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Abstract 
The nuclear form factor is the Fourier transform of the spatial charge 
distribution, )(rρ . This provides a powerful tool for determining the 
spatial charge extent and shape of the nuclei. The nuclear form factors for 
various charge distributions are analytically derived in this work. The 
form factors are also calculated by using the method of moment for 
different forms of nuclear charge distributions and compared with the 
other results.  
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Introduction 
The analysis of electron scattering data provides most valuable information 
about the charge distribution in atomic nuclei. Elastic electron scattering for 
probing nuclear structure was pioneered in 1953 at the Stanford Linear 
Accelerator by Hofstadter and collaborators. Elastic electron-nucleus 
scattering has been for many years a very useful tool to investigate the size 
and shape of stable nuclei. Concerning the charge distributions of nuclei, it 
is known that their most accurate determination can be obtained from 
electron-nucleus scattering. Since the nucleus is not a point particle, any 
mathematical treatment of scattering needs to take into account the spatial 
distribution of charge and mass within the nucleus. The spatial extension of 
a nucleus is described by the nuclear form factor. The form factor is the 
Fourier transformation of the nuclear density and describes the extension of 
the nucleus. There are several ansatz for determining the form factor by 
assuming typical )(rρ  functions. This paper reviews briefly the basic 
formulas used to calculate the form factors for some typical nuclear density 
distributions. This paper also presents and compares the results of analytical 
and numerical calculations of nuclear form factors, based on tables of 
electron charge distributions. 
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Nuclear Charge Densities and Corresponding Form Factors 
The spatial extension of a nucleus is described by the nuclear form factor. 
The role of the nuclear form factor is easily understood by looking at the 
elastic scattering of electrons off nuclei (B. Povh et al., 2008). The nuclear 
form factor is the Fourier transform of the spatial charge distribution, )(rρ  
of a nucleus as    

∫ ′′= ′⋅ rdreqF rqi  3)()( ρ               (1) 

This provides a powerful tool for determining the spatial charge 
distributions of the nuclei responsible for the scattering. The special case of 
a spherically symmetric charge distribution can be easily analyzed as   
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This expression is a useful form of the form factor. This means that for a 
complete knowledge of )(r ′ρ  the form factor F(q) is known for all values 
of the momentum transfer.  

The Method of Moment for Form Factors 
The sine function in equation (2) is expanded in the Taylor series,  
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The effect of nuclear distribution on nuclear form factors then becomes 

proportional to the moments kr 2  of the distribution. The nuclear form 

factors can be adequately described by the moments kr 2  of the 
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distribution. Varying the parameter in the Fermi distribution makes it 

possible to study the influence of the higher nuclear moments, kr 2 , 

given to a good approximation (M. G. H. Gustavsson and A.-M. 
Martensson-Pendrill, 1998) by the relations    
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Model-dependent Form Factors 
There are several approaches for determining the nuclear form factor by 
assuming nuclear density functions )(rρ  of the types: e.g. homogeneously 
charged sphere, exponential, Yukawa, or Woods-Saxon behavior. They can 
be grouped into the model-dependent approaches. Another one is the 
model-independent approaches such as the method of moment, the Fourier-
Bessel expansion, and the Sum of Gaussian expansion. 

 
Form factor for rectangular type distribution 
A simple example of a charge density for a nucleus is a uniform distribution 
up to a cutoff radius, R,   
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The corresponding form factor is fairly simple to calculate and is given by 

 )(3)( 1 qRj
qR

qF =                         (11) 

where )(1 qRj  is again a spherical Bessel function of the first kind. 
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Two-parameter Fermi (2pF) or Woods-Saxon form factor 
The form of the two parameter Fermi (2pF) distribution is 
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where c is the half-density radius, ρ0 is the density at r = c, and a is related 
to the surface thickness t by t = (4 ln3) a. The parameters c and a for 
different nuclei have been determined by fitting the elastic electron 
scattering experiments and muonic atom spectroscopy. 

Proceeding now to the derivation of F(q) (L. C. Maximon and R. A. 
Schrack, 1966), it is obtained  
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Marking the change of variables 
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The integral appearing here is one form of the hypergeometric function 
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Transforming the hypergeometric function in (17)  
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where it is used of the fact that if either of its first two parameters is zero, 
the hypergeometric function is unity, and also that  
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Using the power series expansion for the hypergeometric function 
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it follows, for the first term in (19), 
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The evaluation of the second term in (19) is straightforward 
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Thus finally, substituting (23) and (24) in (19) we have, in terms of the 
original parameters, 
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This expression, without the infinite series, has been given previously by 
Blankenbecler (R. Blankenbecler,  1957). To determine ρ0, the limit of (25) 
is taken as .0→q  From F(0) = 1, the left-hand side of (25) is unity, so that 
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For 2r , substituting (25) in  
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and carrying out the differentiation, it follows 
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It is interesting to see under what conditions the summation terms appearing 
in these expressions can be dropped without serious effect on the accuracy 
of the calculation. 

Helm form factor 
The Helm form factor was proposed in 1956 as a simpler alternative to the 
Woods-Saxon form factor (R. Helm, 1956). It is derived by combining the 
density of a uniform sphere with a Gaussian to allow for “softer” edges to 
the distribution. This gives a form factor as follows 
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with j1 being the first-order spherical Bessel function. Lewin et al.(J. D 
.Lewin and P. F. Smith, 1996) proposed a set of parameters which are fixed 
by fitting the muonic atom spectroscopy (G. Fricke, et al., 1995) as: 
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fmAc 6.023.1 3/1 −≅                                                                     (32)

 
           fmafms 52.0,9.0 ≅≅                (33)

 
Model-independent Form Factors

 Elastic electron scattering data allow for very precise determinations of 
nuclear charge densities. The model independent methods for analyzing 
electron scattering data and extracting nuclear charge densities were 
developed by several groups. Two primary methods have emerged for 
extracting nuclear charge density parameters in a model independent 
fashion: an approach in which the charge density is written as a sum of 
Gaussians and an alternate approach in which the charge density is written 
as a Fourier superposition of Bessel functions. (G. Duda, 2007) 

Sum of Gaussians (SOG) expansion  
In the Sum of Gaussian expansion (SOG), first introduced by Sick (I. Sick, 
1974), the charge density is given as  
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where γ and Ri are parameters representing the width of the Gaussian and 
the nuclear radius respectively, and Ai are coefficients defined by   
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where Qi represents the fractional charge carried by the ith Gaussian and 
leads to the definition of renormalizing the charge density as   
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An analytical form factor can be determined for this density 
parameterization, which eliminates the necessity of performing numerical 
integration to find the form factor as in the Woods-Saxon density 
parameterization. Assuming spherical symmetry, the SOG form factor is 
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The other model independent parameterization of nuclear charge densities 
that was developed is a Fourier-Bessel expansion. 

Fourier-Bessel (FB) expansion  
In the Fourier-Bessel expansion (FB), first introduced by Dreher et al. 
(Dreher, et al., 1974), the charge density is modeled as a sum of Bessel 
functions up to some cut-off radius R, and is assumed to be zero thereafter. 

The charge density is given as
 ∑ ≤=
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where  is the parameter and  
x
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function. The charge is normalized by requiring  
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This expansion also has an analytical form factor and, assuming spherical 
symmetry, is given as
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which is normalized to F (0) = 1. 

Results and Discussions 
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The form factor calculations for 40Ca and 208Pb of this work are based on the 
method of moment (MoM), the model dependent and the model independent 
approaches.  The model dependent approach consists of nuclear densities of 
rectangular type distribution, two-parameter Fermi (2pF) or Woods-Saxon 
distribution and Helm distribution. The model independent approaches are 
Fourier-Bessel (FB) method and the Sum of Gaussian (SOG) method. The 
quantitative comparisons of the form factors squared factors for 40Ca and 
208Pb are listed in Tables (3.1) to (3.12). The calculated results of the form 
factors squared for   40Ca and 208Pb, obtained by using these methods are 
shown in the Figures (3.1) to (3.12).  

The form factors for 40Ca and 208Pb are computed at the appropriate 
momentum transfers from 0 to 3 fm−1 with two-parameter Fermi (2pF) or 
Woods-Saxon distribution and from 0 to 30fm−1 with rectangular type 
distribution. All figures show that there are oscillations in the form factor 
curves. They have dips but no zeros and are much more similar in shape. 

     

Table (3.1) The Rectangular(MoM) and SOG form factors for  208Pb                                                                                                                                            

                    
Fig.(3.1)Rectangular(MoM) and SOG form factors for  208P 

Fig. (3.1) shows the MoM form factor with rectangular shape density 
distribution and SOG form factor for 208Pb plotted over a range of 0 to 0.5 
fm−1. As it can be seen from the figure, the form factors are not significantly 
different to 0.4fm−1. They differ by 45.06% at the momentum transfer 0.5 
fm–1. 

Most significantly, in Fig. (3.2), the first diffraction minimum in the FB 
form factor and the second minimum in the analytical form factor with 

    q 

(fm-1) 

|F(q)|2 

Rectangular(MoM) SOG Percentage 

0.1 0.9055 0.9121 0.72 

0.2 0.6670 0.6860 2.77 

0.3 0.3927 0.4128 7.87 

0.4 0.1879 0.1856 1.22 

0.5 0.0961 0.0528 45.06 
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rectangular shape density distribution occur close to about 8fm−1 whereas 
the first minimum in the analytical form factor with rectangular shape 
density distribution occurs at smaller momentum transfer about 4fm−1.  

                       Table (3.2) The Rectangular and FB form factors for 208Pb                                                                                    

                                                           
Fig.(3.2)Rectangular and FB  form factors for  208Pb   

 Fig.(3.3) shows that  at the low momentum transfers to 0.3fm–1 the 
rectangular(MoM) and Helm form factors for 208Pb are nearly the same and 
then they begin to diverge from each other. Their form factor differences at 
the momentum transfers 0.1fm–1 and 0.5fm–1 are 0.33% and 57.02%, 
respectively. 

Table (3.3) The Rectangular(MoM) and Helm form factors squared for 208Pb                                                                  

                                                                  
    Fig.(3.3) Rectangular(MoM) and Helm form factors for  208Pb                                      

  

In Fig. (3.4) Woods-Saxon (2pF) and MoM form factors for 208Pb are not 
significantly different to 0.3fm−1. Their form factor differences at the 

q 

(fm-1) 

|F(q)|2 

Rectangular FB Percentage 

5 3.26E-03 1.68E-01 98.06 

10 5.54E-03 3.96E-03 86.01 

15 1.15E-03 2.80E-05 97.57 

20 7.39E-06 5.98E-04 98.76 

25 2.29E-05 7.90E-07 96.55 

q 

(fm-1) 

|F(q)|2 

Rectangular(MoM) Helm Percentage 

0.1 0.9055 0.9025 0.33 

0.2 0.6670 0.6582 1.32 

0.3 0.3927 0.3770 4.00 

0.4 0.1879 0.1587 15.54 

0.5 0.0961 0.0413 57.02 
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momentum transfers 0.1fm–1 and 0.5fm–1 are 0.1% and 51.04%, 
respectively. 

   Table (3.4) The WS(2pF) and MoM form factor squared for 208Pb                                                                     

                
Fig.(3.4)WS(2pF) and MoM form factors for  208Pb   

Fig. (3.5) shows that Woods-Saxon (2pF) and SOG form factors for 208Pb 
are nearly the same at smaller momentum transfer to 1fm−1 and then they 
begin to diverge from each other. The first minimum of Woods-Saxon 
(2pF) form factor for 208Pb coincides with that of SOG form factors for 
208Pb. The second minimum of Woods-Saxon (2pF) form factor for 208Pb is 
nearly the same with that of the SOG form factors for 208Pb. Their form 
factor differences 0.84% and 19.88% are at the momentum transfers 0.1fm–1 
and 0.5 fm–1, respectively.                                      

 Table (3.5) The WS(2pF) and SOG form factors squared for 208Pb                                                                        

  
Fig.(3.5)WS(2pF) and SOG form factors for  208Pb 

q 

(fm-1) 

|F(q)|2 

WS(2pF) MoM Percentage 

0.1 0.9044 0.9035 0.1 

0.2 0.6628 0.6617 0.17 

0.3 0.3825 0.3873 1.24 

0.4 0.1623 0.1845 12.03 

0.5 0.0423 0.0864 51.04 

q 

(fm-1) 

|F(q)|2 

WS(2pF) SOG Percentage 

0.1 0.9044 0.9121 0.84 

0.2 0.6628 0.6860 3.38 
0.3 0.3825 0.4128 7.34 

0.4 0.1623 0.1856 12.55 

0.5 0.0423 0.0528 19.89 
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         Table (3.6) The WS(2pF) and Helm form factors squared for 208Pb                                                                   

  
 Fig.(3.6)WS(2pF) and Helm form form factors for  208Pb                             

In Fig.(3.6), the maxima and minima of WS(2pF) form factors for 208Pb are 
significantly same with those of Helm form factors for  208Pb. Their form 
factor differences are fairly small.     

  Table (3.7) The Rectangular(MoM) and SOG form factors squared for 40Ca                                                                    

  
Fig(3.7)Rectangular(MoM) and SOG form factors for  40Ca                                                             

Fig. (3.7) shows the MoM form factor with rectangular shape density 
distribution and SOG form factor for 40Ca plotted over a range of 0 to 1 
fm−1. It is shown that the form factors are not significantly different to 0.6 
fm−1. Afterward, they begin to diverge from each other at a momentum 

q 

(fm-1) 

|F(q)|2 

WS(2pF) Helm Percentage 

0.1 0.9044 0.9025 0.21 

0.2 0.6628 0.6582 0.69 

0.3 0.3825 0.3770 1.44 

0.4 0.1623 0.1587 2.22 

0.5 0.0423 0.0413 2.36 

q 

(fm-1) 

|F(q)|2 

Rectangular(MoM) SOG Percentage 

0.1 0.9668 0.9671 0.03 

0.2 0.8728 0.8735 0.08 

0.3 0.7338 0.7335 0.04 

0.4 0.5722 0.5684 0.66 

0.5 0.4125 0.4015 2.67 
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transfer corresponding to 1fm−1.Their form factors also differ by fairly small 
amount.                                  

      

Table (3.8) The Rectangular and FB form factors squared for 40Ca                                                                 

      

Fig.(3.8)Rectangular and FB form factors for  40Ca                                     

In Fig. (3.8), the first diffraction minimum in the FB form factor for 40Ca 
exists at the momentum transfer 10 fm–1 beyond the second minimum in the 
analytical form factor with rectangular shape density distribution. 

 

Table (3.9)The Rectangular(MoM) and Helm form factors squared for 20Ca                                                                  

 
Fig.(3.9)Rectangular(MoM) and Helm form factors for  40Ca                  

        

q 

(fm-1) 

|F(q)|2 

Rectangular FB Percentage 

5 3.26E-03 1.90E-01 98.28 

10 5.54E-03 3.54E-04 93.61 

15 1.15E-03 3.85E-05 96.65 

20 7.39E-06 9.16E-06 19.32 

25 2.29E-05 1.16E-08 99.95 

q 

(fm-1) 

|F(q)|2 

Rectangular(MoM) Helm Percentage 

0.1 0.9668 0.9622 0.48 

0.2 0.8728 0.8565 1.87 

0.3 0.7338 0.7034 4.14 
0.4 0.5722 0.5306 7.27 

0.5 0.4125 0.3649 11.54 
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Fig.(3.9) shows that at the low momentum transfers to 0.4 fm–1 the 
rectangular(MoM) and Helm form factors for 40Ca are nearly the same and 
then they begin to diverge from each other. Their form factor differences 
0.48% and 11.54% are at the momentum transfers 0.1fm–1 and 0.5fm–1, 
respectively. 

 

Table (3.10) The WS(2pF) and MoM form factors squared for 40Ca 

  

        
 Fig.(3.10) WS(2pF) and MoM form factors for  40Ca 

In Fig. (3.10) Woods-Saxon (2pF) form factors for 40Ca are significantly 
same with the MoM form factors for 40Ca to the momentum transfer 0.2 
fm−1. They differ by 53.88% at the momentum transfer 0.5 fm–1. 

 Table (3.11) The WS(MoM) and SOG  form factors squared for 40Ca 

               

                     
Fig.(3.11) WS(2pF) and SOG form factors for 40Ca                                                           

                  

q 

(fm-1) 

|F(q)|2 

WS(2pF) MoM Percentage 

0.1 0.9604 0.9612 0.08 

0.2 0.8480 0.8705 2.58 

 0.3 0.6865 0.7945 13.59 

0.4 0.5064 0.8240 38.54 

0.5 0.3367 1.0841 53.88 

q 

(fm-1) 

|F(q)|2 

WS(2pF) SOG Percentage 

0.1 0.9604 0.9671 0.69 

0.2 0.8480 0.8735 2.92 

0.3 0.6865 0.7335 6.41 

0.4 0.5064 0.5684 10.91 

0.5 0.3367 0.4015 16.14 



15 
 

Fig. (3.11) shows that Woods-Saxon (2pF) and SOG form factors for 40Ca 
are nearly the same at smaller momentum transfer to 0.5 fm−1 and then they 
begin to diverge from each other. Their respective form factor differences at 
the momentum transfers 0.1fm–1 and 0.5 fm–1 are 0.69% and 16.14%. 

 

 Table (3.12) The WS(MoM) and Helm form factors squared for 40Ca 

  
Fig.(3.12) WS(2pF) and Helm form factors for  40Ca 

                                                                                                                     
The first minima of WS(2pF) and Helm form factors for  40Ca shown in 
Fig.(3.12) nearly exist along the momentum transfer axis although the 
second minimum of WS(2pF) form factors for  40Ca has a deep dip. Their 
form factor differences are fairly small. 

Conclusion 
The concept of nuclear form factor is now used widely in nuclear and 
particle physics to explore the effects of the spatial distribution of the 
interaction. In the lowest order Born approximation, the form factor is the 
Fourier transform of the nuclear mass distribution. The mass distribution of 
nuclei is not well known, and instead it is generally assumed that the 
nuclei’s mass distribution is approximately the same as its charge 
distribution. In this work, the distributions considered are the rectangular-
type distribution, Woods-Saxon (2pF) distribution and Helm distribution as 
model-dependent approaches and Fourier-Bessel (FB) and the Sum-of-
Gaussian (SOG) fit as model-independent approaches.  

q 

(fm-1) 

|F(q)|2 

WS(2pF) Helm Percentage 

0.1 0.9604 0.9622 0.19 
0.2 0.8480 0.8565 0.99 

0.3 0.6865 0.7034 2.40 

0.4 0.5064 0.5306 4.56 

0.5 0.3367 0.3649 7.73 
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The method of moment (MoM) for form factor depends on the influence of 

the higher nuclear moments, kr 2  and is reliable for the smaller 

momentum transfers less than 1fm–1. The rectangular type distribution of 
nuclear density is a non-physical model because of the abrupt cutoff 
mathematically imposed on it. In this work, the derivation of an analytic 
expression for the form factor of the two-parameter Fermi distribution is 
presented. The analytic expression consists of a simple term with elementary 
functions plus a rapidly convergent infinite series with terms of alternating 
sign. In the calculations in this work, the short expression, in which the 
summation terms are dropped out, is used with adequate accuracy. The 
Woods-Saxon or two parameter Fermi distribution is favored because it only 
has two parameters and they have been determined from nuclear scattering 
experiments. The analytic Helm form factor is obtained by convolving a 
constant, spherical charge distribution with a ‘blurred’ skin. In the Sum of 
Gaussians (SOG) expansion, the charge density of a nucleus is modeled as a 
series of Gaussians. It has a rapid fall-off of the Gaussian tail, and as long as 
a sufficient number of Gaussians are used it also ensures a good fit. The 
results of Fourier–Bessel (FB) expansion depend slightly on the value of the 
cut-off radius R. The Fourier–Bessel (FB) expansion and the Sum of 
Gaussians (SOG) expansion form factors have the advantage that they are 
model independent and analytics. Their use is simple and convenient. 

All the form factor results show typical diffraction patterns, which reflect 
the internal structure of the nucleus. Although the form factor curves are 
similar in shape, they have different locations of maxima and minima along 
the momentum transfer ranges.  
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