

Abstract—Extensible Markup Language (XML) filtering systems

comprise an essential component of recent information-seeking
applications. The inherent limitations of mobile devices require
information to be delivered to mobile clients to be highly
personalized consistent with their profiles. The publish/subscribe
(pub/sub) model has gained acceptance as a solution for enabling
Selective Dissemination of Information (SDI) to mobile clients. In
this paper, we propose an approach that integrates pub/sub system
and XML filtering to deliver notifications with personalized
information from XML data sources to mobile clients. The proposed
architecture describes an efficient indexing mechanism for filtering
and matching of XML documents against a large number of user
profiles expressed with the XML-QL language. Our proposed
algorithm is modified the Finite State Machine (FSM) approach
based on XFilter algorithm to be used in mobile environment
achieving good scalability.

Keywords— XML, User Profiles, SDI, Mobile Clients

I. INTRODUCTION
HE development of the Internet and networking
technologies made it possible to access increasing

volumes of data in a convenient way. As a consequence of
these advances, information dissemination applications are
gaining popularity in distributing data to the end users. The
adoption of XML [3] as a de facto standard for information
exchange entails a widely accepted profile representation and
the advance of query languages for XML data facilitates the
development of more efficient filtering mechanisms. The
number of applications using XML representation is growing
rapidly, thus the development of XML filtering is becoming an
essential need of different application areas such as pub/sub
system, web services and peer-to-peer networks.

The pub/sub communication paradigm [4] can assist to
provide scalable and efficient push-based delivery of messages
between the various parties in a system. In a pub/sub system,
subscribers state their interests (profiles) in an event or a
pattern of events, and are asynchronously notified when
publishers generate them. The key idea of an XML filtering
system is to discover all the user profiles that match with a
particular XML document. Data matching can be performed

Yi Yi Myint is with Faculty of Information and Communication
Technology, University of Technology (Yatanarpon Cyber City) , Pyin Oo
Lwin, Mandalay Region, Myanmar (e-mail: yiyimyint.utycc@gmail.com).

Hninn Aye Thant is with Faculty of Information and Communication
Technology, University of Technology (Yatanarpon Cyber City) , Pyin Oo
Lwin, Mandalay Region, Myanmar (e-mail: hninayethant@gmail.com).

either at the data sources or at some centralized brokers.
Expressing highly personalized profiles need a querying

power just like SQL provides on relational databases. Since
the queries will be executed on the documents fetched over the
Internet, it is natural to expect the documents to be in XML.
Then the user profiles need to be defined through an XML
query language. XML-QL [9] is a good candidate in this
respect due to its expressive power as well as its elaborate
mechanisms for specifying query results through the
CONSTRUCT statement. A key challenge is then to efficiently
and quickly process the potentially huge set user profiles on
XML resources. This boils down to developing efficient ways
of processing XML-QL queries on XML documents.

The rest of the paper is organized as follows: Section 2
briefly summarizes the related work. In Section 3, the overall
architecture of the system is described. The operation of the
system that is how the query index is created, the operation of
the finite state machine, the proposed filtering algorithm and
the generation of the customized results are explained in
Section 4. Section 5 gives the performance evaluation of the
system. Finally Section 6 concludes the paper.

II. RELATED WORK
The filtering mechanism described in this paper is

influenced by the XFilter system [1]. XFilter is designed and
implemented for pushing XML documents to users according
to their profiles expressed in XML Path Language (XPath). It
provides efficient filtering of XML documents with the help of
profile index structures in its filter engine. When a document
matches a user’s profile, the whole document is pushed to the
user. This feature prevents XFilter to be used in mobile
environments since the limited capacity of the mobile devices
is not enough to handle the entire document. Furthermore,
XFilter does not exploit the commonalities between the
queries, i.e. it generates a FSM per query.

NiagaraCQ system [6] uses XML-QL to express user
profiles. It provides measures of scalability through query
groups and cashing techniques. However, its query grouping
capability is based on execution plans which are completely
different from our approach. The performance results do not
make such architecture a possible candidate for mobile
environments. YFilter [2] overcomes the disadvantage of
XFilter by using Nondeterministic Finite Automata (NFA) to
emphasize prefix sharing. However, the ancestor/descendant
relationship introduces more matching states, which may result

Efficient Filtering Algorithm for Scalable
XML-Based Publish/Subscribe Mobile System

Yi Yi Myint, and Hninn Aye Thant

T

International Conference on Advances in Engineering and Technology (ICAET'2014) March 29-30, 2014 Singapore

http://dx.doi.org/10.15242/IIE.E0314055 75

in the number of active states increasing exponentially.
BFilter [7] proposes the filtering and matching of XML

message by leveraging branch points in both the XML
document and user query. It evaluates user queries that exploit
rearward matching branch points to hold up more matching
processes until branch points match in the XML document and
user query. In this fashion, filtering of XML message can be
performed more efficiently since the probability of
mismatching is reduced. Several experiments [8] have been
conducted and the outcomes show that BFilter has better
performance than YFilter for complex queries.

FoXtrot [5] is a XML filtering system which integrates the
strengths of automata and distributed hash tables for efficient
filtering to create a fully distributed system. FoXtrot also
describes different methods for evaluating value-based
predicates. The performance evaluation demonstrates that it is
able to index millions of queries achieving an excellent
filtering throughput.

III. OVERALL ARCHITECTURE OF THE SYSTEM
This system proposes the architecture for mobile network to

deliver highly personalized information from XML resources
to mobile clients. The overall architecture of the system is
depicted in Fig. 1.

Fig. 1 Overall architecture of the system

Data Sources contains the XML documents that publish

messages to the filtered engine. The mobile users register
subscriptions in which the graphical user interfaces are
provided for them to define user profiles. Filtered engine first
creates query indices for user profiles and then parses the
XML documents to obtain the query results. When the
document matches, the matches are stored in a special content
list, so that the whole document need not be sent. The filtered
engine notifies filtered XML documents to the related mobile
clients. Extracting parts of an XML document can save
bandwidth in a mobile environment. Profiles defined through a
graphical user interface are transformed into XML documents
which contain XML-QL queries to provide user friendliness
and expressive power as shown in Fig. 2.

<Profile>

<XML-QL>
 WHERE <course><major><name>ICT</>
 <program>First Year</>
 <syllabus>$n</></>
 </course> IN “course.xml”
 CONSTRUCT<result><syllabus>$n</syllabus></result>

 </XML-QL>
 <PushTo><address>…</address></PushTo>
</Profile>
Fig. 2 Profile syntax represented in XML containing XML-QL query

A. Filtered Engine

User Profiles Profile Parser

XML-QL Parser

Query Execution Engine

Query Index

XML Parser XML Document

Delivery

Query

Query nodes

Events

Results

Fig. 3 Filtered engine

The basic components of the filtered engine are an event-

based XML parser which is implemented using SAX API for
XML documents, a profile parser that has an XML-QL parser
for user profiles which creates the query index, a query
execution engine which contains the query index which is
associated with FSM to query the XML documents, and
delivery component which pushes the results to the related
mobile clients.

IV. OPERATION OF THE SYSTEM
The system operates as follows: subscriber informs filtered

engine when a new profile is created or updated; the profiles
are stored in an XML file that contains XML-QL queries and
addresses to dispatch the results (see Fig. 2). The Profile
Parser component of the Filtered Engine parses the profiles;
XML-QL queries in the profile are parsed by an XML-QL
parser. While parsing the queries, the XML-QL parser creates
FSM representation of each query, if the query does not match
to any existing query group. Otherwise, the FSM of the
corresponding query group is used for the input query. FSM
representation contains state nodes for each element name in
the queries which are stored in the Query Index.

When a new document arrives, the system alerts the Filtered
Engine so that the related XML document is parsed. The event
based XML parser sends the events encountered to the Query
Execution Engine (see Fig. 3). The handlers in the Query
Execution Engine respond to these events and move the FSMs
to their next states when current states succeed level checking
or character data matching. In the mean time the data in the

International Conference on Advances in Engineering and Technology (ICAET'2014) March 29-30, 2014 Singapore

http://dx.doi.org/10.15242/IIE.E0314055 76

document that matches the variables are kept in content lists so
that when the FSM reaches its final state, all necessary partial
data to produce the results are formatted and pushed to the
related mobile clients.

A. Creating Query Index
Consider an example XML document and its DTD given in

Fig. 4.
<!-- DTD for Course -->
 <!ELEMENT root (course*)>
 <!ELEMENT course (degree, major*)>
 <!ELEMENT degree (#PCDATA)>
 <!ELEMENT major(name, program, semester, syllabus*)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT program (#PCDATA)>
 <!ELEMENT semester (#PCDATA)>
 <!ELEMENT syllabus (sub-code, sub-title, instructor)>
 <!ELEMENT sub-code (#PCDATA)>
 <!ELEMENT sub-title (#PCDATA)>
 <!ELEMENT instructor (#PCDATA)>
<root><course>
 <degree>Bachelor</degree>
 <major>
 <name>ICT</name>
 <program>First Year</program>
 <semester>First Semester</semester>
 <syllabus>
 <sub-code>EM-101</sub-code>
 <sub-title>English</sub-title>
 <instructor>Dr. Thiri</instructor>
 </syllabus>
 </major>
</course>…</root>

Fig. 4 An example XML document and its DTD (course.xml)

The example queries and their FSM representations are
shown in Fig. 5. Note that there is a node in the FSM
representation corresponding to each element in the query and
the FSM representation’s tree structure follows from XML-QL
query structure.
Query 1: Retrieve all syllabuses for first year program in ICT
major.

 FSM for Query 1
Query 2: Find the instructor name of the subject code E-1011.

 FSM for Query 2

Query 3: Retrieve all instructors for first year program in ICT major.

 FSM for Query 3

Fig.5 Example queries and its FSM representation

The state changes of a FSM are handled through the two lists
associated with each node in the Query Index (See Fig. 6). The
current nodes of each query are placed on the Candidate List (CL) of
the index entry for its corresponding element name. All of the query
nodes representing future states are stored in the Wait Lists (WL) of
their corresponding element name. Copying a query node from WL
to the CL represents a state transition in the FSM. Notice that the
node copied to the CL also remains in the WL so that it can be reused
by the FSM in future executions of the query since the same element
name may reappear in another level in the XML document.

instructor

major

name

program

syllabus

sub-code

WL

CL

CL

CL

CL

CL

CL

WL

WL

WL

WL

WL

Q3.2

Q1.1 Q3.1

Q1.2

Q1.3 Q3.3

Q2.1

Q1.4 Q3.4

Q1.5

Q2.3 Q3.5

Query ID

CharData Flag (CF)

Variable Flag (VF)

Process Flag (PF)

State Flag (SF)

Relative Pos. (RP)

Level (L)

Content List

Constant Table

sub-title

Q2.2

CL

WL
Q1.6

 (a)Query index (b) Node structure

Fig. 6 Initial states of the query index for example queries

The structure of the query index for the example queries as
well as the structure of the query nodes is shown in Fig. 6.

International Conference on Advances in Engineering and Technology (ICAET'2014) March 29-30, 2014 Singapore

http://dx.doi.org/10.15242/IIE.E0314055 77

Each node in each query has a unique identifier. Other
elements of the node structure are as follows:

• Char Data Flag (CF) is on when the node in query has
a character pattern to be matched.

• Variable Flag (VF) is on for nodes that have variables.
• Process Flag (PF) is used for dual purpose; it is set to

true for nodes containing character pattern or
containing variables.

• State flag (SF) is set to true when the element of this
node is successfully processed level check, the
attribute check or data comparison..

• Relative Position (RP) is an integer that describes the
distance between this query node and the previous
query node in a query tree.

• Level (L) is an integer that represents the level in the
XML document.

• Content List stores intermediate results for a variable.
• Constant Table is used for queries that have same tree

structure to hold the values of different constants.
When the query index is initialized, the first node of each

query tree is placed on the CL of the index entry for its
respective element name. The remaining elements in the query
tree are placed in respective WLs. Query nodes in the CL
indicate that the state of the query might change when the
XML parser processes the respective elements of these nodes.
When the XML parser catches a start element tag and if a node
in the CL of the element in the Query Index satisfies level
check and attribute check, and then the nodes of the immediate
child elements of this node in the Query Index are copied from
WL to CL. The purpose of the level check is to make sure that
the element appears in the document at a level that matches the
level expected by the query.

B. Operation of the Finite State Machine
When a new XML document activates the XML SAX

parser, it starts generating events. The following event
handlers handle these events:

TABLE I

SAX API EXAMPLE
An XML Document SAX API Events
<?xml version=”1.0”>
<course>
 <major>
 <name>
 ICT
 </name>
 </major>
</course>

start document
start element: course
start element: major
start element: name
characters: ICT
end element: name
end element: major
end element: course
end document

Start Element Handler checks whether the query element

matches the element in the document. For this purpose it
performs a level and an attribute check. If these are satisfied, it
either enables data comparison or starts variable content
generation. As the next step, the nodes in the WL that are the
immediate successors of this node are moved to CL.

End Element Handler evaluates the state of a node by

considering the states of its successor nodes and when the root
node is reached it generates the output.

Element Data Handler is implemented for data comparison
in the query. If the expression is true, the state of the node is
set to true and this value is used by the End Element Handler
of the current element node.

End Document Handler signals the end of result generation
and passes the results to the Delivery Component.

C. Proposed Filtering Algorithm
Fig. 7 presents the filtering algorithm and depicts the

procedure for filtering and matching XML documents.
Filtering Algorithm
 Input:
 QueryIndex qIndex
 Incoming element e
 List CurrentQueries Q
 Init:
 qIndex and Q is populated by user requests
 While e is not the end of document
 If e is in index then
 If node level= -1 || node level=element level then
 Node ok;
 If final node in query then
 Query match;
 Else if node level ≠ -1 then
 Update its level;
 End if;
 End if;
 End if;
 End while;
End Algorithm;

Fig. 7 Filtering algorithm

D. Generating Customized Results
Results are generated when the end element of the root node

of the query is encountered. Content lists of the variable nodes
are traversed to fetch content groups. These content groups are
further processed to generate results. This process is repeated
until the end of the document is reached. The results need to
be formatted as defined in the CONSTRUCT clause. The
results of the queries that will be sent to related mobile clients.

V. PERFORMANCE EVALUATION
In the following experiments, we compare our incremental

grouping approach with a non-grouping approach to show
benefits from sharing computation and avoiding unnecessary
query invocations. We conducted two sets of experiments to
demonstrate the performance of the proposed architecture for
different query workloads. The parameters in our experiments
are:
1) N: The number of queries is an important measurement of

the system scalability.
2) F: The number of fired queries in the grouping case.
3) S: The data size of XML document.

International Conference on Advances in Engineering and Technology (ICAET'2014) March 29-30, 2014 Singapore

http://dx.doi.org/10.15242/IIE.E0314055 78

In our grouping approach, a user-defined query consists of
grouped part and non-grouped part Tg and Tng represent the
execution time of each part respectively. The execution time T
for evaluating N queries is the sum of Tg and Tng of each of F
fired queries,

∑+= TngTgT (1)

The graph shown in Fig. 8 contains the results for different
query groups for the document course.xml (12KB). The
execution time of the non-grouping approach grows
dramatically as N increases when setting F = N, i.e. all queries
fired in both approaches.

Fig. 8 Comparison of grouped and non-grouped query (F=N)

Fig. 9 shows the filter time by setting F = 100, i.e., 100

queries are invoked in the grouping approach.

Fig. 9 Comparison of grouped and non-grouped query (F=100)

The filtering time of the grouping approach depends on

number of fired queries F, not on the total number of installed
queries N. The reason is that, although Tg increases as N
grows, this shared computation is executed only once and is a
very small portion of total filtering time. On the other hand,
the filtering time for the non-grouping approach is
proportional to N because all queries are scheduled for
execution. Accordingly, we expect that the performance of the
system will still be acceptable for mobile environments for
millions of queries since the results of the experiments show
that the system is highly scalable.

VI. CONCLUSION
As the Web is growing continuously, a great amount of data

becomes available to users, making it more difficult for them
to discover interesting information by searching. In this paper,
we propose an approach that integrates pub/sub system and
XML filtering to deliver notifications with personalized
information from XML resources to mobile clients. The
proposed system describes an efficient indexing mechanism
and a filtering algorithm based on a modified FSM approach
that can quickly locate and evaluate relevant profiles. The
proposed algorithm can handle very large number of queries
and achieve a good scalable performance of the system. Our
experimental result shows that the proposed algorithm
outperforms the previous XFilter algorithm in time aspect.

ACKNOWLEDGMENT
The authors wish to acknowledge the Institution namely

University of Technology (Yatanarpon Cyber City) for
providing us with a good environment and facilities like
internet, books, computers and all that as our source to
complete this research. Our heart-felt thanks to our family,
friends and colleagues who have helped us for the completion
of this work.

REFERENCES
[1] M. Altinel and M. Franklin, “Efficient filtering of XML documents for

selective dissemination of information,” Proc of the Int’l Conf on
VLDB, pp. 53-64, Sept 2000. (references)

[2] Y. Diao, M. Altinel, M. Franklin, H. Zhang and P.M. Fischer, “Path
sharing and predicate evaluation for high-performance XML filtering,”
ACM Trans. Database Syst., 28(4), Dec 2003, pp. 467–516. (references)
http://dx.doi.org/10.1145/958942.958947

[3] Extensible Markup Language. [Online]. Available:
http://www.w3.org/XML/.

[4] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computing Surveys 35, pages
114-131, 2003.
http://dx.doi.org/10.1145/857076.857078

[5] I. Miliaraki and M. Koubarakis, “FoXtrot: distributed structural and
value XML filtering,” ACM Transactions on the Web, Vol. 6, No. 3,
Article 12, Publication date: September 2012. (references)

[6] J. Chen, D. DeWitt, F. Tian and Y. Wang, “NiagaraCQ: a scalable
continuous query system for internet databases,” ACM SIGMOD,
Texas, USA, June 2000, pp.379-390. (references)

[7] L. Dai, C. Lung and S. Majumdar, “A XML message filtering and
matching approach in publish/subscribe systems,” publication in the
IEEE Globecom 2010 proceedings. (references)

[8] Panu Silvasti, “Algorithms for XML filtering,” Department of Computer
Science and Engineering, Aalto University publication series Doctoral
Dissertations 85/2011. (references)

[9] XML-QL: A Query Language for XML. [Online]. Available:
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819.

Yi Yi Myint is a PhD candidate from University of Technology
(Yatanarpon Cyber City), Pyin Oo Lwin, Mandalay region, Myanmar. She got
master degree in computer science from Computer University (Mandalay).
The field of her thesis is performance analysis of filtering algorithm and
indexing methods for matching XML documents and user profiles. Her
research interested areas are mobile computing, ubiquitous computing and
location-based services.

International Conference on Advances in Engineering and Technology (ICAET'2014) March 29-30, 2014 Singapore

http://dx.doi.org/10.15242/IIE.E0314055 79

http://dx.doi.org/10.1145/958942.958947
http://dx.doi.org/10.1145/958942.958947
http://dx.doi.org/10.1145/958942.958947
http://dx.doi.org/10.1145/958942.958947
http://www.w3.org/XML/
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819

