querylndex gindex
XML documents can be nested, that is, the same Incoming element e
element may appear at different levels. Therefoneay List CurrentQueries Q
be necessary to generate a FSM to handle thissieaur | |nit:
This is_ achieved by copying this new node to Cltha gindex and Q is populated by user requests
query index. While e is not the end of document
If e is in index then
~ S o1 | o If node level= -1 || node level=element
| Lot [o | rnode ley
major LZ Node ok;
| cL If final node in query then
Hame Z Query match;
‘L Else if node levgl-1 then
L Update its level
—= End if
program f.
| wL 03.3 End if;
cL End |_f,
Hab ‘—> End while;
syllabus . .
| WL End Algor|t.hm, _ .
oL Figure7. Filtering Algorithm
sub-code ‘ Z] . .
| WL 5.4. Gener ating Customized Results
CL
instructor —>Z Results are generated when the end element of the
WL Q3.5 root nqde of the query is encountered. Conterd it
. the variable nodes are traversed to fetch contentpg.

These content groups are further processed to gener
results. This process is repeated until the endhef
document is reached. The results need to be foethat
End Element Handler evaluates the state of a node by defined in the CONSTRUCT clause. The results of the

considering the states of its successor nodes dreah w dueries that will be sent to related mobile phones.
the root node is reached it generates the outpnd. E

element handler also deletes the nodes from CLIwhic6. Expected Performance of the System
are inserted in the start element handler of théeno
This provides “backtracking” in the FSM.

Figure6. Initial States of the Query Index for
Example Queries

The proposed architecture is intended to havelyigh
scalable and a very important factor on the peréore
is the number of query groups and that generating a
single FSM per query group rather than per query is
well justified. We anticipate that when you havewe
large number of queries on the same XML document,
) the probability of having queries with the same FSM
End Document Handler signals the end of result representation increases considerably.
generation and passes the results to the Delivery ag parts of our ongoing work, we are going to show
Component. several performance studies such as efficiency,
scalability and filtering time by varying 1) numbef
profiles; 2) depth of queries; 3) number of docutagen
how much approximate values and exact values will b

Once the query index has been set up, the algorith outputs that our proposed method.
proceeds by reading in a start-element and thumgal
the ‘Start Element Handler'. The element name iergu 7. Conclusions
is looked up in the index and if it's found, thelhthe
nodes in the CL are examined. For each node, 4 leve
check is performed to check the level of the nad€L
and the matching process is carried out as desciibe
section 5.1. Figure 7 presents the filtering aldponi

Element Data Handler is implemented for data
comparison in the query. If the expression is tihe,
state of the node is set to true and this valusséd by
the End Element Handler of the current element node

5.3. Proposed Filtering Algorithm

As the Web is growing continuously, a great amount
of data becomes available to users, making it more
difficult for them to discover interesting inforna by
searching. As a result, publish/subscribe systeawve h
emerged in recent years as a promising paradigthidn
paper, we described the architecture for an XMLebas
publish/subscribe system built on top of a mobiehac

network. We propose indexing mechanism and
matching algorithm based on a modified Finite State
Machine (FSM) approach that can quickly locate and
evaluate relevant profiles. A querying power is
necessary for expressing highly personalized user
profiles and for the system to be of use to mikicof
mobile users, it has to be scalable. To achievé hig
scalability in this architecture, we index the ugenfiles
rather than the documents because of the excegsivel
large number of profiles expected in the system.

References

[1] Altinel, M. and Franklin, M. “Efficient Filtemg of XML
Documents for Selective Dissemination of InformatidProc
of the Int'l Conf on VLDB, Sept 2000. pp. 53-64.

[2] Diao, Y., Altinel, M., Franklin, M., Zhang, Hand Fischer,
P. M. “Path Sharing and Predicate Evaluation foghHi
Performance XML Filtering,” ACM Trans. Database Syst
28(4), Dec 20083, pp. 467-516.

[3] Extensible Markup Language, http://www.w3.orK/.

[4] I.Miliaraki, Distributed Filtering and Dissemination of
XML Data in Peer-to-Peer Systen3hD Thesis, Department
of Informatics and Telecommunications, National and
Kapodistrian University of Athens, July 2011.

[5] I.Miliaraki and M. Koubarakis, “Distributed Stctural and
Value XML Filtering”, 4th ACM International Confereamn
Distributed Event-Based Systems (DEBS 2010), Cambyridge
United Kingdom, 2010.

[6] J. Chen, D. DeWitt, F. Tian, Y. Wang, “NiagaraCA:
Scalable Continuous Query System for Internet Daedia
ACM SIGMOD, Texas, USA, June 2000, pp.379-390.

[7] L. Dai, C. Lung and S. Majumdar, “A XML Message
Filtering and Matching Approach in Publish/Subserib
Systems”, publication in the IEEE Globecom 2010
proceedings.

[8] L. Dai, XML “Message Filtering and Matching in
Publish/Subscribe Systerhs Master Thesis, School of
Computer Science, Carleton University, Ottawa, Oatari
Canada, Sept. 2009.

[9] P. Antonellis and C. Makris, “XFIS: an XML filteng
system based on string representation and matcHimg'J. of
Web Engineering and Technolodjol. 4, Nr 1, 2008.

[10] XML-QL: A Query Language for XML,
http://www.w3.0rg/TR/1998/NOTE-xml-gl-19980819.

