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1. INTRODUCTION 

A simple depth-averaged flow model is derived considering the deformation of stream-wise velocity to reproduce the 
characteristics of hydraulic jump. Initially, representing the stream-wise velocity distribution using a power series of 
dimensionless depth, the dependency of coefficients in the power series on the spatial coordinate is formulated using  2-
D continuity and momentum equations. The water surface profile equation for a hydraulic jump is deduced  using the 
depth-averaged continuity and momentum equation with iteration procedures. Then the calculated approximate solutions  

for water surface profiles are verified with the previous experimental data. 

2. MODEL FORMULATION 
The 2-D horizontal momentum equation is adopted in 

deriving the approximate solution for a hydraulic jump (see 
Fig.1). 
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where ),( yx special coordinates, u  horizontal velocity 

component, v  vertical velocity component, h  water depth, 
g  gravitational acceleration,  myD = eddy diffusivity

 
( Uh' ),

U depth averaged velocity.  
The stream-wise velocity distribution is assumed to be represented by the power series Eq.(2). 
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The vertical velocity distribution is derived integrating the 2-D continuity equation as Eq.(3).  
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Substituting Eq.(2) and Eq.(3) into Eq.(1) leads to the relation between 2u  and the other variables as Eq.(4). 
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Although Madsen et al.1) neglected the effect of bottom friction, the effect of bottom friction on the velocity 

distribution is taken into account through the relation between 0u , 1u  and the friction velocity *u  as **0 uru   and 

Uuu '2
*1   where *r is a constant.  

The depth averaged momentum equation is obtained integrating Eq.(1) from the bottom to the water surface as Eq.(5). 
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where xb  is bottom shear stresses. 
    Although the bottom friction term on the right side of Eq.(5) is neglected for simplicity, the method of analysis in this 
study is applicable to the case with the term.  
    The unit width discharge q and the momentum flux M0 are defined as Eq.(6) and (7).  

0 1 2

1 1

2 3

q
u u u

h
                   (6)               22

22120
2
110

2
00 2

1

5

1

2

1

3

2

3

1
ghuuuuuuuuuhM 






 

             
(7) 

    
Starting with Uu 0 as the first step, the iteration procedures with Eq.(6) are applied to obtain better approximation for 

210 and, uuu . Eq.(8) is the momentum equation in non-dimensional form obtained after repeating the iteration procedures 

three times, where depth.critical,/',/'  ccc hhxxhhh . 
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Fig.1 Coordinate system and explanation of symbols
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3.   DERIVATION PROCESSES OF APROXIMATE SOLUTIONS FOR HYDRAULIC JUMP 

Referring to Fig. 1, the profiles for the negative and positive regions are calculated separately to find out the 
approximate solutions considering the boundary conditions at the origin(x=0). The surface profiles are assumed to be 
represented in the following equations with three terms of exponential functions.  

For the negative region 0x :      1 1 1 2 1 3 1exp exp 2 exp 3n n nh h U x U x U x                                            
(9a) 

For the positive region 0x :       2 1 1 2 1 3 1exp exp 2 exp 3p p ph h U x U x U x      
                   

(9b) 

where 1h and 2h are the sequent depths before and after the jump. the coefficients 1 2 3 1 2 3, , , , ,n n n p p pU U U U U U  and the 

constants 11,  are calculated taking into account of the boundary conditions at the upstream and downstream boundaries. 

For the upstream end uxx  : 0'/',' 22
1  dxhdhh

                                                                              
(9a) 

For the downstream end x : 0'/',0'/',' 22
2  dxhddxdhhh  

                                                    
(9b) 

   All coefficients are calculated equating 3322 '/'and'/','/' dxhddxhddxdh of the negative and positive regions at the origin. 

4. CALCULATED RESULTS 

The calculated surface profiles with two and three exponential terms are compared with the previous experimental 
data used by Madsen et al. (1983) in Fig.2. The surface profiles with different parameters are displayed in Fig. 3.  It is 
pointed out that the values of 𝛼 0.09 and 𝑟∗ 10 gives the reasonable profilein accordance with the experimental 
results. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
5.  CONCLUSIONS 

It can be pointed out that the approximate solutions of water surface profiles show shows good agreement with the 
experimental results, although the velocity distributions of the solutions should be compared to the experimental ones. 
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Fig.2 Comparison of approximate solutions and experiments 
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Fig.3 Comparisons of surface profiles with different parameters 
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