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Abstract 

 
The bound state properties for two-nucleon system are studied using phenomenological potentials. Lippmann-

Schwinger equation is solved to study the binding energy. Firstly, Yukawa potential is used. Then Yamaguchi 

potential is used to study binding energy numerically and analytically. Our results of binding energy with 

Yukawa and Yamaguchi potential are -2.221968MeV and -2.191987MeV respectively.  In studying the binding 

energy of two-nucleon stated with Yukawa potential, it gives the result which agrees with the experimental 

value. But, binding energy with Yamaguchi potential is slightly less than the experimental value. 

Keywords: Lippmann-Schwinger equation, Yukawa potential, Yamaguchi potential 

 

Introduction 

 
Diplon, deuton, deuteron (Van Orden, 2001): 

under different names, the nucleus of deuterium, or 

diplogen, has been the subject of intense studies since 

its discovery in 1932.  As the only two-nucleon bound 

state, its properties have continuously been viewed as 

important in nuclear theory as the hydrogen atom is in 

atomic theory. The existence of the first isotope of 

hydrogen was suggested in 1931 by Birge and Menzel 

(Birge R.T., Menzel D.H, 1931). The stable isotope 

was discovered by Urey and collaborators (Urey H.C. 

and Murphy G. N., 1932) a few months later.  

The standard approach in conventional nuclear 

theory is to treat the two-nucleon interaction in a 

phenomenological manner, that is, assume it to be 

derivable from a potential, and then set up a 

reasonable form for it in agreement with general 

theoretical considerations and experimental data.  

Most experimental data providing direct information 

on the potential concern the two-nucleon systems: 

neutron-proton (n-p), proton-proton (p-p), and 

neutron-neutron (n-n). The n-p system produces a 

bound state, the   
  nucleus, whereas no bound state 

exists in the p-p and n-n systems. The study of the 

nuclear two-body problem provides the requisite 

information on two-nucleon forces.  In this paper we 

will present how to handle the two–nucleon bound 

state with phenomenological potentials. 

Two-body bound system 

In studying the two-body system in momentum 

space we will start with time-independent Schrödinger 

equation. 
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where, 0Ĥ  is the kinetic energy operator and V̂ is the 

potential energy operator. The kinetic energy operator 

has the property 
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The solution of Schrödinger equation can be written as 

|   
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This is the Lippmann-Schwinger equation in ket form 

and then we project it into momentum space as 
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where,   is reduced mass, p is the relative momentum 

between two particles,   is the relative orbital angular 

momentum and m is the magnetic quantum number.  

When operator  ̂  operates on, ⟨   | the above 

equationbecomes 
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After inserting the completeness relation, 
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For spherically symmetric potential, we can write as 
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This is known as the Lippmann-Schwinger equation 

for two particles in potential well. 

To write a FORTRAN code, we need to transform this 

integral equation to discrete form by using Gauss-

Legendre integration method which is  

 ∫  ( )   ∑  (  )  
 
    (9) 

where,    is gauss point and    is gauss weight. 

In discrete form, the Lippmann-Schwinger equation 

becomes   
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The above equation can be solved numerically by 

using the FORTRAN 90 code. 

The iterative method is applied to find the eigen value 

in our calculation so the kernel of Eq. (10) is 

constructed as a function of energy as 
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As a compact form for pure S-wave, Eq. (10) becomes 

  (  )     ( ) (  ) (12)
 

Arbitrary value which is function of E is introduced as 

  ( ) (  )     ( ) (  ) (13) 

When  ( ) is equal to 1, one can see Eq. (12) and Eq. 

(13) are the same. Therefore our background idea is 

that we will find the energy E which can give  ( ) 
value 1. 

 

Potential matrix elements in momentum space 

 
The phenomenological potentials for two-body 

system are mostly represented in configuration space.  

So we must have to transform these potentials from 

configuration space to momentum space. 

The potential matrix elements can be written as 

     (   
 )  ⟨   | |        (14) 

The potential matrix elements in configuration space 

and momentum space are related as follows. 
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where, 
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For the spherically symmetric potential and if the 

tensor force is ignored, 

⟨   | |          ( )
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Therefore, the transformed potential matrix element 

becomes  
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For the particular case     , 
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Again, Eq. (18) can be rearranged and the result is  
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We define A = p + p' and B = p - p' and we get  

  (    )  
 

     
∫ ,         
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This is the transformation of potential matrix elements 

from configuration space to momentum space for S-

wave.  

 

Yukawa potential in momentum space 

 
The Yukawa potential in coordinate space is 

  ( )    
    

 
  (21) 

where,    is the potential strength or the depth 

parameter and b is the range parameter.  To write a 

FORTRAN code, we transform the Yukawa potential 

into momentum space by using the Eq. (20) as 

   (   
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Observable quantities of bound system 
 

After solving the Eq. (13) numerically, we will 

obtain the ground state energy and the corresponding 

wave function. The normalized wave function is 
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To check the quality of wave function, we will 

calculate     and     by using normalized wave 

function for S-wave only such that 
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By adding kinetic energy and potential energy, we 

may obtain the binding energy as 

             (26) 

Next to calculate the root mean square distance of 

two-body system, we will transform the wave function 

from momentum space to coordinate space.  

The wave function in coordinate space is  

    ( )  ⟨   |   (27) 

We insert the completeness relation and we get 

    ( )  ∑ ∫        ⟨   |        

      ( ) (28) 



Meiktila University Research Journal,2020, Vol,XI, No.1 263 

        

 
 

Using the Eq. (16), the above equation becomes 

    ( )  √
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Then, the wave function     
can be defined as  

       ( ) (30) 

For normalized s-wave function in coordinate space, 

 ∫  
 ( )     (31) 

 〈  〉  ∫     
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From this equation we can calculate the root mean 

square distance of two-body system. 
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Yamaguchi potential in momentum space 

The Yamaguchi potential is generally of the 

following form as 

   |𝑔    ⟨𝑔| (34) 

When we project it on momentum space,  

 ⟨ | |    ⟨ |𝑔  ⟨𝑔|    (35) 

In usual form as 

  (    )   𝑔( )𝑔(  ) (36) 

where, g (p) is a function dependent on momentum 

and for a single channel it has the following form as 

 𝑔( )  
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where,  and β are constants. 

 

Analytical calculation for two-body bound 

state 

 
The two-body bound state with Yamaguchi 

potential can be solved analytically. The Lippmann 

Schwinger equation for two-body system in a single 

channel which can be written with Yamaguchi 

potential as 
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The analytical solution of wave function can be 

written as, 
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where,     ∫    
 

 
   𝑔(  ) (  )and one can write 

easily as 
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We set E as 
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The above equation can be written as  
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The pole appear at ip  and ip  . Therefore 

Residue theorem is used as, 

    (   )  
  

 (     )
 (45) 

    (   )   
  

 (     )
 (46) 

∫    
 

  

   
 

(      )

 

(      )
     

 (   (   )     (   )) (47) 

∫    
 

  
   

 

(      )

 

(      )
 

 

   
 (48) 

The Eq. (44) becomes as  
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It can be rearranged as  

    
   

  (   ) 
  (50) 

The intermediate step is 

    
   

  (   ) 
 (51) 

Finally we get 

      √ 
   

  
 (52) 

The value of α is calculated by using the above 

equation in which             ,     -0.5592 fm
-2 

and the mass of nucleon is taken as 938.903 MeV, but 

the calculation are working in momentum space so it 

is needed to change MeV to fm
-1

 by dividing ћc = 

197.3286 MeVfm.  If the values of α has been known, 

then the binding energy in fm
-1

 can be obtained with 

the help of Eq. (41) and multiplied by c . The 

binding energy will be expressed in MeV unit. By 

inserting the values of  ,   and μ in Eq. (52), the value 

of α is 0.229892 fm
-2

.  Then this value is inserted in 

Eq. (41) and the value of binding energy for two-

nucleon state is -0.011107 fm
-1

 (-2.191844) MeV. 

 

Results and discussion 
 

In studying two-body bound state, we have used 

the iterative method to find binding energy of 

deuteron.  The detail discussion on iterative method 

and energy search program will appear in the next 

coming up papers.  We solved the Lippmann-
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Schwinger equation in integral form.  To write a 

FORTRAN code, we transformed this integral 

equation to discrete form by using Gauss-Legendre 

integration method.  We define the integral range that 

the initial point is p0, the midpoint is pmid, the 

maximum point is pmax, and the number of grid point is 

Np. We let p0=0.0fm
-1

, pmid=5fm
-1

, pmax=10fm
-1

and the 

number of grid point Np=20 for our program. 

The Eq. (13) is solved by using iterative method.  

If ‗E‘ is the ground state energy, the η value will be 

the physical eigen value 1.  Since energy eigen value 

is not known, we put an arbitrary value for initial 

wave function and initial energy, ‗E‘.  First, we 

initialized the wave function arbitrarily that is all 

elements of wave function to be one.  For the first 

iteration, the new wave function was obtained.  This 

new wave function was used as initial wave function 

in next iteration.  We find the the convergence of η 

value. 

Again, we find the values of η by varying input 

energies from -0.1MeV to -3.0MeV as shown in Table 

(1) and characteristic graph of η and E is shown in 

Fig. (1). From this table we have programmed for 

energy search.  The η value will be 1 at certain energy 

between -2.1MeV and -2.3MeV.   Finally, converged 

binding energy of deuteron is -2.221968 MeV at 

Np=70.  In this calculation, two ranges Yukawa type 

potential with      -557.0MeV fm,    1.5fm
-1

, 

     +1271.002 MeV fm and    3.1fm
-1

 have been 

used.  When the Lippmann-Schwinger equation has 

been solved by using iterative method, the binding 

energy of deuteron in the ground state and the 

corresponding un-normalized wave function in 

momentum space are obtained.  Then, we confirm our 

numerical wave function in momentum space by 

reproducing the binding energy.  Therefore, the kinetic 

and potential energies are calculated by using our 

normalized numerical wave function and then the 

binding energy of deuteron is checked by adding these 

values.  The two results are exactly equal at -

2.221968MeV as shown in Table (2). 

The binding energy of deuteron with Yamaguchi 

potential are also calculated numerically as well as 

analytically.  In calculating numerically, we choose 

p0=0.0fm
-1

, pmid=5fm
-1

, pmax=10fm
-1

 and the binding 

energy is converged to 2.180709MeV at Np=60. Then 

we increase pmax by 10fm
-1

 until we reach to pmax=80.0 

fm
-1

.  Our numerical value does not change anymore.  

Finally, we get the data set p0=0.0fm
-1

, pmid=5fm
-1

, 

pmax=50fm
-1

 and Np=60 giving numerical stability of 

the binding energy at -2.191987MeV as shown in Table 

(3) which agrees with our analytical result -

2.191844MeV up to three decimal places.  

Then, the numerical wave function in momentum 

space is transformed into coordinate space.  This wave 

function is used in calculating root mean square 

radius. The result of root mean square radius with 

Yamaguchi potential is about 2.04fm.  The graphs of 

wave function in momentum and configuration spaces 

are shown in Fig. (2) and Fig. (3). 

 

Conclusion 

 
In this paper the two-nucleon bound state equation 

in momentum space has been presented.  Then the 

transformation of potential from coordinate space to 

momentum space has been expressed.  In this case it is 

focused on Yukawa potential only. 

It is found that the binding energy of two-nucleon 

system with Yukawa type potential numerically.  Our 

result of binding energy with Yukawa type potential is 

-2.221968MeV and value of root mean square radius 

is 1.992fm.  With Yamaguchi potential, the binding 

energy of two-nucleon system are calculated 

numerically and analytically.  These two results agree 

well up to three decimal places. 

The experimental values of binding energy and 

root mean square radius for deuteron are -2.224575 

MeV and 1.971 fm.  In studying the binding energy of 

two-nucleon stated with Yukawa potential, it gives the 

result which agrees with the experimental value. But, 

the binding energy with Yamaguchi potential is 

slightly less than the experimental value.  As a result, 

our result of the root mean square radius, 2.04 fm is 

slightly greater than the experimental value.  To 

reproduce the experimental value with Yamaguchi 

potential, one can adjust the value of λ as a 

pleasurable numerical exercise. 
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Figure 1. Characteristic graph of   and E. 

Table 1. The physical eigen value  ( ) as a 

function of E 

E (MeV) η (E) 

-0.1 1.33350271 

-0.5 1.20925279 

-1.0 1.12553967 

-1.5 1.06593639 

-2.0 1.01918327 

-2.5 0.98055972 

-3.0 0.94757186 

 

Table 2. Average values of K.E, P.E and B.E 

with Yukawa potential. 

KE (MeV) 10.712495 

PE (MeV) -12.934463 

BE  (MeV) -2.221968 

BE  (MeV) from our 

iterative method 
-2.221968 

 

Table (3) Average values of K.E, P.E and B.E 

with Yamaguchi potential. 

KE  (MeV) 10.773908 

PE  (MeV) -12.965895 

BE  (MeV) -2.191987 

BE (MeV) from our  

iterative method 
-2.191987 

 

 

Figure 2. The wave function of deuteron in 

momentum space. 

 

 

Figure 3. The wave function of deuteron in 

coordinate space. 
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