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Abstract 
The  nuclear  structure  calculation  of  kaonic  helium  atom  and  kaonic  helium  nucleus  

by  assuming  the  two-body  system  which  is  composed  of  kaon  and  helium  core  

nucleus.  We  used  the  Coulomb  potential  for  kaonic  helium  atom. It  is  found  that  

the  binding  energy  of  the  kaonic  helium  atom  is  0.046  MeV.  Structure  of  konic  

nuclear  system  with  Akaishi’s  optical  potential was also studied.  The binding  energy  
of  kaonic  nuclear  state  is  found  to  be  37.046  MeV. 
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 Introduction 
 An  exotic  atom  is  the  analogue  of  a  normal  atom  in  which  one  or  more  
of  the  negatively  charged  electrons  found  in  an  ordinary  atom  are  replaced  by  
other  negatively  charged  particle,  such  as  a  muon  or  a  pion. 

A  kaonic  atom is  formed  when  an  incident  negatively  charged  particle  is  
stopped  in  a  target  and  captured  into  a  high  atomic  Bohr  orbit the  nucleus,  
replacing  one  of  the  outer  electrons. 

Kaonic  atoms  and  kaon  nuclei  carried  the  knowledge  of  
K  nucleon  

interaction  in  nuclear  medium.  This  knowledge is  important  to  discover  the  kaon  
properties  at  finite  density  and  to  determine  the  constraints  on  kaon  
condensation  in  high  density  matter.  Experimental  studies  of  the  kaonic  nuclear  

states  using  in-flight  N),K(
   reactions  were proposed  and  performed  by  

Kishimoto  and  his  collaborators.  Experiments  employing  stopped  N),K(
   reactions  

were  carried  out  by  Iwasaki  and  their  collaborators.  In  this  experiment,  it  was  
some  possible  indications  of  the  existence  of  kaonic  nuclear  states  with  

significantly  narrow  widths were found.  Another  indications  of  the  
K pp  bound  

state  were  reported  by  the  FINUDA  experiment.  There  are  also  theoretical  studies  
of  the  structure  and  information  of  kaonic  nuclear  states  related  to  these  
experimental  activities.  It  should  be  noted  that  these  theoretical  studies  predict  
the  possible  existence  of  ultra-high  density  states  in  kaonic  nuclear  system.  A  
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critical  analysis  of  the  latest  stopped  
K experimental  data  was  also  reported  by  

Oset  and  Toki.  Thus,  under  these  theoretical  and experimental  conditions,  it  is  
very  significant  to  observe  the structure  of  kaonic  atom  and  kaonic  nuclei. 
 
  Kaon-Nucleon  Interaction  

In  order  to  solve  the  α)-K(
   two-body  system,  it  is  necessary  to  know  

the  α)-K(
   interaction.  We  use  the  optical  potential  for  α)-K(

   interaction  of  

Akaishi et al.,  which  is  derived  form  a  phenomenology  N)-K(   interaction.  The  

two-body  N)-K(   interaction  is  constructed  so  as  to  reproduce  the  free  N)-K(   

interaction.  The  I=0,  N)-K(   interactions  are  described  as  follows 

     2I

D
)fm0.66(r/expV(r)

KN

1
V        (1) 

with  0I

D
V

 =  436  MeV.  The  g  matrix  in  a  nuclear  medium  is  defined  by 
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The  binding  effects  of  K   and  N  are  properly  taken  into  account  through  

the  starting  energy,  stE  which  is  a  quantity  independent  of  k.  The  NN
QT̂Q   

prescription  is  employed  for  intermediate  states  in  the  g  matrix  equation.          
The  optical  potential  for  deeply  bounded  nuclear  states,  starting  energy  is  taken  
to  be  -110  MeV  and  g  matrix  is 

    30I

0
fmMeV0i1704g 

  .       (3)     

The  optical  potential  between  K  and  the  core  nucleus  is  constructed  by  
folding  g  matric  of  (2)  with  density  (r)ρ , 
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where  the  parameter  β   is  related  to  the  rms  nuclear  radius  )R( core   as 
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or  in  terms  of  harmonic  oscillator  strength  ωβ
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energy,   

K
E  is  obtained  by  solving  the  K -core  relative  motion 
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repeatedly  in  such  a  way  that Est,  g  and  
K

E  become  to  be  self-consistent  at  a  

given  .  The  optical  potential  for  α)-K(   interaction  which  is  obtained  in  the  
above  mentioned  procedure  is 

      2

αK
fm)1.18/r(exp)22i285((r)V        (8) 

with  ω =  30  MeV.  The  potential  is  displaced  in  figure (1). 
 

Two-Body  Schroedinger  Equation  for αK -


 system 

In  order  to  calculate  the  energy  eigen  value  of  α)-K(
   we  solved  

Schroedinger  equation,  
ΨEΨH   ,  

ΨEΨV)(T            (9) 
where  T  and  V  are  kinetic  energy  and  potential  energy  operator.  H  is  Hamiltonian  
operator,  E  is  energy  eigen  value  and    is  eigen  vector. 

Since  the  interaction  between  kaon and  the  core  nucleus  He
4

2
 is  central  

force,  we  used  the  spherical  coordinate  for  the  wave  function, 
Φ(φ)Θ(θ)R(r))r(Ψ 


.                 (10) 

where  R(r)  is  the  radial  part  and Φ(φ)Θ(θ)  is  the angular  part.  By  using  the  
separable  method,  the  following  radial  equation  is  obtained, 

   )u(rEu(r)
r

1)(

2μdr

d

2μ
-

2

2

2

22




 






 
.     (11) 

where,  u(r) =  r R(r),  αM =  mass  of α  core  nucleus,   

K
M =  mass  of  kaon,   

KαKα MM/MMμ  =  the  reduced  mass 

We  have  to  solve  eq.  (11),  we  expand  the  wave  function  u(r)  with  Gaussian  
basis, 

   
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 bN

j 1
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                 (12) 

where,  cj’s  are  expansion  coefficients,  bj’s  are  range  parameter  and  Nb  is  the  
number  of  basis  all  of  which  are  to  be  adjusted  in  the  calculations.  bj’s  are  
chosen  to  be  geometric  progression  as  follow, 

b2/ b1 = b3/ b2 =  b4/ b3 = … = c,   
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The  Norm  Matrix  Element 
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The  Kinetic  Energy  Matrix  Element 
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The  Centrifugal  Potential  Energy  Matrix  Element 
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The  Potential  Energy  Matrix  Element 
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
ij

H   is  the  Hamiltonian  matrix  element 
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The  Schroedinger  equation  can  be  written  as  the  following  matrix  equation. 
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[H] [c] = E [N] [c] 
    [N]-1 [H] [c] = E [c] 
    [A] [c] = E [c] 
where  [H]  and  [N]  are  square  matrices  and  [c]  is  a  column  matrix.  An  eigenvalue  
equation  with  [A]  =  [N]-1 [H],  [N]  and  [H]  are called  the  norm  matrix  and  the  
Hamiltonian  matrix.  We  used  the  power  inverse  iteration  method  to  calculate  
eigenvalues  E  with  corresponding  eigenvectors  c.  The  necessary  computations  are  
performed  by  writing  a  Fortran  software. 
 

Root-Mean-Square Distance of Kaonic-Helium Atom 
In  our  calculation,  we  used  the  radial  wave  function  which  is  expanded  as 
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To  evaluate  the  normalization  constant,  the  normalization  condition  is  1druu 
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where,  u  is  the  normalization  wave  function  and  A  is  the  normalization  constant.  
We  calculated  the  Root-mean-square  distance  of  kaonic-helium  atom  as  follows 
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Root-mean-square  distance  =  2
r  

 
Conclusion 

The  binding  energy  of  kaonic  helium  atom  and  kaonic  helium  nucleus  has  
been  calculated  by  solving  the  two-body  Schroedinger  equation  with  Gaussian  
basis  wave  function.  Where  b1  and  bN  are  Gaussian  basic  parameter  and  N  is  the  
number  of  basic.  We  used  the  parameters  for  this  computations  are  N=40,   b1=0.1  
fm  and  bN =20  fm.  The  size  of  the  matrix  to  be  diagonalized  is  NN  and  the  
total  number  of  matrix  elements  is  (1600).  

 In  our  calculation,  we  used  the  Coulomb  potential  for  kaonic  helium  atom  
and  optical  potential  for  kaonic  helium  nucleus.  The  binding  energy  of  kaonic  
helium  atom  is  0.046  MeV  and  root-mean-square  distance  is  27 fm.  For  kaonic  
helium  nucleus,  the  binding  energy  is  37.046 MeV,  level  width  is  8.71 MeV  and  
root-mean-square  distance  is  1.32 fm.  The  density  distribution  of  relative  motion  
between  kaonic  helium  atom  is  shown  in  figure  (2). 

 

             
 

 
Figure  1.    optical  potential  where  solid  line  and  dotted  line                          
                represent  the  imaginary  part  and  the  real part 
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