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Abstract 

 
The shell structure of  

208
Pb has been studied by solving Schrödinger equation numerically.  The truncated 

Taylor's series for second order differential equation was applied.  The energy levels of 
208

Pb were studied by 

using Harmonic Oscillator potential and Wood-Saxon potential.  When spin-orbit interaction was included, the 

energy levels splitting were clearly seen and could explain the magic numbers up to 82 correctly. 
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Introduction 

Most of the undergraduate students have to study 

nuclear structures and models.  Nuclear models have 

the property to help us to better understanding of 

nuclear structure which contains main physical 

properties of nuclei.  Nuclear model that have been 

proposed over the years by scientists were known as 

liquid drop model was used to explain the nuclear 

fission, Fermi gas model was used to describe the 

level densities of nuclei, shell model or also known as 

independent particle model and collective model was 

based upon the deformation of nuclei.  Obtaining the 

nuclear structure and energy levels of nuclei is one of 

the most criteria to improve investigations of nuclei 

properties.  The shell model is partly analogous to 

atomic shell model which describes the arrangement 

of electrons in an atom.   

Nuclear shell model has been found that the nuclei 

with proton number or neutron number equal to 

certain numbers 2,8,20,28,50,82 and 126 behave in a 

different manner when compared to other nuclei 

having neighboring values of Z or N.  Hence these 

numbers are known as magic numbers.  The shell 

model plays one of the most important and successful 

model because the shell model allows to know how 

the structure of nuclei changes and how the energy 

levels splitting which depends on potential. 

In this work we intend to undergraduate students 

who have to study nuclear shell model and the shell 

model can easily be understood with our method.  To 

study shell model, one must have to use Schrödinger 

equation which is second order differential equation.  

To solve the second order differential equation, we 

have applied Taylor's series which is very familiar 

with undergraduate students.  

Numerical differentiation 

The function to be differentiated or integrated will 

typically be a complicated continuous function that is 

difficult or impossible to differentiate or integrate 

directly, in this situation we have to use numerical 

method.  One of the numerical methods to 

differentiate a function is using Taylor‘s series 

expansion which is the easiest one. 

Taylor‘s expansion is  
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By using Eq.(1)  the truncated Taylor's expansion for 

first order forward and backward differences are as 

follows; 

forward difference formula: 

 
  ( )  
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  (  ) (2) 

backward difference formula: 
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The second order forward and backward differences 

formula can also be deduced from Eq.(1). 

Second order forward difference formula is 

 
   ( )  
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 (4) 

Second order backward difference formula is 

 
   ( )  

 (    )    (   )   ( )

  
 (5) 

Schrödinger equation 

Erwin Schrödinger, who derived the equation in 

1925, and published it in 1926, awarded the Nobel 

Prize in Physics in 1933 (Schrödinger, 1926).  In 

quantum mechanics, the analogue of Newton‘s 

equation is Schrödinger equation for a quantum 

system.  The equation is mathematically described as a 

linear partial differential equation, which describes the 

time evolution of the system‘s wave function. 
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The Schrödinger equation has two forms.  One is 

that in which time explicitly appears and describes 

how the wave function of a particle will evolve in 

time.  The other is the equation in which the time 

dependent has been removed and is known as the time 

independent Schrödinger equation.  For non-

relativistic quantum physics, the basic equation to be 

solved is the Schrödinger equation and which is of the 

following form; 
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We separate the Schrödinger equation into redial 

part and hence 
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where  ( )  
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For      (   )       

For       (   )      
 
 , where α is constant. 

Calculation of single particle energy levels of 
208

Pb 

The Schrödinger radial Eq.(7) can be written as  

    ( )

   
  ( ) ( )    (8) 

where  ( )  
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1 and it is 

known as kernel equation.  By substituting second 

order forward difference formula Eq.(4) in Eq.(8) and 

after rearranging it becomes 

     (    )       (    )      (  )
 * ( )    (    )+  

  
(9) 

By substituting second order backward 

difference formula Eq.(5) in Eq.(8) and it becomes 

    (    )      (    )     (  )
 * ( )   (    )+  

  
(10) 

Both Eq.(9) and Eq.(10) are the solutions of 

Schrödinger equation. 

The eigen-functions    (  ) and     (  ) and first 

derivatives    
 (  ) and     

 (  ) must be satisfied the 

continuity conditions. 
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where    is arbitrary point and mostly taken in the 

inner region. 

The physical    (  ) and     (  ) can be written 

as 
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where, A and B are constants.  Their respective 

derivatives are 
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By substituting Eq.(12) and Eq.(13) into Eq.(11) then 
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where    will be a scaling factor to be applied to 

    (  ). 

       (  )         (  )        (  )
     (  )  

(15) 

and B is a global factor that must be taken into 

account in the normalization process. 

To determine energy eingen value E of 

Schrödinger equation we find the match point for a 

given E, satisfying the following condition 
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Harmonic oscillator potential 

The harmonic oscillator potential is given by 
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where    (   ) is the angular frequency of the 

oscillator and m is nucleon mass.  The energy levels of 

the harmonic oscillators are  

 
   ( (   )    
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 where,  =0,1,2,3,… 

Wood-saxon potential 

Woods and Saxon introduced a potential to study 

elastic scattering of 20MeV proton by a heavy nuclei 

(Woods & Saxon, 1954).  The Woods-saxon potential 

is a reasonable potential for nuclear shell model and 

hence attracts lots of attention in nuclear physics ( 

Abe, K et al.,, 1996), (Garica, F et al.,, 1999) 

(Bespalova, Romanovsky, & Spasskaya, 2003),.  The 

Woods-Saxon potential plays an essential role in 

microscopic physics, since it can be used to describe 

the interaction of a nucleon with the heavy nucleus.  

The total potential is the sum of spin-independent 

Wood-Saxon potential central potential, a spin orbit 

potential and the Coulomb potential: 

  ( )    ( )     ( ) ⃗  ⃗    ( ) (19) 
  

  ( ) is the spin-independent central potential which 

is given by 
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where, R= nuclear radius;      
 

 ,       
   

 
    for protons,       

   

 
   for neutrons, 

         ,          , a       .  The 
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   ( ) is the spin orbit potential which can be written 

as 

 

   ( )     
 

  

   .
   
 
/

(     .
   
 
/)

  (21) 

where,            (Brown, 2005). 

The Coulomb potential   ( ) is  
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Numerical realization 

 
In this section, we will present numerical accuracy 

and the results.  This is very important in this research 

work because we have solved the second order 

differential Schrödinger equation directly with 

numerical difference method.  The second order 

numerical differentiation can easily enter the 

numerical error (round off and/or truncation error).  

Therefore, we have to well understand the numerical 

precision.  Firstly, we will study numerical accuracy 

of first order differential equation with forward and 

backward difference method.  We consider arbitrary 

function  ( )      first order differentiation results 

  ( )      and at     then   ( )       Here we 

have used Eq.(2) and Eq.(3) and compared this 

numerical results with analytical results which are 

shown in Table 1 and Table 2.  Again the results of 

second order forward and backward formula of Eq.(4) 

and Eq.(5) are shown in Table 3 and Table 4.  We 

have found that the numerical precisions are good in 

agreement with analytical result at h=0.001 for first 

order and h=0.01 for second order differential 

equation. 

 

Energy levels of harmonic oscillator potential 

 
After we have studied about the differential 

equation, we will continue to study the energy levels 

of protons and neutrons with Harmonic-oscillator 

potential, Woods-Saxon potential with spin 

independence central potential and Woods-Saxon with 

spin orbit potential.  For the first we will study the 

energy levels of       with Harmonic-oscillator 

potential.  We have found 1s(11.41MeV), 

2s(26.60MeV) and 3s(41.80MeV ) energy levels 

respectively.  For the ―p‖ and ―d‖ states, energy levels 

are 1p(19.99MeV), 2p(34.16MeV), 1d(26.58MeV) 

and 2d(41.76MeV) respectively.  We have also found 

the energy levels of ―f‖ and ―g‖ states which are 

1f(34.17MeV), 1g(41.76MeV) respectively.  . 

In 1s state two nucleons can occupy and in 1p state 

6 nucleons can occupy.  The energy difference 

between these two states is 7.57MeV and then we can 

say that the magic number 2 and (2+6)8 can be 

explained.  The energy value of 2s and 1d are the 

same and the energy difference between 1p and these 

two state is about 7.61MeV so 2s and 1d can be 

considered as a shell, hence two nucleons stay in 2s 

state and 10 nucleons stay in 1d state, hence twelve 

nucleons can be occupied in these two levels.  

Therefore totally twenty nucleons can be filled up to 

this shell (1s up to 1d).  Now the magic number 2, 8 

and 20 are correctly predicted.  Again, 2p and 1f are 

the same energy level and the energy gap between (2s, 

1d) and (2p, 1f) is about 7.56MeV and so we can 

predict the level (2p, 1f) will be a shell twenty 

nucleons can occupy in this level (2p, 1f).  The 

number of nucleons occupy up to this state (1s up to 

1f) is 40, but this number does not include in magic 

number series.  So Harmonic-oscillator model cannot 

be predicted magic number correctly. 

  

Energy levels of Woods-saxon potential 

 
The magic numbers cannot be correctly predicted 

with Harmonic Oscillator potential and hence we will 

continue to study the energy levels and magic 

numbers by using Woods-Saxon potential.  In the 

following we will use the nucleon instead of neutron 

or proton.  At first, we will use only central term.  We 

have found three  (   ) states such as 

1s(42.45MeV), 2s(31.57MeV) and 3s(16.62MeV) 

respectively.  For     and     we have also found 

the energy level states for each partial waves which 

are 1p(38.37MeV), 2p(24.97MeV), 3p(8.80MeV), 

1d(33.41MeV), 2d(17.91MeV) and 3d(1.12MeV) 

respectively.  For higher partial waves, we have found 

that 1f(27.73MeV), 2f(10.53MeV), 1g(21.38MeV), 

2g(2.97MeV) and 1h(14.45MeV) respectively. 

The energy difference between 1s and 1p is 

4.08MeV, so it can be considered as two different 

shells and magic number 2 and 8 can be explained.  

The energy difference between 2s and 1d state is 

1.84MeV so we can say that these two states to be 

formed a level and twelve nucleons can be occupied in 

this shell.  So the magic number 20 (1s up to1d) can 

be explained.  Although the energy difference 

between 2p and 1f is 2.76MeV, we can regard as one 

level and twenty nucleons can stay in this level.  The 

number of nucleons up to this level is forty nucleons 

but this number does not include in magic number.   

To overcome this difficulty we add spin orbit 

interaction term to the Wood-Saxon potential.  The 1p 

state splits into    
 

 (38.45MeV) and    
 

(38.11MeV) 

respectively.  Although the state     
 

is lower than 1  
 

 

by about 0.34MeV we can consider as a one level.  So 

the first four nucleons occupy in    
 

 state and the rest 

two nucleons occupy in    
 

 state, it is still valid 

magic number 8 (1s up to    
 

 ). 

The next level 1d is split into    
 

(33.55MeV) and 

   
 

(33.03MeV).  The state    
 

(31.57MeV) can 
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closely stay with    
 

 and    
 

 and therefore the third 

shell can be formed.  In this shell, six nucleons stay in 

   
 

, four nucleons stay in 1  
 

 and two nucleons stay 

in    
 

 and hence twelve nucleons occupy in this level, 

so the magic number 20 can be explained (   
 

 up to 

   
 

).  The energy difference between    
 

(31.57MeV) 

and    
 

(27.90MeV) is 3.67MeV therefore the state 

   
 

(27.90MeV) can be considered as a shell and eight 

nucleons fill in    
 

 and found magic number 28.  The 

states    
 

(27.21MeV),    
 

(25.14MeV) and 

   
 

(24.45MeV) form a shell and the six nucleons fill 

in    
 

, four nucleons fill in    
 

 and two nucleons fill 

in    
 

 and ten nucleons fill in    
 

(21.60MeV) hence 

twenty-two nucleons enter in this shell forming magic 

number 50.  Eight nucleons fill in    
 

(20.73MeV), six 

nucleons fill in    
 

(18.12MeV), four nucleons fill in 

   
 

(17.28MeV), two nucleons fill in    
 

(16.64MeV) 

and twelve nucleons fill in     
 

(14.72MeV), so thirty-

two nucleons enter in this level and forming magic 

number 82.  One can consider the level ordering for 

neutrons is the same as explained above.  The proton 

level ordering is shown in Fig. 1.  The left side in 

Figure 1 is the energy levels of harmonic oscillator, 

the middle is the energy levels of Wood-Sexon central 

potential only and the right side is Wood-Sexon 

central potential and spin orbit interaction.  Here we 

have dropped neutron level ordering diagram to save 

the pages. 

 

Conclusion 

 
In this research work, we have calculated the 

energy levels of proton and neutron of       with 

harmonic oscillator potential, Woods-Saxon spin 

independent central potential and Woods-Saxon spin-

orbit potential.  To find these energy levels, we have 

used Schrödinger equation and solved it numerically. 

First of all, single particle energy levels of a 

nucleon moving in a potential well is determined by 

using forward and backward numerical differential 

equation.  To solve forward and backward numerical 

differential equation, we have used FORTRAN90 

code. Forward and backward numerical differential 

equation can easily handle and so we have applied this 

method to the Schrödinger equation.  After that, we 

have studied the energy levels and shell structure of 

     .  In this work we have considered for proton 

and neutron separately.  After magic number 20 the 

energy gap for each sub-states are not too much 

different.  To solve this problem we have to increase 

the potential strength of spin-orbit interaction term.  In 

near future we will improve this potential strength and 

recalculate the shell structure of       again. 

Table 1.    ( )            by using two point 

forward formula. 

h   ( ) Total Error 

0.1 12.60999 0.60999 

0.01 12.06007 0.06007 

0.001 12.00485 0.00485 

0.0001 11.98769 0.01231 

Table 2.    ( )            by using two point 

backward formula. 

h   ( ) Total Error 

0.1 11.41000 0.59000 

0.01 11.94010 0.05990 

0.001 11.99436 0.00564 

0.0001 12.00199 0.00199 

Table 3.     ( )            by using second 

order forward formula. 

h    ( ) Total error 

0.1 11.99989 0.00011 

0.01 11.99722 0.00278 

0.001 11.44409 0.55591 

Table 4.     ( )            by using second 

order backward formula 

h    ( ) Total Error 

0.1 11.39998 0.60002 

0.01 11.94000 0.06000 

0.001 12.87460 0.87460 
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Figure 1. Neutron single- particle states in 
208

Pb 
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