

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 2, Issue 12, December 2013

3011

www.ijarcet.org



Abstract— The number of applications using XML data

representation is growing rapidly, thus the process of XML

filtering is becoming an essential need of publish/subscribe

(pub/sub) system. The pub/sub model has gained acceptance as

a solution for the loose coupling of systems in terms of

asynchronous communication enabling Selective Dissemination

of Information (SDI). SDI systems distribute the right

information to the right users based upon their profiles. The

inherent limitations of mobile devices necessitate information

to be delivered to mobile clients to be highly personalized

according to user profiles. In this paper, we address the issue of

scalable filtering of XML documents for mobile environment.

This paper proposes an approach that integrates pub/sub

system and XML message filtering to deliver personalized

information from XML resources to mobile clients. Finally, the

proposed architecture describes an efficient indexing

mechanism by enhancing XFilter algorithm based on a

modified Finite State Machine (FSM) approach to achieve

good scalability.

Index Terms—FSM, indexing mechanism, SDI, XML

I. INTRODUCTION

 Extensible Markup Language (XML) filtering systems

constitute a critical component of modern

information-seeking applications. The advent of XML [3] as

a de facto standard for information exchange and the

development of query languages for XML data enable the

development of more sophisticated filtering mechanisms.

Emerging distributed information systems such as Web

services, personalized content delivery, and event

monitoring require increasingly flexible and adaptive

infrastructures [4]. Recently, pub/sub systems are

increasingly often used as a communication paradigm for

loosely-coupled systems.

The pub/sub communication paradigm [10] can help to

meet the challenge by providing efficient, scalable,

many-to-many, push-based delivery of messages between the

various parties in a system. In a pub/sub system, subscribers

express their interests (profiles) in an event or a pattern of

 Yi Yi Myint, Faculty of Information and Communication Technology,

University of Technology (Yatanarpon Cyber City), Pyin Oo Lwin, Mandalay

Division, Myanmar.

Hninn Aye Thant, Faculty of Information and Communication

Technology, University of Technology (Yatanarpon Cyber City), Pyin Oo

Lwin, Mandalay Division, Myanmar.

events, and are asynchronously notified when publishers

produce them. The main purpose of an XML filtering system

is to find all the user profiles that have a match with a specific

XML document [8]. Data matching can be performed either

at the source or at some centralized brokers. Several

approaches for XML filtering have been reported in the

literature, see Section 2 for details.

 Expressing highly personalized profiles need a querying

power just like SQL provides on relational databases. Since

the queries will be executed on the documents fetched over

the Internet, it is natural to expect the documents to be in

XML, XML being the emerging standard for data exchange

over the Internet. Then the user profiles need to be defined

through an XML query language. XML-QL is a good

candidate in this respect due to its expressive power as well as

its elaborate mechanisms for specifying query results through

the CONSTRUCT statement [12].

 When such a system providing highly personalized

services is deployed on the Internet, the performance

becomes a critical issue since the number of users can easily

grow dramatically. A key challenge is then to efficiently and

quickly process the potentially huge set user profiles on XML

resources. This boils down to developing efficient ways of

processing XML-QL queries on XML documents.

 The rest of the paper is organized as follows: Section 2

briefly summarizes the related work. In Section 3, the overall

architecture of the system is described. The operation of the

system that is how the query index is created, the operation of

the finite state machine and the generation of the customized

results are explained in Section 4. Section 5 gives the

performance evaluation of the system. Finally Section 6

concludes the paper.

II. RELATED WORK

The filtering mechanism described in this paper is

influenced by the XFilter system [1]. XFilter is designed and

implemented for pushing XML documents to users

according to their profiles expressed in XML Path Language

(XPath). It provides efficient filtering of XML documents

with the help of profile index structures in its filter engine.

When a document matches a user’s profile, the whole

document is pushed to the user. This feature prevents XFilter

to be used in mobile environments since the limited capacity

Scalable Filtering and Matching of XML

Documents in Publish/Subscribe Systems for

Mobile Environment

Yi Yi Myint, Hninn Aye Thant

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 2, Issue 12, December 2013

All Rights Reserved © 2013 IJARCET

3012

of the mobile devices is not enough to handle the entire

document. Furthermore, XFilter does not exploit the

commonalities between the queries, i.e. it generates a FSM

per query. This observation motivated us to develop

mechanisms that use only a single FSM for the queries which

have common element structure.

 NiagaraCQ system [6] uses XML-QL to express user

profiles. It provides measures of scalability through query

groups and cashing techniques. However, its query grouping

capability is based on execution plans which are completely

different from our approach. The performance results do not

make such architecture a possible candidate for mobile

environments. YFilter [2] overcomes the disadvantage of

XFilter by using nondeterministic finite automata (NFA) to

emphasize prefix sharing. However, the ancestor/descendant

relationship introduces more matching states, which may

result in the number of active states increasing exponentially.

Post processing is required for YFilter. To deal with queries

with nested paths (complex queries), YFilter decomposes

them into simple queries and matches them separately.

 BFilter [7] conducts the XML message filtering and

matching by leveraging branch points in both the XML

document and user query. It evaluates user queries that use

backward matching branch points to delay further matching

processes until branch points match in the XML document

and user query. In this way, XML message filtering can be

performed more efficiently as the probability of mismatching

is reduced. A number of experiments have been conducted

and the results demonstrate that BFilter has better

performance than YFilter for complex queries [11]. XFIS [9]

proposes an efficient technique for matching user profiles

that is based on the use of holistic twig-matching algorithms

and was more effective, in terms of time and space

complexities, in comparison with previous techniques. The

proposed algorithm is able to handle order matching of user

profiles, while its main positive aspect was the envisaging of

a representation based on Prüfer sequences that permits the

effective investigation of node relationships.

 FoXtrot [5] is a system for filtering XML data that

combines the strengths of automata for efficient filtering and

distributed hash tables for building a fully distributed system.

FoXtrot also describes different methods for evaluating

value-based predicates. The performance evaluation

demonstrates that it can index millions of user queries,

achieving a high indexing and filtering throughput.

III. OVERALL ARCHITECTURE OF THE SYSTEM

 This system proposes the architecture for mobile

network to deliver highly personalized information from

XML resources to mobile clients. The overall architecture of

the system is depicted in Fig. 1.

Subscr
ibe /

 U
ser

 Pro
file

s

Nofify / Filtered Data

Mobile Users

Publish

Data Sources

(XML Documents)

Filtered Engine

Figure 1. Overall architecture of the system

 Data Sources contains the XML documents that publish

messages to the filtered engine component of the pub/sub

system. The mobile users register subscriptions (user

profiles) that are provided graphical user interfaces to define

their profiles from their mobile phones. These profiles are

converted into XML-QL queries. The queries can be change

based; that is, they need to be activated when the related

XML documents change. The queries are grouped and

indexed such that each element in a query group corresponds

to a state in the Finite State Machine (FSM). Filtered engine

first creates query indices for user profiles and then parses the

XML documents to obtain the query results. When the

document matches, the matches are stored in a special

content list, so that the whole document need not be sent.

Then, the filtered engine notifies and sends filtered XML

documents to the related mobile clients. Extracting parts of

an XML document can save bandwidth in a mobile

environment.

 Profiles defined through a graphical user interface are

transformed into XML documents which contain XML-QL

queries to provide user friendliness and expressive power as

shown in Fig. 2.

<Profile>

 <XML-QL>

 WHERE <course>

 <major>

 <name>ICT</>

 <program>First Year</>

 <syllabus>$n</>

 </> </> IN “course.xml”

 CONSTRUCT<result><syllabus>$n</></>

 </XML-QL>

 <PushTo>

 <address>…</address>

 </PushTo>

</Profile>

Figure 2. Profile syntax represented in XML containing XML-QL query

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 2, Issue 12, December 2013

3013

www.ijarcet.org

A. Filtered Engine

User Profiles Profile Parser

XML-QL Parser

Query Execution Engine

Query Index

XML Parser XML Document

Delivery

Query

Query nodes

Events

Results

Figure 3. Filtered engine

 The basic components of the filtered engine are 1) An

event-based XML parser which is implemented using SAX

API for XML documents; 2) A profile parser that has an

XML-QL parser for user profiles and creates the Query

Index; 3) A Query Execution Engine which contains the

Query Index which is associated with Finite State Machines

to query the XML documents; 4) Delivery Component which

pushes the results to the related mobile clients. When a

document arrives at the Filtered Engine, it is run through an

XML Parser that then drives the process of query execution

through the query index.

IV. OPERATION OF THE SYSTEM

 The system operates as follows: subscriber informs

Filtered Engine when a new profile is created or updated; the

profiles are stored in an XML file that contains XML-QL

queries, execution conditions (change-base), and addresses

to dispatch the results (see Fig. 2). The Profile Parser

component of the Filtered Engine parses the profiles;

XML-QL queries in the profile are parsed by an XML-QL

parser. While parsing the queries, the XML-QL parser

creates FSM representation of each query, if the query does

not match to any existing query group. Otherwise, the FSM

of the corresponding query group is used for the input query.

FSM representation contains state nodes for each element

name in the queries which are stored in the Query Index.

 When a new document arrives, the system alerts the

Filtered Engine so that the related XML document is parsed.

The event based XML parser sends the events encountered to

the Query Execution Engine (see Fig. 3). The handlers in the

Query Execution Engine respond to these events. The

handlers move the FSMs to their next states when current

states succeed certain checks like evaluating the attributes,

level checking or character data matching. In the mean time

the data in the document that matches the variables are kept

in content lists so that when the FSM reaches its final state,

all the necessary partial data to produce the results are

formatted and pushed to the related mobile clients.

A. Creating Query Index

 Consider an example XML document and its DTD

given in Fig. 4.

<!-- DTD for Course -->

<!ELEMENT root (course*)>

<!ELEMENT course (degree, major*)>

<!ELEMENT degree (#PCDATA)>

<! ELEMENT major (name, program, semester,

syllabus*)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT program (#PCDATA)>

<!ELEMENT semester (#PCDATA)>

<!ELEMENT syllabus (sub-code, sub-title, instructor)>

<!ELEMENT sub-code (#PCDATA)>

<!ELEMENT sub-title (#PCDATA)>

<!ELEMENT instructor (#PCDATA)>

<root>

<course>

 <degree>Bachelor</degree>

 <major><name>ICT</name>

 <program>First Year</program>

 <semester>First Semester</semester>

 <syllabus>

 <sub-code>ISCE-1001</sub-code>

 <sub-title>Web Programming</sub-title>

 <instructor>Dr. Thiri</instructor>

 </syllabus>

 </major>

</course>…</root>

Figure 4. An example XML document and its DTD (course.xml)

 The example queries and their FSM representations are

shown in Fig. 5. Note that there is a node in the FSM

representation corresponding to each element in the query

and the FSM representation’s tree structure follows from

XML-QL query structure.

Query 1: Retrieve all syllabuses for first year program in

ICT major.

WHERE <major> <name>ICT</><program>First Year</><syllabus>$n</>

 </> IN “course.xml”
 CONSTRUCT<result><syllabus>$n</></>

Q1.1 Q1.2 Q1.3 Q1.4

Q1.1

Q1.2

Q1.3

Q1.4

 FSM for Query 1

Query 2: Find the name of instructor for subject code

EM-101.

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 2, Issue 12, December 2013

All Rights Reserved © 2013 IJARCET

3014

Q2.1 Q2.2 Q2.3

WHERE <syllabus> <sub-code>EM-101</><instructor>$s</>

 </> IN “course.xml”
 CONSTRUCT<result><syllabus>$s</></>

Q2.1

Q2.2

Q2.3

 FSM for Query 2

Query 3: Retrieve all instructors for first year program in

ICT major.

WHERE<major> <name>ICT</><program>First Year</><syllabus> <instructor>$s</></>

 </> IN “course.xml”
 CONSTRUCT<result><syllabus>$s</></>

Q3.1 Q3.2 Q3.3 Q3.4 Q3.5

Q3.1

Q3.2

Q3.3

Q3.4 Q3.5

FSM for Query 3

Figure 5. Example queries and its FSM representation

 The state changes of a FSM are handled through the two

lists associated with each node in the Query Index (See Fig.

6): The current nodes of each query are placed on the

Candidate List (CL) of the index entry for its corresponding

element name. All of the query nodes representing future

states are stored in the Wait Lists (WL) of their

corresponding element name. Copying a query node from

WL to the CL represents a state transition in the FSM. Notice

that the node copied to the CL also remains in the WL so that

it can be reused by the FSM in future executions of the query

since the same element name may reappear in another level

in the XML document.

 This system is intended to develop to handle very large

number of queries and it is quite probable that there will be

queries that have the same tree structure and the same

element names, that is, the same FSM representation but

different constant values. In this case a single FSM can

handle these queries and this greatly enhances the

performance of the system. When the query index is

initialized, the first node of each query tree is placed on the

CL of the index entry for its respective element name. The

remaining elements in the query tree are placed in respective

WLs. Query nodes in the CL indicate that the state of the

query might change when the XML parser processes the

respective elements of these nodes. When the XML parser

catches a start element tag and if a node in the CL of the

element in the Query Index satisfies level check and attribute

check, and then the nodes of the immediate child elements of

this node in the Query Index are copied from WL to CL. The

purpose of the level check is to make sure that the element

appears in the document at a level that matches the level

expected by the query. The attribute check applies any simple

expressions that reference the attributes of the element.

instructor

major

name

program

syllabus

sub-code

WL

CL

CL

CL

CL

CL

CL

WL

WL

WL

WL

WL

Q3.2

Q1.1 Q3.1

Q1.2

Q1.3 Q3.3

Q2.1

Q1.4 Q3.4

Q2.2

Q2.3 Q3.5

Figure 6. Initial states of the query index for example queries

B. Operation of the Finite State Machine

 When a new XML document activates the XML SAX

parser, it starts generating events. The following event

handlers handle these events:

Start Element Handler checks whether the query

element matches the element in the document. For this

purpose it performs a level and an attribute check. If these are

satisfied, depending on the type of the query node it either

enables data comparison or starts variable content

generation. As the next step, the nodes in the WL that are the

immediate successors of this node are moved to CL at this

stage. Even in a single document, the FSM may be executed

more than once if the same element names reappear in the

document. Therefore there is a need to reinitialize the FSM.

Furthermore XML documents can be nested, that is, the same

element may appear at different levels. Therefore it may be

necessary to generate a FSM to handle this recursion. This is

achieved by copying this new node to CL in the query index.

End Element Handler evaluates the state of a node by

considering the states of its successor nodes and when the

root node is reached it generates the output. End element

handler also deletes the nodes from CL which are inserted in

the start element handler of the node. This provides

“backtracking” in the FSM.

Element Data Handler is implemented for data

comparison in the query. If the expression is true, the state of

the node is set to true and this value is used by the End

Element Handler of the current element node.

End Document Handler signals the end of result

generation and passes the results to the Delivery Component.

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 2, Issue 12, December 2013

3015

www.ijarcet.org

TABLE I. SAX API EXAMPLE

An XML Document SAX API Events
<?xml version=”1.0”>

<course>

 <major>

 <name>

 ICT

 </name>

 </major>

</course>

start document

start element: course

start element: major

start element: name

characters: ICT

end element: name

end element: major

end element: course

end document

C. Generating Customized Results

 Results are generated when the end element of the root

node of the query is encountered. Content lists of the variable

nodes are traversed to fetch content groups. These content

groups are further processed to generate results. This process

is repeated until the end of the document is reached. The

results need to be formatted as defined in the CONSTRUCT

clause. The results of the queries that will be sent to related

mobile phones.

V. PERFORMANCE EVALUATION

 We conducted two sets of experiments to demonstrate

the performance of the architecture for different document

sizes and query workloads. The results are presented for a

maximum of 250,00 queries (due to memory limitations), we

expect that the performance of the system will still be

acceptable for mobile environments for millions of queries

since the results of the experiments show that the system is

highly scalable. The execution time increases for all the

algorithms because the queries become larger.

Figure 7. Comparing the performance by varying the number of queries

 The graph shown in Fig. 7 contains the results for

different query groups, that is, the queries have the same

FSM representation but different constants, for the document

course.xml (10KB).

Figure 8. Comparing the performance by varying depth

 The depth of the XML documents and queries in user

profiles varies according to application characteristics. In

this experiment, we evaluated the performance of the

algorithms as the maximum depth is varied. Fig. 8 shows the

filter time by varying depth of queries and documents. Our

experimental result shows that the proposed algorithm

outperforms the previous XFilter algorithm in time aspect.

VI. CONCLUSION

 This paper attempts to develop an efficient and scalable

SDI system for mobile clients based upon their profiles. In

this paper, we described the architecture for XML-based

pub/sub system built on top of a mobile ad hoc network. We

propose an efficient indexing mechanism and a matching

algorithm that can handle very large number of queries and

achieve a good scalable performance of the system. The

modified FSM is used as a filtering engine that scans

incoming XML documents and discovers matching queries.

A querying power is necessary for expressing highly

personalized user profiles and for the system to be of use to

millions of mobile users, it has to be scalable. To achieve

high scalability in this architecture, we index the user

profiles rather than the documents because of the excessively

large number of profiles expected in the system.

ACKNOWLEDGMENT

The authors wish to acknowledge the Institution namely

University of Technology (Yatanarpon Cyber City) for

providing us with a good environment and facilities like

internet, books, computers and all that as our source to

complete this research. Our heart-felt thanks to our family,

friends and colleagues who have helped us for the completion

of this work.

 REFERENCES

[1] M. Altinel and M. Franklin, “Efficient filtering of XML documents for

selective dissemination of information,” Proc of the Int’l Conf on VLDB,

pp. 53-64, Sept 2000. (references)

[2] Y. Diao, M. Altinel, M. Franklin, H. Zhang and P.M. Fischer, “Path

sharing and predicate evaluation for high-performance XML filtering,”

ACM Trans. Database Syst., 28(4), Dec 2003, pp. 467–516. (references)

[3] Extensible Markup Language, http://www.w3.org/XML/.

[4] I. Miliaraki, Distributed Filtering and Dissemination of XML Data in

Peer-to-Peer Systems, PhD Thesis, Department of Informatics and

http://www.w3.org/XML/

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 2, Issue 12, December 2013

All Rights Reserved © 2013 IJARCET

3016

Telecommunications, National and Kapodistrian University of Athens,

July 2011.

[5] I. Miliaraki and M. Koubarakis, “FoXtrot: distributed structural and

value XML filtering”, ACM Transactions on the Web, Vol. 6, No. 3,

Article 12, Publication date: September 2012. (references)

[6] J. Chen, D. DeWitt, F. Tian and Y. Wang, “NiagaraCQ: a scalable

continuous query system for internet databases”, ACM SIGMOD, Texas,

USA, June 2000, pp.379-390. (references)

[7] L. Dai, C. Lung and S. Majumdar, “A XML message filtering and

matching approach in publish/subscribe systems”, publication in the

IEEE Globecom 2010 proceedings. (references)

[8] L. Dai, XML Message Filtering and Matching in Publish/Subscribe

Systems, Master Thesis, School of Computer Science, Carleton

University, Ottawa, Ontario, Canada, Sept. 2009.

[9] P. Antonellis and C. Makris, “XFIS: an XML filtering system based on

string representation and matching”, Int. J. of Web Engineering and

Technology, Vol. 4, Nr 1, 2008. (references)

[10] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.M. Kermarrec, “The many

faces of publish/subscribe”, ACM Computing Surveys 35, pages

114-131, 2003.

[11] Panu Silvasti, Algorithms for XML Filtering, Department of Computer

Science and Engineering, Aalto University publication series Doctoral

Dissertations 85/2011. (references)

[12] http://www.w3.org/TR/1998/NOTE-xml-ql-19980819.

Yi Yi Myint is a PhD candidate from University of Technology (Yatanarpon

Cyber City) from Pyin Oo Lwin, Mandalay Division, Myanmar. She got master

degree in computer science from Computer University (Mandalay). The field of

her thesis is performance analysis of filtering algorithms and indexing methods

for matching XML documents and user profiles.

http://www.w3.org/TR/1998/NOTE-xml-ql-19980819

