
XML Filtering for Publish/Subscribe System in a Mobile Environment

Yi Yi Myint, Dr.Hnin Aye Thant
University of Technology (Yatanarpon Cyber City)

yiyimyint.utycc@gmail.com,hninayethant@gmail.com

Abstract

 The publish/subscribe model has gained acceptance
as a solution for the loose coupling of systems in terms
of asynchronous communication enabling Selective
Dissemination of Information (SDI) to mobile clients.
The advent of Extensible Markup Language (XML) as a
de facto standard for information exchange and the
development of query languages for XML data enable
the development of more sophisticated filtering
mechanisms. The inherent limitations of mobile devices
necessitate information to be delivered to mobile clients
to be highly personalized according to user profiles.
This paper proposes an approach that integrates
publish/subscribe system and XML message filtering by
describing indexing mechanism to enhance Xfilter
algorithm based on a modified Finite State Machine
(FSM) approach that can quickly locate and evaluate
relevant profiles.

1. Introduction

 The number of applications using XML data
representation is growing rapidly, thus the process of
XML filtering is becoming an essential need of different
application areas such as publish/subscribe (pub/sub)
system, peer-to-peer networks and web services.
Publish/subscribe systems [4] grow rapidly, targeting
many areas such as news monitoring, ecommerce site
monitoring and alerting services for digital libraries.
 XML pub/sub has emerged as a solution for loose
coupling of disparate systems at both the
communication and content levels. At the
communication level, pub/sub enables loose coupling of
senders and receivers based on the receivers’ data
interests. With respect to content, XML can be used to
encode data in a generic format that senders and
receivers agree upon due to its flexible, extensible, and
self-describing nature; this way, senders and receivers
can exchange data without knowing the data
representation in individual systems. Therefore, the
main purpose of an XML filtering system is to find all
the user profiles that have a match with a specific XML
document.
 In pub/sub systems, a subscriber registers a
subscription that are of interest to them, called profiles
to the pub/sub service and receives published messages
that match the subscription. Intuitively, the source
(publishers) can allow their subscribers to retain
whatever they want, and send all the data to all

subscribers. The first is to find the subscriber by using
the subscription information, and then send appropriate
data to subscribers [8]. Data matching can be performed
either at the source or at some centralized brokers.
Several approaches for XML filtering have been
reported in the literature.

 Expressing highly personalized profiles need a
querying power just like SQL provides on relational
databases. Since the queries will be executed on the
documents fetched over the Internet, it is natural to
expect the documents to be in XML [3]. XML being the
emerging standard for data exchange over the Internet.
Then the user profiles need to be defined through an
XML query language. XML-QL is a good candidate in
this respect due to its expressive power as well as its
elaborate mechanisms for specifying query results
through the CONSTRUCT statement.
 The rest of the paper is organized as follows: Section
2 briefly summarizes the related work. Section 3
discusses the issues of XFilter to be used in mobile
environment. In Section 4, the overall architecture of the
system is described. The operation of the system that
includes creating query index, operation of the finite
state machine, proposed filtering algorithm and
generating customized results are explained in Section
5. Section 6 gives the expected performance of the
system. Finally Section 7 concludes the paper.

2. Related Work

 The filtering mechanism described in this paper is
influenced by the XFilter system [1]. XFilter is designed
and implemented for pushing XML documents to users
according to their profiles expressed in XML Path
Language (XPath). It takes the advantage of embedded
schema information in the XML documents to create
better user profiles compared to existing keyword based
systems. While doing that, it provides efficient filtering
of XML documents with the help of profile index
structures in its filter engine. XFilter converts each
XPath query into a Finite State Machine (FSM) to deal
with XPath structures effectively. However as the name
implies, Xfilter is a filtering mechanism; it does not
execute the XPath queries to produce results. Therefore
when a document matches a user’s profile, the whole
document is pushed to the user. This requires lots of
storage capacity that a mobile device would not be able
to handle.
 YFilter [2] overcomes the disadvantage of XFilter by
using nondeterministic finite automata (NFA) to
emphasize prefix sharing. However, the
ancestor/descendant relationship introduces more

matching states, which may result in the number of
active states increasing exponentially. Postprocessing is
required for YFilter. To deal with queries with nested
paths (complex queries), YFilter decomposes them into
simple queries and matches them separately.
 BFilter [7] conducted the XML message filtering and
matching by leveraging branch points in both the XML
document and user query. It evaluates user queries that
use backward matching branch points to delay further
matching processes until branch points match in the
XML document and user query. In this way, XML
message filtering can be performed more efficiently as
the probability of mismatching is reduced. A number of
experiments have been conducted and the results
demonstrate that BFilter has better performance than the
well-known YFilter for complex queries.
 XFIS [9] proposed an efficient technique for
matching user profiles that is based on the use of holistic
twig-matching algorithms and was more effective, in
terms of time and space complexities, in comparison
with previous techniques. The proposed algorithm was
able to handle order matching of user profiles, while its
main positive aspect was the envisaging of a
representation based on Prüfer sequences that permits
the effective investigation of node relationships.

3. Issues of XFilter in Mobile Environment

 The XFilter for Mobile clients need to develop to
address several shortcomings in XFilter. One of these
was that on matching, the whole document is returned to
the user. This feature prevents XFilter to be used in
mobile environments since the limited capacity of the
mobile devices is not enough to handle or process the
entire document let alone to receive it. Furthermore,
XFilter does not exploit the commonalities between the
queries, i.e. it generates a FSM per query. This
observation motivated us to develop mechanisms that
use only a single FSM for the queries which have
common element structure.
 Another point is that in case the user profiles are
complex, a more powerful language than XPath is
needed, and in this case the choice was XML-QL. Not
only is XML-QL more powerful than XPath, it is
considered the most powerful among all XML query
languages. In providing customized results to the mobile
clients, the result construction features of XML-QL also
help. When such a system providing highly personalized
services is deployed on the Internet, the performance
becomes a critical issue since the number of users can
easily grow dramatically. A key challenge is then to
efficiently and quickly process the potentially huge set
user profiles on XML resources. This boils down to
developing efficient ways of processing XML-QL
queries on XML documents.

4. Overall Architecture of the System

 This system proposes the architecture for mobile
network to deliver highly personalized information from
XML resources to mobile clients whenever the query is
satisfied by incoming XML documents. There are two
important operations performed in a pub/sub system:
XML message filtering and multicast. This system
focuses on techniques for XML message filtering. The
overall architecture of the system is depicted in Figure
1.

Figure 1. Overall Architecture of the System

 Data Sources contains the XML document files that
publish messages to the filtered engine component of
the pub/sub system. Mobile users are also called
subscribers that register a subscription providing the
graphical user interfaces to define their profiles from
their mobile phones. These profiles are converted into
XML-QL queries. The queries can be change- based. It
means they need to be activated when the related XML
documents change that causes the related FSMs to
change their states. The queries are grouped and indexed
such that each element in a query group corresponds to a
state in the Finite State Machine (FSM).
 Filtered engine first parses and creates query indices
for user profiles, and also parses the incoming XML
documents to obtain the query results. When XML
documents and user profiles match, the matched data are
stored in a special content list, so that the whole
document need not be sent. The filtered engine notifies
and sends filtered XML documents to the related mobile
clients. Extracting parts of an XML document can save
bandwidth in a mobile environment.

4.1. Profile Language using XML-QL

 XML-QL [10] is one of the candidates being
considered by the World Wide Web Consortium (W3)
for the standard way of querying XML documents.
XML-QL has a SELECTWHERE construct, like SQL,
that can express queries, to extract pieces of data from
XML documents. It can also specify transformations
that, for example, can map XML data between
Document Type Definitions (DTDs) and can integrate
XML data from different sources. Although XML-QL
shares some functionality with XML’s style sheet
mechanism, it supports more data-intensive operations,
such as joins and aggregates, and has better support for

constructing new XML data or specifying query results
through the CONSTRUCT statement, which is required
by transformations. XML-QL is implemented as a
prototype and is freely available in a Java version.
 XML-QL has very elaborate mechanisms for
specifying query results through the CONSTRUCT
statement. The design features of XML-QL are 1) it is
declarative, like SQL; 2) it is relational complete, e.g. it
can express joins; 3) it can be implemented with known
database techniques; 4) it can extract data from existing
XML documents and construct new XML documents.
XML-QL can express queries as well as
transformations, for example, can map XML data
between DTDs and can integrate XML data from
different sources. A point to be noted here is that the
users should not be expected to express their profiles
through XML-QL but rather a user-friendly interface
should be provided to them to automatically create the
XML-QL statements.

<Profile>
 <address>…</address>
 <XML-QL>
 WHERE <course>
 <major>ICT</>
 <program>First Year</>
 <syllabus>$n</>
 </> IN “course.xml”
 CONSTRUCT<result><syllabus>$n</></>
 </XML-QL>
 <PushMode><Every>
 <PeriodSize>…</PeriodSize>
 <PeriodType>…</PeriodType>
 </Every>
 <PushTo>
 <address>…</address>
 </PushTo>
 </PushMode>
</Profile>

Figure 2. Profile Syntax represented in XML
containing XML-QL query

 Profiles defined through a graphical user interface
are transformed into XML documents which contain
XML-QL queries to provide user friendliness and
expressive power as depicted in Figure 2.

4.2. Filtered Engine

 The basic components of the filtered engine are 1)
an event-based XML parser which is implemented
using Simple API for XML (SAX) for XML documents;
2) a profile parser that has an XML-QL parser for user
profiles and creates the Query Index; 3) a query
execution engine which contains the Query Index
which is associated with Finite State Machines to query
the XML documents; 4) a delivery component which
pushes the results to the related mobile clients (see
Figure 3). When a document arrives at the Filtered
Engine, it is run through an XML Parser, and then

drives the process of query execution through the query
index.

Figure 3. Filtered Engine

5. Operation of the System

 The system operates as follows: subscriber informs
Filtered Engine when a new profile is created or
updated; the profiles are stored in an XML file that
contains XML-QL queries, execution conditions
(change-base), and addresses to dispatch the results (see
Figure 2). The Profile Parser component of the Filtered
Engine parses the profiles; XML-QL queries in the
profile are parsed by an XML-QL parser. While parsing
the queries, the XML-QL parser creates FSM
representation of each query, if the query does not
match to any existing query group. Otherwise, the FSM
of the corresponding query group is used for the input
query. FSM representation contains state nodes for each
element name in the queries which are stored in the
Query Index.
 When a new document arrives, the system alerts the
Filtered Engine so that the related XML document is
parsed. The event based XML parser sends the events
encountered to the Query Execution Engine. The
handlers in the Query Execution Engine respond to
these events. The handlers move the FSMs to their next
states when current states succeed certain checks like
evaluating the attributes, level checking or pattern
matching for character data. In the mean time the data in
the document that matches the variables are kept in
content lists so that when the FSM reaches its final state,
all the necessary partial data to produce the results are
there to be formatted and pushed to the related mobile
clients.
 By enhancing XFilter with FSM, this system is
intended to develop to handle very large number of
queries and it is quite probable that there will be queries
that have the same tree structure and the same element
names, that is, the same FSM representation but
different constant values. In this case a single FSM can
handle these queries and this greatly enhances the
performance of the system.

5.1. Creating Query Index

 Consider an example XML document and its DTD
given in Figure 4.

<!-- DTD for Course -->
<!ELEMENT root (course*)>
<!ELEMENT course (degree, major*)>
<!ELEMENT degree (#PCDATA)>
<!ELEMENT major(name, program, semester,
syllabus*)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT program (#PCDATA)>
<!ELEMENT semester (#PCDATA)>
<!ELEMENT syllabus (sub-code, sub-title, instructor)>
<!ELEMENT sub-code (#PCDATA)>
<!ELEMENT sub-title (#PCDATA)>
<!ELEMENT instructor (#PCDATA)>
<root>
<course>
 <degree>Bachelor</degree>
 <major>
 <name>ICT</name>
 <program>First Year</program>
 <semester>First Semester</semester>
 <syllabus>
 <sub-code>001</sub-code>
 <sub-title>English</sub-title>
 <instructor>Dr. Thiri</instructor>
 </syllabus>
 </major>
</course>…</root>

Figure 4. An Example XML Document and its DTD
(course.xml)

 The example queries and their FSM representations
are shown in Figure 5. Note that there is a node in the
FSM representation corresponding to each element in
the query and the FSM representation’s tree structure
follows from XML-QL query structure.
 The state changes of a FSM are handled through the
two lists associated with each node in the Query Index
(See Figure 6): The current nodes of each query are
placed on the Candidate List (CL) of the index entry for
its corresponding element name. All of the query nodes
representing future states are stored in the Wait Lists
(WL) of their corresponding element name. Copying a
query node from WL to the CL represents a state
transition in the FSM. Notice that the node copied to the
CL also remains in the WL so that it can be reused by
the FSM in future executions of the query since the
same element name may reappear in another level in the
XML document.
 When the query index is initialized, the first node of
each query tree is placed on the CL of the index entry
for its respective element name. The remaining elements
in the query tree are placed in respective WLs. Query
nodes in the CL indicate that the state of the query might
change when the XML parser processes the respective
elements of these nodes. When the XML parser catches
a start element tag and if a node in the CL of the element

Query 1: Retrieve all syllabuses of first year program
for ICT major.

 FSM for Query 1

Query 2: Find the instructor name of the subject code
EM-101.

 FSM for Query 2
Query 3: Retrieve all the instructors in first year
program for ICT major.

FSM for Query 3
Figure 5. Example Queries and its FSM

Representation

in the Query Index satisfies level check and attribute
check, and then the nodes of the immediate child
elements of this node in the Query Index are copied
from WL to CL. The purpose of the level check is to
make sure that the element appears in the document at a
level that matches the level expected by the query. The
attribute check applies any simple expressions that
reference the attributes of the element.

Start Element Handler checks whether the query
element matches the element in the document. For this
purpose it performs a level and an attribute check. If
these are satisfied, depending on the type of the query
node it either enables data comparison or starts variable
content generation. As the next step, the nodes in the
WL that are the immediate successors of this node are
moved to CL at this stage. Even in a single document,

the FSM may be executed more than once if the same
element names reappear in the document. Therefore
there is a need to reinitialize the FSM. Furthermore
XML documents can be nested, that is, the same
element may appear at different levels. Therefore it may
be necessary to generate a FSM to handle this recursion.
This is achieved by copying this new node to CL in the
query index.

 Figure 6. Initial States of the Query Index for

Example Queries

End Element Handler evaluates the state of a node by
considering the states of its successor nodes and when
the root node is reached it generates the output. End
element handler also deletes the nodes from CL which
are inserted in the start element handler of the node.
This provides “backtracking” in the FSM.

Element Data Handler is implemented for data
comparison in the query. If the expression is true, the
state of the node is set to true and this value is used by
the End Element Handler of the current element node.

End Document Handler signals the end of result
generation and passes the results to the Delivery
Component.

5.3. Proposed Filtering Algorithm

 Once the query index has been set up, the algorithm
proceeds by reading in a start-element and thus calling
the ‘Start Element Handler’. The element name in query
is looked up in the index and if it’s found, then all the
nodes in the CL are examined. For each node, a level
check is performed to check the level of the node in CL
and the matching process is carried out as described in
section 5.1. Figure 7 presents the filtering algorithm.

Filtering Algorithm
Input:
 QueryIndex qIndex
 Incoming element e
 List CurrentQueries Q
Init:
 qIndex and Q is populated by user requests
 While e is not the end of document
 If e is in index then
 If node level= -1 || node level=element
 level then
 Node ok;
 If final node in query then
 Query match;
 Else if node level ≠ -1 then
 Update its level;
 End if;
 End if;
 End if;
 End while;
End Algorithm;

Figure 7. Filtering Algorithm

5.4. Generating Customized Results

 Results are generated when the end element of the
root node of the query is encountered. Content lists of
the variable nodes are traversed to fetch content groups.
These content groups are further processed to generate
results. This process is repeated until the end of the
document is reached. The results need to be formatted as
defined in the CONSTRUCT clause. The results of the
queries that will be sent to related mobile phones.

6. Expected Performance of the System

 The proposed architecture is intended to have highly
scalable and a very important factor on the performance
is the number of query groups and that generating a
single FSM per query group rather than per query is
well justified. We anticipate that when you have very
large number of queries on the same XML document,
the probability of having queries with the same FSM
representation increases considerably.
 As parts of our ongoing work, we are going to show
several performance studies such as efficiency,
scalability and filtering time by varying 1) number of
profiles; 2) depth of queries; 3) number of documents,
how much approximate values and exact values will be
outputs that our proposed method.

7. Conclusions

 As the Web is growing continuously, a great amount
of data becomes available to users, making it more
difficult for them to discover interesting information by
searching. As a result, publish/subscribe systems have
emerged in recent years as a promising paradigm. In this
paper, we described the architecture for an XML-based
publish/subscribe system built on top of a mobile ad hoc

network. We propose indexing mechanism and
matching algorithm based on a modified Finite State
Machine (FSM) approach that can quickly locate and
evaluate relevant profiles. A querying power is
necessary for expressing highly personalized user
profiles and for the system to be of use to millions of
mobile users, it has to be scalable. To achieve high
scalability in this architecture, we index the user profiles
rather than the documents because of the excessively
large number of profiles expected in the system.

References

[1] Altinel, M. and Franklin, M. “Efficient Filtering of XML
Documents for Selective Dissemination of Information,” Proc
of the Int’l Conf on VLDB, Sept 2000. pp. 53-64.
[2] Diao, Y., Altinel, M., Franklin, M., Zhang, H. and Fischer,
P. M. “Path Sharing and Predicate Evaluation for High-
Performance XML Filtering,” ACM Trans. Database Syst.,
28(4), Dec 2003, pp. 467–516.
[3] Extensible Markup Language, http://www.w3.org/XML/.
[4] I.Miliaraki, Distributed Filtering and Dissemination of
XML Data in Peer-to-Peer Systems, PhD Thesis, Department
of Informatics and Telecommunications, National and
Kapodistrian University of Athens, July 2011.
[5] I.Miliaraki and M. Koubarakis, “Distributed Structural and
Value XML Filtering”, 4th ACM International Conference on
Distributed Event-Based Systems (DEBS 2010), Cambridge,
United Kingdom, 2010.
[6] J. Chen, D. DeWitt, F. Tian, Y. Wang, “NiagaraCQ: A
Scalable Continuous Query System for Internet Databases”,
ACM SIGMOD, Texas, USA, June 2000, pp.379-390.
[7] L. Dai, C. Lung and S. Majumdar, “A XML Message
Filtering and Matching Approach in Publish/Subscribe
Systems”, publication in the IEEE Globecom 2010
proceedings.
[8] L. Dai, XML “Message Filtering and Matching in
Publish/Subscribe Systems,” Master Thesis, School of
Computer Science, Carleton University, Ottawa, Ontario,
Canada, Sept. 2009.
[9] P. Antonellis and C. Makris, “XFIS: an XML filtering
system based on string representation and matching”, Int. J. of
Web Engineering and Technology, Vol. 4, Nr 1, 2008.
[10] XML-QL: A Query Language for XML,
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819.

