
Test Path Optimization Algorithm based on

UML Activity Diagram

Aye Aye Kyaw, Myat Myat Min

University of Computer Studies, Mandalay

ayeayekyaw2009@gmail.com,myatiimin@gmail.com

Abstract

 Software testing is an activity of finding

defects during execution time for a program to

get non-defect software. Software testing plays a

vital role in developing software that is free from

bugs and defects. Manual test is a cost and time

consuming process although it may find many

defects in a software application. If the testing

process could be automated, the cost of

developing software could be reduced obviously

within a minimum amount of time. The most

critical part of the testing process is the

generation of test paths. The system focus on

model based test path generation. The paper

presents the time taken based on the simple and

swim lanes activity diagrams, and the different

concurrent activity diagrams according to the

experimental results. The system that is used test

path optimization approach is as an efficient test

generation technique to get the highest test

coverage by minimizing time.

1. Introduction

 Software testing is a crucial part of software

development to guarantee the verification and

validation process of the software. Software

testing divided by three main phases: test case

generation, test execution and test evaluation.

Test case generation is the core of any testing

process. There are many different approaches to

generate the test case and test data from different

models as an emerging type of model based

testing (MBT).

 Model based testing is testing in which the

entire test specification is derived in whole or in

part from both the system requirements and a

model that describe selected functional aspects of

the system under test. MBT derives test cases

from software models, not from source code. At

the earliest phase of Software Development Life

Cycle, no one who is user or developer can see

the software product; it is possible only at the

final stage of the product development. Any

errors/faults found out at the final stage, it spends

a lot of cost and time to repair. Model based test

path generation approaches identify faults in the

implementation at early design phase, reduce the

software development time, and inspire

developer to improve design quality.

 The rest of the paper is organized as follows:

The next section presents the processes of model

based test path generation. The third section

describes about the activity diagram that is one

of behavioral UML diagrams. The fourth section

discusses about test path optimization algorithm

(TPOA). Section 5 shows the experimental

results that are evaluated the search efficiency of

TPOA on the different systems that differ in size

and domain. The paper concludes at section 6.

2. Model Based Test Path Generation

 Various authors have used the following

architecture for generating the test path as shown

in the following steps:

Figure 1. Architecture of Model Based

Test Path Generation

 One or more UML diagrams are used as an

input. UML diagrams are the most common type

of models used to represent the

requirements based models. UML diagram is

used to automatically generate the Dependency

Table (DT) with all the activities. Dependency of

each node or activity on others is also shown

clearly in DT. The repeated activities in the

diagram are grouped into one symbol only

instead of having several symbols for the same

activity [2, 3, 4, and 9]. The Dependency Table

(DT) is accomplished to automatically generate

the Dependency Graph (DG). The symbols given

for each activity are used to name the nodes in

the DG where each node represents an activity in

the activity diagram. Specifically, if it contains

the previous node’s symbol then an edge from

the previous node to the current one is drawn in

the DG [2, 4, and 5]. The generated Dependency

Graph (DG) applied to obtain all the possible test

paths. A test path is composed of steps

represented by successive symbols/nodes

(representing the activities) forming a complete

path from the start node in DG to the end node

separated by arrows. Details are then extracted

from the DT and added to each node in the test

path to obtain all the final test cases. Besides, the

whole test case will be accompanied with its

initial input and final expected output [2, 3, 4, 5

and 9]. Reduction of test paths can be done in

two ways. One is reducing the test path at the

time of generating that avoids generation of

redundant test path, while the other one can be

seen as an optimization problem, as reducing the

test path implies optimization of the test suite

based on certain defined optimization criteria [6].

3. Activity Diagram

 As the state chart diagrams focus on the state

of an object during a particular process, an

activity focuses on the flow of activities involved

in a single process. It shows how the activities

are interdependent with each other. An activity

diagram is a special case of state chart diagram

in which the states are actions.

 An important characteristic of activity

diagrams is their ability to show dependency

between activities. The activity diagrams can be

of two types:

• Simple activity diagram: This diagram

simply resembles the process flow with

concurrent processes representation. It will not

show the actors or the classes which are

responsible for each of the processes.

• Swimlane activity diagram: This diagram

simply resembles the process flow with

concurrency operations, but also shows the

actors or the classes involved in the process [7].

3.1. Element of Activity Diagram

An activity diagram has two kinds of

modeling elements: Activity nodes and Activity

edges.

Activity edges: Edges represent flow of

control through the activity. It connects the

individual components of activity diagrams.

Activity nodes: There are two main kinds of

nodes in activity diagrams:

• Action nodes (AN): Action nodes consume

all input data/control tokens when they are ready

to generate new tokens and send them to output

activity edges.

• Control nodes (CN): Control nodes route

tokens through the graph. The control nodes

include constructs to start the diagram, to

terminate the diagram, to choose between

alternative flows (decision/ merge), to split or

merge the flow for concurrent processing (fork /

join) [2].

Figure 2. Activity Control Node

Overview [8]

3.2. Concurrent Activity Diagram

Activity diagrams are different from flow

diagrams in the fact that activity diagrams

express parallel behavior which flow diagrams

cannot express. Activity diagrams can be

classified into two types based on concurrency,

non-concurrent activity diagrams and concurrent

activity diagrams.

A fork and join pair in an activity diagram are

used to process activities in parallel. Four

categories of fork and join pairs are defined by

[10] namely atomic, simple, nested, and

branched fork and join pairs. Simple fork join

pairs activity diagrams are shown in Figure 2.

Figure 3. Activity Diagrams with Simple

Fork and Join Pairs

 Figure 3 presents the nested fork and join

pairs activity diagrams that are nested fork join

pairs, nested fork join with alternate paths and

nested fork join with loop.

Figure 4. Activity Diagrams with Nested

Fork and Join Pairs

4. Test Path Optimization Algorithm

 The proposed system uses the activity

diagram as an input for the automated algorithm

of generating test paths.

Input: XMI file for Activity Diagram.

Output: all possible test paths and the best test path.

begin

k:=0; j:=0; countJoinIn:=0; countForkOut:=0;

countDecision:=0;

totalDecision:=total decision node of the AD;

InitialEdge:= the edge from the initial node;

TPkj++ := source node of InitialEdge;

myNode= target node of InitialEdge;

SearchEdge(myNode, InitialEdge);

OptimalTestPath();

 End

Figure 5. Algorithm for Automatic Best

Test Path Generation

4

8 9

1

2

3

5

6

1

2

10

6

7

3

4

5

8

1

2

3

4

5 10

9

8

7

6

Activity

final node

initial

node

decision node

merge node join

node
fork node

3

4

5

6 8

7 1

2
1

5

2

3

4 6

8

3

6 7

1

2

4

 SearchEdge(Node s, Edge ee)

 begin

nodeType := type of s node;

 If (nodeType != FinalNode &&

 (k<=totalDecision*2))

For each edge ei Є E // i=1,2,…,n

sNode := source node of edge ei;

tNode := target node of edge ei;

if (sNode== s)

if (nodeType==Action ||

nodeType==Merge)

Add s to TPkj++ ;

else if (nodeType==Fork)

countForkOut : = s.getCountNode();

countForkOut++;

s.setCountNode(countForkOut);

if (countForkOut ==1)

Add s to TPkj++ ;

 endif

else if (nodeType==Join)

countJoinIn := s.getCountNode();

countJoinIn++;

s.setCountNode(countJoinIn);

if (countJoinIn == s.getCountIn())

Add s to TPkj++ ;

endif

else

if(countDecision<=totalDecision*2)

countDecision++;

 Add s to TPkj++ ;

endif

endif

SearchEdge(tNode, ei);

endif

endfor

else

Add s to TPkj++ ; k++;

countDecision := 0;

Set count for Fork node and Join node with 0;

endif

 end

Figure 6. Algorithm of function

SearchEdge

The Modelio Software has the option of

exporting the UML diagram to XMI file. Figure

4 shows the model based test path generation

algorithm. This system generates all possible test

paths based on the extracted information from

XMI file according to the SearchEdge function

as shown in Figure 5. And then, the system

optimizes the best test path among from these

generated test paths by using the

OptimalTestPath function as shown in Figure 6.

Finally, the best test path to be tested first can be

got within a minimum amount of time.

OptimalTestPath()

begin

 maxControlNode:= total control node of TP0;

 maxTotalNode := total node of TP0 ;

 BestPath := TP0 ;

 for each test path TPi Є TP // i=1,2,…n.

 curControlNode := total control node of TPi ;

 curTotalNode := total node of TPi ;

if (curControlNode > maxControlNode)

 if (curTotalNode>= maxTotalNode)

BestPath := TPi ;

maxControlNode := curControlNode ;

 maxTotalNode := curTotalNode ;

else

BestPath := TPi ;

maxControlNode := curControlNode ;

endif

endif

if (curControlNode == maxControlNode)

if (curTotalNode>= maxTotalNode)

BestPath := TPi ;

maxControlNode := curControlNode ;

maxTotalNode := curTotalNode ;

endif

endif

endfor

Display BestPath as the optimal test path;

End

Figure 7. Algorithm of function

OptimalTestPath

5. Experimental Results

 This section describes the experimental

evaluation results in TPOA. It compares their

performance while generating test paths for any

activity diagram. All execution times are

measured with nanoseconds. The sources of

some tested activity diagrams in this system are

shown in Appendix A.

5.1. Simple and Swimlanes Activity

Diagrams

 The activity diagrams can be two types:

simple activity diagram that is without swim

lanes and swim lanes activity diagram that is

with swim lanes as described in Section 3. Table

1 describes about the different results of simple

and swim lanes activity diagrams. In that table,

total test paths, total swim lanes, execution time

of TPOA for the best test path and execution

time for all generated test paths are shown.

Table 1. Difference results of simple and

swim lanes activity diagrams
DNo. Total

Test

Paths

Total

swim

lanes

eTime for

TPOA

(nanoseconds)

eTime

(nanoseconds)

D18 6 2 143366 48372729

D19 6 0 126995 48035021

D20 4 2 84123 47260488

D21 4 0 75370 46190746

D49 5 5 101142 48138812

D50 5 0 98287 47117920

 The diagrams with swim lanes are D18, D20

and D49. The simple activity diagrams are D19,

D21 and D50, and these are same information

with the previous diagrams, but without swim

lanes. The execution time of the best test path of

the diagram with swim lanes is taken more than

the simple activity diagram. The execution time

of the generated all test paths of the simple

diagrams is spent less than the diagram with

swim lane.

5.2. Concurrent Activity Diagram

 In this section, the execution time of TPOA is

significant different when the difference six

types of concurrent activity diagrams such as

D40, D41, D42, D43, D44 and D45, are

analyzed. eTime in Table 2 represents the

execution time for generating all possible test

paths and eTime for TPOA represents the

execution time for optimizing the best test path.

D40 represents the nested fork and join paired

with a loop, D41 is the nested fork join with

alternate paths and D42 presents the nested fork

and join pair. D43 also represents the simple fork

join with a loop, D44 presents the simple fork

and join pair with alternate paths and D45 is the

simple fork join pair. These concurrent activity

diagrams information and the time taken by

TPOA are shown in Table 2. The processing

time for TPOA may differ slightly from all six

diagrams. Overall, it can be seen that the

execution time for TPOA takes lesser in only the

fork join pair diagrams for both simple and

nested than in the other fork join pair diagrams.

At both simple and nested, the fork join with a

loop is more consuming time for TPOA than the

fork join pair with alternate paths. The execution

time for all generated test paths is directly the

ratio to the execution time for TPOA.

Table 2. Information of the difference concurrent activity diagrams
 Total

Nodes

Total

Edges

Total

Control

Nodes

Total

Decision

Nodes

Total

Test

Paths

eTime for

TPOA

(nanoseconds)

eTime

(nanoseconds)

D 40 14 16 7 1 2 56570 43630684

D 41 14 16 8 1 2 54709 42487880

D 42 14 15 6 0 1 34969 40703304

D 43 14 15 5 1 2 55247 39629678

D 44 14 15 6 1 2 50843 39583086

D 45 14 14 4 0 1 35086 38710367

 Most of these activity diagrams have the total

test paths based on total decision nodes in each

diagram. The more decision nodes, the more

total test paths generate.

 These tested diagrams are divided into six

different decision node groups. Non decision

node group has six diagrams. One decision node

group consists of twenty diagrams. Two decision

nodes group has also seventeen diagrams and

three decision nodes group contains thirteen

diagrams. There are seven diagrams in four

decision nodes group and one group that has

more four decision nodes includes four diagrams.

To be more visuals based on what types of

diagram information, many experiments are

performed upon the ascending order for each

type that is either the execution time, total nodes,

total control nodes, total test paths or total swim

lanes of each diagram.

 In non decision node group, the information

about the simple and swim lanes activity

diagrams is shown in Figure 7. D63 uses the

highest execution time of TPOA for the best test

path because it has the highest number of swim

lanes although other diagrams in this group have

either total nodes or total control nodes more

than it. All simple diagrams that have the same

total test paths take a slight different to the

execution time of TPOA based on their total

nodes and total control nodes as shown in Figure

8.

Figure 8. Diagram Information for Non

decision node Group

Figure 9. Execution time of TPOA for

Non decision node Group

In the over four decision node group, the

total number of nodes, control nodes, test paths

and swim lanes are shown in Figure 9. Figure 10

illustrate the execution time of TPOA system.

The execution time of TPOA takes directly ratio

to the total test paths at all simple diagrams. This

trend of the execution time of TPOA is similar at

the ascending order of something that must be

the total number of nodes, control nodes, swim

lanes or test paths of this group.

Figure 10. Diagram Information for

Over four decision node Group

Figure 11. Execution time of TPOA for

Over four decision node Group

0

5

10

15

D55 D34 D14 D45 D42 D63

n
o

.
o

f
c
o

u
n

t

Activity Diagram

Total Nodes Total Control
Total Test Paths swimlanes count

3.24

3.55 3.49 3.51 3.50

3.79

2.80
3.00
3.20
3.40
3.60
3.80
4.00

D55 D34 D14 D45 D42 D63

n
a
n

o
se

c
o

n
d

s
1

0
4

Activity Diagram
eTimeTPOA

0
10
20
30
40
50
60

D9 D60 D48 D22

n
o

.
o

f
c
o

u
n

t

Activity Diagram

Total Nodes Total Control
Total Test Paths swimlanes count

16.71
10.69

29.46
33.91

0.00

10.00

20.00

30.00

40.00

D9 D60 D48 D22

n
a
n

o
se

c
o

n
d

s
1

0
4

Activity Diagram

eTimeTPOA

6. Conclusion

 Good software testers cannot avoid the

models. MBT has emerged as a useful and

efficient testing method for realizing adequate

test coverage of systems. The TPOA system can

generate not only efficient test paths but also the

best test path to lesser effort. This helps in saving

time and increases the quality of generated test

paths. Besides, the TPOA approach reduces the

cost of software development and improves

quality of the software. The TPOA system also

gives the highest performance of optimized test

path generation. The system can perform for test

path optimization from only activity diagram.

The TPOA system is suitable for any activity

diagram i.e. simple fork-join and nested fork-join

activities but this activity diagram must obey the

standard and rules of UML activity diagram. The

system limits the diagrams that are impossible

repeatedly nested loops.

References

[1] M. Khandai, A. A. Acharya, D.P. Mohapatra,

2011. “A Survey on Test Case Generation from UML

Model”. International Journal of Computer Science

and Informational Technologies, Vol. 2(3).

[2] P. N. Boghdady, N. L. Badr, M. Hashem and M. F.

Tolba. “A Proposed Test Case Generation Technique

Based on Activity Diagrams”. International Journal of

Engineering and Technology, June, 2011. Vol. 11, No.

03.

[3] A.V.K. Shanthi and G. Mohan Kumar.

“Automated Test Cases Generation from UML

Sequence Diagram”. International Conference on

Software and Computer Applications (ICSCA 2012),

Vol. 41, Singapore.

[4] G. Bhattacharjee and P. Pati, “A Novel Approach

for Test Path Generation and Prioritization of UML

Activity Diagrams using Tabu Search Algorithm”.

International Journal of Scientific and Engineering

Research, Volume 5, Issue 2, February 2014.

[5] S. Dhir, 2012. “Impact of UML Techniques in Test

Case Generation”. International Journal of

Engineering Science and Ad-vanced Technology,

March–April. Vol. 2, Issue 2, pp. 214-217.

[6] D. Jeya Mala, E. Ruby, V. Mohan, “A Hybrid Test

Optimization Framework- Coupling Genetic

Algorithm with Local Search Technique”. Computing

and Informatics, Vol. 29, pg. 133–164, 2010.

[7] J. Mala and Geetha, “Object Oriented Analysis and

Design Using UML”, Tata McGraw-Hill Education,

2013.

[8] http://www.uml-diagrams.org/activity-diagrams-

controls.html.

[9] A.V.K. Shanthi; G. MohanKumar. “A Novel

Approach for Automated Test Path Generation using

TABU Search Algorithm”, International Journal of

Computer Applications (0975 – 888) Volume 48–

No.13, June 2012.

[10] Xu, D., Li, H., Lam, C.P., 2005 “Using Adaptive

Agents to automatically Generate Test Scenarios from

the UML Activity Diagrams”, Proceedings of the 13th

Asia-Pacific Software Engineering Conference.

Appendix A

Table A.1 Source of Activity Diagrams

 DNo Diagram Name Address/Title

D1 accepthomeinsuranceproposal Verification and Validation for Quality of UML 2.0 Models

D2 airline reservation http://www.aoua.com/vb/showthread.php?t=347755

D3 android location finder http://vahidmlj.blogspot.com/2012/07/location-finder-my-first-experience-on.html

D10 deposit slip processing https://conceptdraw.com/a1665c3/preview

D12 buying ticket http://www.programsformca.com/2012/03/uml-diagrams-for-railway-reservation.html

D13 checkin agent http://flylib.com/books/en/4.445.1.113/1/

D14 employee web service http://www.codeproject.com/Articles/12755/Business-Process-Execution-Language-for-

Web-Service

D15 flight reservation http://www.contrib.andrew.cmu.edu/~roehrig/95706/Tutorial/addiagramcomplete.png

D16 generic enabler http://wiki.fi-xifi.eu/Public:D4.1

D17 internet banking http://www.sourcecodesolutions.in/2011/02/activity-diagram-online-banking-system.html

D18 juke box customer activity

diagram

http://conferences.embarcadero.com/article/32151

D19 juke box customer activity

diagram without swimlanes

http://www.c-sharpcorner.com/uploadfile/shiv prasadk/unified-modeling-language-uml-part-

ii/Images/WithoutSwimlanes.jpg

D21 library management system

without swimlanes

http://www.csci.csusb.edu/dick/samples/uml0.html

D22 Online banking http://creately.com/diagram/example/hg3y05i1/Online%20Banking%20Activity%20Diagra

m

D23 online hospital management

system application

http://www.sourcecodesolutions.in/2011/04/uml-online-hospital-management-system.html

D25 single signon for google apps http://www.uml-diagrams.org/activity-diagrams-examples.html

D30 online railway reservation

system

http://www.slideshare.net/muthumeenakshim/activity-diagram-railway-reservation-system

D32 order management system http://www.tutorialspoint.com/uml/uml_activity_diagram.htm

D38 Restaurant bill http://itkaka786.blogspot.com/2012/11/activity-diagram-for-restaurant-exam.html

D39 Xamdiagram http://www.infragistics.com/community/blogs/blagunas/archive/2014/04/22/what-s-new-in-

infragistics-wpf-and-silverlight-14-1.aspx

D48 servlet container https://click.apache.org/docs/user-guide/htmlsingle/click-book.html

D49 WithSwimlanes http://www.ibm.com/developerworks/rational/library/content/RationalEdge/jan02/t_activity

Diagrams_fig1.gif

D50 WithoutSwimlanes http://www.c-sharpcorner.com/uploadfile/shiv prasadk/unified-modeling-language-uml-part-

ii/Images/WithSwimlanes.jpg

D51 9 http://www.simventions.com/whitepapers/uml/activitydiagram.jpg

D52 online banking system http://www.javaengineeringprograms.com/uml-diagrams-for-library-management-system/

D53 sky cannoe flight http://creately.com/diagram/example/i39xaodg1/Online%20Banking%20system

D54 Facebook Login http://creately.com/diagram/example/i6vztm043/Sky+Cannoe+Activity+Diagram

D55 Interactive Report Viewer http://creately.com/diagram/example/gto0x9981/Facebook+Login+Activity+Diagram

D56 Book Inventory http://www.slideshare.net/creately/activity-diagram-templates-by-creately

D57 Book Renting System http://www.slideshare.net/creately/activity-diagram-templates-by-creately

D58 Birth Certificate http://www.slideshare.net/creately/activity-diagram-templates-by-creately

D59 Reporting Sub System http://www.slideshare.net/creately/activity-diagram-templates-by-creately

D60 Student Enrollment System http://www.slideshare.net/creately/activity-diagram-templates-by-creately

D61 ATM Bank System http://creately.com/blog/examples/activity-diagram-templates/

D62 Hospital Management System http://www.javaengineeringprograms.com/uml-diagram-for-hospital-management-system/

D63 Products Order System http://www.slideshare.net/alirezasafian1/6activity-diagrams

D64 Joined Bank http://www.slideshare.net/alirezasafian1/6activity-diagrams

D65 Library System http://www.slideshare.net/alirezasafian1/6activity-diagrams

D66 Exam Result Grading http://www.slideshare.net/alirezasafian1/6activity-diagrams

http://creately.com/diagram/example/hg3y05i1/Online%20Banking%20Activity%20Diagram
http://creately.com/diagram/example/hg3y05i1/Online%20Banking%20Activity%20Diagram
http://www.infragistics.com/community/blogs/blagunas/archive/2014/04/22/what-s-new-in-infragistics-wpf-and-silverlight-14-1.aspx
http://www.infragistics.com/community/blogs/blagunas/archive/2014/04/22/what-s-new-in-infragistics-wpf-and-silverlight-14-1.aspx
https://click.apache.org/docs/user-guide/htmlsingle/click-book.html
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/jan02/t_activityDiagrams_fig1.gif
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/jan02/t_activityDiagrams_fig1.gif
http://www.simventions.com/whitepapers/uml/activitydiagram.jpg

