Ministry of Education Department of Higher Education Yangon University of Distance Education

Yangon University of Distance Education Research Journal

Vol. 10, No. 1

December, 2019

Ministry of Education Department of Higher Education Yangon University of Distance Education

Yangon University of Distance Education Research Journal

December, 2019

Contents	Page
Patriotic Pride from U Latt's Novel. "Sabae Bin"	1-4
Kyu Kyu Thin	
Creation of characters in Kantkaw a novel of Linkar Yi Kyaw	5-9
Khin San Wint	
Author Khin Khin Htoo's Creative Skill of Writing a Story "Ku Kuu"	10-15
Kyin Thar Myint	
A Stylistic Analysis of the poem "the road not taken" by Robert Frost Nyo Me Kyaw Swa	16-22
The Effectiveness of Critical Thinking on Students in Classroom	22-26
Amy Thet	
Making Education Accessible: an investigation of an integrated English teaching-learning system in first year online class at Yangon University of Distance Education	26-33
Ei Shwe Cin Pyone	
A Geographical Study on Spatial Distribution Pattern of Health Care Centres in Sanchaung Township	33-39
Myo Myo Khine, Win Pa Pa Myo, Min Oo, Kaythi Soe	
A Study of Crop-Climate Relationship in Hlegu Township	39-45
Win Pa Pa Myo, Myo Myo Khine	
How to Organize Data for Presentation	46-50
Yee Yee Myint, Myint Win	50 54
A Geographical Study on Open University in New Zealand	50-54
Myint Myint Win, Yee Yee Myint Devel Administrative Devetices in Kenheune Devied (1752, 1885)	51 60
Vin Vin Nuc	34-00
In In Inve Pridawtha Programme (1052-1060)	60 60
Tyndawna Trogramme (1952-1900) Zaw Naing Myint	00-09
The Role of Sava San in Myanmar Politics (1930-1931)	70-76
Haing Haing Nyunt	10 10
A Study of the Floral Arabesque Patterns in Myanmar Traditional Paintings	76-81
Hla Hla Nwe	
A Study on Job Stress of Office Staff from Yangon University of Distance Education	82-86
Khin Ya Mone, Ma Aye, Theint Thiri Zan	
A study on the job satisfaction of the teaching staff in Yangon University of Distance Education	86-91
Theint Thiri Zan, Thiri Hlaing, Ma Aye	
A study on the work motivation of the teaching staff in Yangon University of Distance Education Ma Aye, Khin Ya Mone, Theint Thiri Zan	91-96
A study of Aristotle's Golden mean	97-101
Nwe Nwe Oo	
A Study of Legal Thought of John Austin	102-109
Aye Aye Cho	
A study of the concept of "good will" in Kantian philosophy from the Myanmar philosophical	109-115
thought	
Moe Aye Themt	115 101
The Term "Paragu" in the Buddhist Scriptures	115-121
Internet Cho Arāda's Teaching from the Buddhacarita	122 126
Pa Pa Auno	122-120
The Merit of Donating Four Material Requisites	126-131
Marlar Oo	
The Benefits of Workers under the Workmen's Compensation Act in Myanmar	131-135
Khin Mar Thein	

Contents	Page
Study on the Humanitarian Intervention under International Law	136-141
Nu Nu Win	100 111
A Study on the Quality of Fried Edible Oil (Palm Oil)	142-148
Thazin Lwin, Myo Pa Pa Oo, Nyi Nyi	
New Ceramer Coating Based on Titanium-resorcinol Copolymer with Blown Seed Oils	149-156
Yu Yu Myo, Nwe Ni Win, Thazin Win	
A Study on Antioxidant Activity of Edible Green Leaves of Brassica Juncea Linn. (Mom-Hnyin-Sein)	156-161
Ohmar Ko, Thuzar Win, Hnin Yee Lwin	
Microcontroller controlled four-digit timer	161-166
Lei Lei Aung, Myo Nandar Mon, Khin Phyu Win, Moh Moh	
Study On Current-Voltage Characteristics of Znte Electroplated Film Under Illumination	166-172
Myo Nandar Mon, Thi Thi Win, Lei Lei Aung, Moh Moh	
Effect of Heat Treatment on Optical Properties of Cd-doped ZnO Thin Film Su Thaw Tar Wint, Myo Myint Aung, Moh Moh	173-175
Radon concentration in soil samples from different layers of the underground of Bago University	176-180
campus	
Thi Thi Win, Myo Nandar Mon, Aye Aye Khine, Moh Moh	
A Study on Weakly Preopen and Weakly Preclosed Functions	181-187
Kaythi Khine, Nang Moe Moe Sam, Su Mya Sandy	
Functions and Their Graphical Representation	187-193
Ohmar Myint, Moe Moe San, Zar Chi Saint Saint Aung	
Trilinear and Quadrilinear Forms	193-198
Wai Wai Tun, Aye Aye Maw	
Prevalence and bionomics of <i>Aedes aegypti</i> (Linnaeus, 1762) larvae in high risk areas of Pazundaung Township, Yangon Region	198-204
Tin Mar Yi Htun	205 212
Comparative study of helminthes parasitic eggs and larvae in goat from Magway Township Nilar Win, Myat Thandar Swe, Thinzar Wint	205-213
Endoparasites of anurans from north Dagon and Kamayut Townships	213-218
Pa Pa Han, Thuzar Moe, Phyo Ma Ma Lin, Aye Aye Maw	
Investigation of some invertebrates in Taungthaman Lake, Amarapura Township, Mandalay Division	219-225
Khin Than Htwe, Kathy Myint, Thin Thin Swe, Aye Kyi	
Antimicrobial activity of Dolichandrone spathacea (l.f.) k. Schum. Flowers	226-231
Moet Moet Khine, Tin Tin Nwe, Win Win Shwe, Mya Mya Win	
Five Selected Wild Medicinal Plants and Theirs' Uses	232-237
Mya Mya Win, Moet Moet Khine, Win Win Shwe	
The Comparison of the Yield from Non-Grafted and Grafted of Five Plants of Family Solanaceae Win Win Shwe Most Most Khine Mya Mya win	238-244
Silk Fabrics Factories in Amaranura	245-251
Win Thida Ni Ni Win Yu Lae Khaine	215 251
A study on production of rubber in Myanmar (1996 - 97 to 2017 - 2018)	251-257
Tin Tin Mva. Ni Ni Win. Thinzar Aung	201 207
A Study on Factors Affecting the Exclusive Breastfeeding of Mothers in PYA-PON District	258-265
Khin Mar Kyi, May Zin Tun	
A Study on the Health Status and Physical Fitness of Elderly People at Home for the Aged	266-273
(Hninzigone), Yangon	
Hein Latt, Pyae Phyo Kyaw	
A Study on Mortality and Fertility levels of Myanmar and its Neighbouring Countries	273-280
Ni Ni Win, Thinn Thinn Aung, Thinzar Aung	

Acknowledgements

We wish to express our thanks to Dr. Tin Maung Hla, Rector of Yangon University of Distance Education, for his kind permission to carry out this research. Our special thanks also go to Dr. Khin Thant Sin, Pro-Rector of Yangon University of Distance Education.

We are deeply indebted to my respectable Professor Dr. Moe Moe San, Head of Department of Mathematics and Professor Dr. Nang Moe Moe Sam, Department of Mathematics, Yangon University of Distance Education, for their kind permission and encouragements throughout this research paper.

References

E. P. Vance. *Modern Algebra and Trigonometry*, Addison-Wesley Publishing Company, Inc. 1962. Howard Anton. *Calculus with Analytic Geometry*, (5thed.). John Wiley & Sons, Inc. 1995.

Trilinear and Quadrilinear Forms

Wai Wai Tun¹, Aye Aye Maw²

Abstract

Most of the partial differential equations that arise in Continuum Mechanics and Physics are nonlinear. Because of their nonlinearity, the mathematical study of these equations is difficult and require the full power of modern functional analysis. This paper deals with the trilinear and quadrilinear forms to construct the variational formulation of some nonlinear partial differential equations of higher order.

Key words: trilinear, quadrilinear, variational formulation

1. Introduction

Let Ω be a Lipschitz open bounded subset in \mathbb{R}^n . We shall use the notation of the spaces $V = \{u \in D(\Omega), div \ u = 0\}$, V = the closure of V in $H_0^1(\Omega), H =$ the closure of V in $L^2(\Omega)$, $W = D(\Omega)$, W = the closure of W in $H_0^1(\Omega), G =$ the closure of W in $L^2(\Omega)$. Let V', W', H' and G' denote the dual spaces of V, W, H and G. Then we have the inclusions $V \subseteq H \equiv H' \subseteq V'$ and $W \subseteq G \equiv G' \subseteq W'$.

1.1 Lemma [Temam, R. 1977] *Let* V, H, V' be three Hilbert spaces with $V \subseteq H \equiv H' \subseteq V'$. Let $u \in L^2(0,T;V)$ and $u' \in L^2(0,T;V')$. Then $u:[0,T] \rightarrow H$ is continuous a.e and

$$\frac{d}{dt}\left|u\right|^{2}=2\left\langle u',u\right\rangle$$

holds in scalar distribution sense on (0, T).

¹Associate Professor, Dr, Department of Mathematics, Yangon University of Distance Education

²Associate Professor, Dr, Department of Mathematics, Yangon University of Distance Education

1.2 Lemma [Temam, R. 1977]*If* u_{μ} converges to u and u_{μ} converges to v in $L^{2}(0,T;V)$ weakly and $L^{2}(0,T;H)$ strongly, then for any vector function w with components in $C^{1}(\overline{Q})$,

$$\int_0^T b(u_\mu(t), v_\mu(t), w(t)) dt \to \int_0^T b(u(t), v(t), w(t)) dt.$$

1.3 Definition [Temam, R. 1983] Let Ω be an open set in \mathbb{R}^n and let p be a distribution on Ω , Then, for any $v \in V$,

$$\langle grad p, v \rangle = \sum_{i=1}^{n} \langle D_i p, v_i \rangle = -\sum_{i=1}^{n} \langle p, D_i v_i \rangle = \langle p, div v \rangle = 0.$$

1.4 Definition [Temam, R. 1983] For fixed *u* in *V*, the mapping $V \to \mathbb{R}, v \mapsto ((u, v))$ is linear and continuous on *V*. Then there exists an element of *V'*, denote *Au* such that $\langle Au, v \rangle = ((u, v)), \forall v \in V$. Then $u \to Au$ is linear and continuous and also an isomorphism from *V* to *V'*.

1.5 Definition [Temam, R. 1983] Let X be a Hilbert space. If v is a function from \mathbb{R} into X then we denote the Fourier transform of v by \hat{v} as

$$\hat{v}(\tau) = \int_{-\infty}^{\infty} e^{-2i\pi t\tau} v(t) dt$$
 and

the derivative in t of order r of v is the inverse Fourier transform of $(2i\pi\tau)^r \hat{v}$ or

$$D_t^r v(\tau) = (2i\pi\tau)^r \hat{v}(\tau).$$

The definition is consistent with the usual definition for an integer r.

2. Boundness of Trilinear and Quadrilinear Forms

2.1 Lemma [Temam, R. 1977] *If the dimension is* n = 3, for any open set $\Omega = 3$, then

$$\|v\|_{L^{4}(\Omega)} \leq 2^{\frac{1}{2}} \|v\|_{L^{2}(\Omega)}^{\frac{1}{4}} \|grad v\|_{L^{2}(\Omega)}^{\frac{3}{4}}, \forall v \in H_{0}^{1}(\Omega)$$

2.2 Lemma [Temam, R. 1977] Let Ω be bounded or unbounded and any dimension of the space \mathbb{R}^n . Then, the form b,

$$b(u,v,w) = \sum_{i,j=1}^{n} \int_{\Omega} u_i(D_i v_j) w_j dx$$

is defined and trilinear continuous on $\left[H_0^1(\Omega)\right]^3 \cap L^n(\Omega)$.

2.3 Lemma [Temam, R. 1983] for any open set Ω, b is trilinear continuous on $\left(H_0^1(\Omega)\right)^3 \cap L^n(\Omega)$. If Ω is bounded and $n \le 4$ then b is trilinear continuous on $\left[H_0^1(\Omega)\right]^3$.

2.4 Lemma [Temam, R. 1983] Assumed that the dimension of the space is $n \le 4$ and $u, v \in L^2(0,T;V)$.

Let the function B(u, v) be defined by

$$\langle u(t), v(t), w \rangle = b(u(t), v(t), w), \forall w \in V, a.e. int \in [0, T]$$

then $B(u,v) \in L^1(0,T;V')$.

2.5 Lemma [Temam, R. 1977] If u_{μ} converges to u and u_{μ} converges to v in $L^{2}(0,T;V)$ weakly and $L^{2}(0,T;H)$ strongly, then for any vector function w with components in $C^{1}(\bar{Q})$,

$$\int_0^T b(u_\mu(t), v_\mu(t), w(t)) dt \to \int_0^T b(u(t), v(t), w(t)) dt.$$

In particular, the trilinear form \overline{b} defined by

$$\overline{b}\left(u,\theta,\gamma\right) = \sum_{i=1}^{3} \int_{\Omega} u_i\left(D_i\theta\right) \gamma \, dx$$

Is well defined and trilinear continuous on $[H_0^1(\Omega)]^3 \cap [L^2(\Omega)]^3$, Ω bounded and $\Omega \subseteq \mathbb{R}^3$. \overline{b} also has the same properties as *b* for $u \in L^2(0,T;V)$ and $\theta \in L^2(0,T;W)$. Using these results, we prove the following theorems:

2.6 Theorem The trilinear forms c_1 and c_2

$$c_{1}(\theta, h, \gamma) = \sum_{i=1}^{3} \int_{\Omega} \theta(\operatorname{curl} h)_{i} \gamma dx$$
$$c_{2}(h, \theta, \gamma) = \sum_{i=1}^{3} \int_{\Omega} \theta(\operatorname{curl} h)_{i} (D_{i}\theta) \gamma dx$$

are defined and trilinear continuous on $\left[H_0^1(\Omega)\right]^3 \cap \left[L^2(\Omega)\right]^3$, Ω bounded in \mathbb{R}^3 for

$$|(curl h)_i| \ll 1$$
 and $(D_i \theta) \ll 1$, $i = 1, 2, 3$.

Proof: By general Hölder inequality

$$\begin{aligned} \left| \int_{\Omega} \theta \left(\operatorname{curl} h \right)_{i} \gamma \, dx \right| &\leq \left| \theta \right|_{L^{4}(\Omega)} \left| \left(\operatorname{curl} h \right)_{i} \right|_{L^{2}(\Omega)} \left| \gamma \right|_{L^{4}(\Omega)}, \\ \sum_{i=1}^{3} \left| \int_{\Omega} \theta \left(\operatorname{curl} h \right)_{i} \gamma \, dx \right| &\leq \sum_{i=1}^{3} \left| \theta \right|_{L^{4}(\Omega)} \left| \left(\operatorname{curl} h \right)_{i} \right|_{L^{2}(\Omega)} \left| \gamma \right|_{L^{4}(\Omega)}. \end{aligned}$$

$$\tag{1}$$

Then $c_1(\theta, h, \gamma)$ is well-defined and

$$c_1(\theta, h, \gamma) \leq K_0(\Omega) \|\theta\|_{H^1_0(\Omega)} \|h\|_{H^1_0(\Omega)} \|\gamma\|_{H^1_0(\Omega)}.$$

Therefore the form c_1 is trilinear continuous on $\left[H_0^1(\Omega)\right]^3 \cap \left[L^2(\Omega)\right]^3$. Also, by using Hölder inequality, we obtain

$$\left| \int_{\Omega} (\operatorname{curl} h) (D_i \theta) \gamma \, dx \right|_i \leq \int_{\Omega} \left| (\operatorname{curl} h)_i (D_i \theta) \gamma \right| \, dx$$

Choose $\left|\int_{\Omega} (curl h)_i\right| \ll 1, i = 1, 2, 3.$

By Hölder inequality, we obtain

$$\begin{aligned} \left| \int_{\Omega} (\operatorname{curl} h) (D_i \theta) \gamma \, dx \right| &\leq \int_{\Omega} \left| (D_i \theta) \gamma \right| \, dx \\ &\leq \int_{\Omega} \left| (D_i \theta) \right|_{L^2(\Omega)} \end{aligned}$$

and then

$$\sum_{i=1}^{3} \int_{\Omega} \left| (\operatorname{curl} h)_{i} (D_{i} \theta) \gamma \right| dx \leq \sum_{i=1}^{3} \left| D_{i} \theta \right|_{L^{2}(\Omega)} \left| \gamma \right|_{L^{2}(\Omega)},$$

$$\left| c_{2} (h, \theta, \gamma) \right| \leq \varepsilon_{1} \left\| \theta \right\|_{H^{1}_{0}(\Omega)} \left| \gamma \right|_{L^{2}(\Omega)}.$$
(2)

Again, we can choose $|D_i\theta| \ll 1$, by Hölder inequality,

$$\begin{split} \left| \int_{\Omega} (\operatorname{curl} h) (D_i \theta) \gamma \, dx \right|_i &\leq \int_{\Omega} \left| (\operatorname{curl} h)_i \gamma \right| \, dx \\ &\leq \int_{\Omega} \left| (\operatorname{curl} h)_i \gamma \right|_{L^2(\Omega)} \end{split}$$

then we get

$$\sum_{i=1}^{3} \int_{\Omega} \left| (\operatorname{curl} h)_{i} (D_{i}\theta) \gamma \right| dx \leq \sum_{i=1}^{3} \left| (\operatorname{curl} h)_{i} \right|_{L^{2}(\Omega)} |\gamma|_{L^{2}(\Omega)},$$

$$\left| c_{2} (h, \theta, \gamma) \right| \leq \varepsilon_{2} \left\| h \right\|_{H^{1}_{0}(\Omega)} |\gamma|_{L^{2}(\Omega)}.$$

$$(3)$$

According to (2) and (3), the form c_2 is trilinear continuous on $\left[H_0^1(\Omega)\right]^3 \cap \left[L^2(\Omega)\right]^3$.

By (2) and (3), we have the inequality

$$c_{2}(h,\theta,\gamma) \Big| \leq \Big[\varepsilon_{1} \left\| \theta \right\|_{H_{0}^{1}(\Omega)} + \varepsilon_{2} \left\| h \right\|_{H_{0}^{1}(\Omega)^{+}} \Big] |\gamma|_{L^{2}(\Omega)}.$$

$$\tag{4}$$

2.7 Theorem *The form* c_3 ,

$$c_{3}(h,\theta,\alpha,\gamma) = \sum_{i=1}^{3} \int_{\Omega} (\operatorname{curl} h)_{i} (D_{i}\theta) \alpha \gamma \, dx$$

is defined and quadrilinear continuous on $[H_0^1(\Omega)]^4 \cap [L^2(\Omega)]^4$, Ω bounded subset in \mathbb{R}^3 and for $|(\operatorname{curl} h)_i| \ll 1$ and $|(D_i\theta)| \ll 1$, i = 1, 2, 3.

Proof: From the form c_3 , we have the inequality

$$\left|\int_{\Omega} (\operatorname{curl} h)_i (D_i \theta) \alpha \gamma \, dx\right|_i \leq \int_{\Omega} \left| (\operatorname{curl} h)_i (D_i \theta) \alpha \gamma \right| \, dx.$$

Choose $|(curl h)_i| \ll 1, i = 1, 2, 3$ and using general Hölder inequality,

$$\begin{split} \left| \int_{\Omega} (curl h)_{i} (D_{i}\theta) \alpha \gamma \, dx \right|_{i} &\leq \left| D_{i}\theta \right|_{L^{2}(\Omega)} \left\| \alpha \right\|_{L^{4}(\Omega)} \left\| \gamma \right\|_{L^{4}(\Omega)}. \\ \sum_{i=1}^{3} \left| \int_{\Omega} (curl h)_{i} (D_{i}\theta) \alpha \gamma \, dx \right| &\leq \sum_{i=1}^{3} \left| D_{i}\theta \right|_{L^{2}(\Omega)} \left\| \alpha \right\|_{L^{4}(\Omega)} \left\| \gamma \right\|_{L^{4}(\Omega)}. \end{split}$$

So,

$$\left|c_{3}\left(h,\theta,\alpha,\gamma\right)\right| \leq \varepsilon_{3} \left\|\theta\right\|_{H_{0}^{1}(\Omega)} \left\|\alpha\right\|_{L^{4}(\Omega)} \left|\gamma\right|_{L^{4}(\Omega)}.$$
(5)

Again, choosing $|D_i\theta| \ll 1$, we get

$$\sum_{i=1}^{3} \left| \int_{\Omega} (curl h)_{i} (D_{i}\theta) \alpha \gamma dx \right| \leq \sum_{i=1}^{3} \left| (curl h)_{i} \right|_{L^{2}(\Omega)} \|\alpha\|_{L^{4}(\Omega)} \|\gamma\|_{L^{4}(\Omega)}.$$

It leads to the inequality

$$\left|c_{3}\left(h,\theta,\alpha,\gamma\right)\right| \leq \varepsilon_{4} \left\|h\right\|_{H_{0}^{1}(\Omega)} \left\|\alpha\right\|_{L^{4}(\Omega)} \left|\gamma\right|_{L^{4}(\Omega)}.$$
(6)

By using (5) and (6), we can conclude $c_3(h, \theta, \alpha, \gamma)$ is well-defined and continuous. Therefore, the form is quadrilinear and continuous. From (5) and (6), we get inequality

$$\left|c_{3}\left(h,\theta,\alpha,\gamma\right)\right| \leq \left(\varepsilon_{3}\left\|\theta\right\|_{H_{0}^{1}\left(\Omega\right)} + \varepsilon_{4}\left\|h\right\|_{H_{0}^{1}\left(\Omega\right)}\right) \left\|\alpha\right\|_{L^{4}\left(\Omega\right)} \left|\gamma\right|_{L^{4}\left(\Omega\right)}.$$
(7)

3. Some Properties of Trilinear and Quadrilinear Forms

3.1 Fundamental Properties of Trilinear Forms b and \bar{b}

(i)
$$b(u,v,v) = 0, \forall u \in V, v \in H_0^1(\Omega) \cap L^2(\Omega)$$

(ii)
$$b(u,v,w) = -b(u,w,v), \forall u \in V, v, w \in H_0^1(\Omega) \cap L^2(\Omega).$$

(iii)
$$\overline{b}(u,v,v) = 0, \forall u \in V, v \in H_0^1(\Omega) \cap L^2(\Omega).$$

(iv)
$$\overline{b}(u,v,w) = -\overline{b}(u,w,v), \forall u \in V, v, w \in H_0^1(\Omega) \cap L^2(\Omega).$$

3.2 Properties of Trilinear Form c2 and Quadrilinear Form c3

- (i) $c_2(h,\theta,\theta) = 0$,
- (ii) $c_3(h,\theta,\theta,\theta) = 0, \forall h \in H_0^1(\Omega).$

3.3 Lemma Let Ω be a bounded subset of \mathbb{R}^3 . If $h \in L^2(0,T;V), \theta \in L^2(0,T;W)$, $\alpha \in L^2(0,T;W)$ and $\gamma \in W$ and the functions $C_1(\theta,h), C_2(h,\theta)$ and $C_3(h,\theta,\alpha)$ defined by $\langle C_1(\theta,h), \gamma \rangle = c_1(\theta(t),h(t),\gamma),$ $\langle C_2(h,\theta), \gamma \rangle = c_2(h(t),\theta(t),\gamma),$ $\langle C_3(h,\theta,\alpha), \gamma \rangle = c_3(h(t),\theta(t),\alpha(t),\gamma), \forall \gamma \in W,$ Then $C_1(\theta,h), C_2(h,\theta)$ and $C_3(h,\theta,\alpha) \in L^1(0,T;W').$

Proof: Since c_1 and c_2 are trilinear continuous, that is, $C_1: W \to W'$ and $C_2: W \to W'$ are continuous. Since $\theta \in L^2(0,T;W)$ and $h \in L^2(0,T;V)$ and then θ and h are measurable. For almost all $t, \theta: [0,T] \to W'$ and $h \in [0,T] \to W$ are measurable.

So,
$$C_1(\theta, h): [0,T] \to W'$$
 and $C_2(h, \theta): [0,T] \to W'$ are measurable and

$$\int_0^T \left\| C_1(\theta, h) \right\|_{W'} dt \le K_0 \int_0^T \left\| \theta \right\|_{H_0^1(\Omega)} \left\| h \right\|_{H_0^1(\Omega)} dt,$$

$$\int_0^T \left\| C_2(h, \theta) \right\|_{W'} dt \le \int_0^T \left(\varepsilon_1 \left\| \theta \right\|_{H_0^1(\Omega)} + \varepsilon_2 \left\| h \right\|_{H_0^1(\Omega)} \right) dt.$$

Therefore, $C_1(\theta, h)$ and $C_2(h, \theta) \in L^1(0, T; W')$.

Also, c_3 is quadrilinear continuous then $\|C_3(h, \theta, \alpha)\| \le (\varepsilon_3 \|\theta\|_{H^1_0(\Omega)} + \varepsilon_4 \|h\|_{H^1_0(\Omega)}) \|\alpha\|_{L^4(\Omega)}$. This means that $C_3: W \to W'$ is continuous.

By the assumptions, *h* is a measurable function from [0,T] to V, the scalar functions θ and α are measurable functions from [0,T] to W. Hence, $C_3:[0,T] \rightarrow W'$ is measurable and

$$\int_0^T \left\| C_3\left(h(t), \theta(t), \alpha(t)\right) \right\|_{W'} dt \le K_2 \int_0^T \left(\varepsilon_3 \left\|\theta\right\|_{H_0^1(\Omega)} + \varepsilon_4 \left\|h\right\|_{H_0^1(\Omega)} \right) \left\|\alpha\right\|_{L^4(\Omega)} dt.$$

Therefore, $C_3(h, \theta, \alpha) \in L^1(0, T; W')$.

3.4 Theorem If u_{μ} converges to u and h_{μ} converges to h in $L^{2}(0,T;V)$ weakly and in $L^{2}(0,T;H)$ strongly and θ_{μ} converges to θ in $L^{2}(0,T;W)$ weakly and $L^{2}(0,T;G)$ strongly, then for any scalar function γ in $C^{1}(\overline{Q})$,

(i)
$$\int_0^T c_1(\theta_{\mu}, h_{\mu}, \gamma) dt \to \int_0^T c_1(\theta, h, \gamma) dt and$$

(ii)
$$\int_0^T c_1(\theta_{\mu}, h_{\mu}, \gamma) dt \to \int_0^T c_1(\theta, h, \gamma) dt and$$

(ii)
$$\int_0 c_2(h_\mu, \theta_\mu, \gamma) dt \to \int_0 c_2(h, \theta, \gamma) dt.$$

Proof is obvious by the properties of the trilinear forms.

Acknowledgements

We wish to express our thanks to Dr. Tin Maung Hla, Rector of Yangon University of Distance Education, for his kind permission to carry this research. Our special thanks are due to Dr. Khin Thant Sin, Pro-Rector of Yangon University of Distance Education.

We are deeply indebted to our respectable Professor Dr. Moe Moe San, Head of Department of Mathematics and Professor Dr. Nang Moe Moe Sam, Department of Mathematics, Yangon University of Distance Education, for their kind permission and encouragements throughout this research work.

References

Friedman, A: Foundations of Modern Analysis, Dover Publications Inc, New York, 1982.

Straughan, B : Stability Problems in Electrohydrodynamics, Ferrohydrodynamics and Thermoelectric

agnetohydrodynamics, Mathematical Topics in Fluid Dynamics, Edited by Rodrigues, J.F. and Sequeira, A., Pitman Res. Notes Math. Ser. 274, (163-192),1992.

Temam, R:*Navier-Stokes Equations, Theory and Numerical Analysis*, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1977.

Temam, R:Navier-Stokes Equations, and nonlinear Functional Analysis, Society for Industrical and Applied Mathematics, 1983.

Prevalence and bionomics of *Aedes aegypti* (Linnaeus, 1762) larvaein high risk areasof Pazundaung Township, Yangon Region

Tin Mar Yi Htun^{*}

Abstract

Dengue viruses are actively transmitted by *Aedes aegypti* in many countries in the tropical zone throughout the world including Myanmar. The successful control of this species depends on knowledge of the biology and ecology of this mosquito vector including the development and survival in different container types. A total of 31 selected places (altogether 28 compounds of 9 Primary, 4 Middle and 4 High schools, 1 local health centers and 10 private day care centers/nurseries) were surveyed seasonally to determine the prevalence and bionomics of *Aedes aegypti* larvae in different container categories and types at selected areas of Pazundaung Township in relation to children aggregated areas from December, 2017 to September, 2018.Out of 31 selected places investigated (28 compounds), 16.13% in first survey, 61.29% in second survey and 38.71% in third survey of the places were found to be larva positive.

Keywords: Aedes aegypti, different container categories and types, positive premises

Introduction

Aedes aegypti is one of the world's most widely distributed mosquitoes and is of considerable medical importance as a vector of dengue and yellow fever (Service, 1992). The species is considered as the major vector of dengue, dengue haemorrhagic fever and dengue shock syndrome (DF/DHF/DSS) in many subtropical and tropical countries throughout the world. Prevention of DHF outbreaks in endemic areas is based on long-term anti-mosquito control measures particularly household and environmental sanitation with emphasis on larval source reduction. Only vector control promises permanency and a cost effective solution (Halstead, 1988).

In Myanmar, a severe outbreak of DHF occurred for the first time in Yangon in 1970. The urban areas within the Yangon City limits were more affected than the suburban townships of Yangon Division. This epidemic had an average morbidity of 51.97 per 100,000 population and affected mostly school going age groups.

Generally more DHF cases were abundant during rainy season especially in July and August. There was the highest number of cases in July (Ohn Kyi, 1985). However, the intervals between dengue outbreaks became shorter in the last two decades. High dengue cases in the rainy season correspond to the seasonal high densities of *Aedes aegypti* mosquitoes that are the vectors of DHF. Since Dengue/DHF is a mosquito-borne viral disease, only

^{*} Professor/Head, Dr, Department of Zoology, Yangon University of Distance Education