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A Study on Weakly Preopen and Weakly Preclosed Functions 

Kaythi Khine
1
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3
 

Abstract 
In this paper we study two classes of functions called weakly preopen and weakly preclosed 

functions as generalization of weak openness and weak closedness respectively. We obtain 

their characterizations, their basic properties and their relationships with other types of 

functions between topological spaces. 

Key words: regularopen set, regular closed set, strongly continuous function, weakly open 

function, weakly closed function, weakly preopen function, weakly preclosed 

function. 

1. Introduction and Preliminaries 

The aim of this paper is to define and study the class of weakly preopen functions and 

weakly preclosed functions as a new generalization of weakly open functions and 

weakly closed functions. We investigate some of the fundamental properties of this 

class of functions.  

 Throughout this paper, (X,τ) and (Y,σ)  (or simply, X and Y ) denote topological spaces 

on which no separation axioms are assumed unless explicitly stated. We recall the following 

definitions and properties that will be used in this paper. 

(viii) Interior and Closure Properties 

 If A is any subset of X, then the interior of a set A in X is the union of  all open sets 

contained in A and is denoted by Int(A). The closure of a set A in X is the intersection of all 

closed subsets of X containing A, and is denoted by Cl(A).Some properties of interior and 

closure of a set in general topology are described as the followings. 

(1) ( )Int    and  ( )Int X X . 

(2) ( )Int A A . 

(3) ( ( )) ( )Int Int A Int A . 

(4) If A B , then ( ) ( )Int A Int B . 

(5) A is open   A= Int(A). 

(6) ( )Cl   and ( )Cl X X . 

(7) ( )A Cl A . 

(8) ( ( )) ( )Cl Cl A Cl A . 

(9) If A B , then ( ) ( )Cl A Cl B . 

(10) A is closed  A = Cl(A). 

(11) Cl(A) is the smallest closed super set of A. 

(12) Int(A) is the largest open subset of A. 

(13) \ ( ) ( \ )X Int A Cl X A . 

(14) \ ( ) ( \ )X Cl A Int X A . 
1.2 Some Generalizations of Open Set 
 A subset A of space X is called 

(ix) preopenif  AInt (Cl(A)). 

(ii) preclosedif  Cl(Int(A))A. 

(x) regular open if  A = Int (Cl(A)).  

(iv) regular closed if A = Cl(Int(A)). 

(v) The preinteriorof A is the union of all preopen sets contained in A and is denoted by  

pInt(A). Since the union of preopen sets is preopen, then pInt(A) is preopen. 

(vi) The preclosureof A is the intersection of all preclosed sets containing A and is denoted by   
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pCl(A), which is the smallest preclosed set in X containing A. 

(xi) Preinterior and Preclosure Properties 

 Let A and B be two subsets of a topological space ( , )X  . Then the followings are hold: 

(1) ( )pInt    and ( )pInt X X . 

(2) ( )pInt A A . 

(3) A is preopen   A= pInt(A). 

(4) p ( )Cl    and  p ( )Cl X X . 

(5) ( )A pCl A . 

(6) A is preclosed  A = pCl(A). 

(7) \ ( \ ) ( )X pInt X A pCl A . 

(8) \ ( \ ) ( )X pCl X A pInt A . 

1.4 Theorem 
(i) Every open set is preopen. 

(ii) Every closed set is preclosed. 

(xii) Every regular open set is open. 

Proof:  

(xii) Let A be an open set. Then ( ) ( ( ))Int A Int Cl A , and we have ( ( ))A Int Cl A .  

     So A is preopen. 

(xiii) Let A be a closed set.Then ( ( )) ( )Cl Int A Cl A ,and we have ( ( ))Cl Int A A . 

      So A is closed. 

(xiv) Let A be a regular open set. Then ( ( ))A Int Cl A ,so, ( ) ( ( ( )))Int A Int Int Cl A . 

       Thus ( ) ( ( ))Int A Int Cl A A  . Hence A is open. 

 

(xv) Some Generalizations of Continuous Functions 

 A function : ( , ) ( , )f X Y    is called: 

(xvi) precontinuous if for each open subsets V of Y, 1( )f V is preopen in X . 

(ii) weakly open  if ( ) ( ( ( )))f U Int f Cl U  for each open subset U of X. 

(xvii) weakly closed if Cl(f (Int(F)))  f (F) for each closed subset F of X. 

(iv) relatively weakly open if f(U) is open in f(Cl(U)) for every open subset U of X. 

(v) strongly continuous if for every subset A of X,  f (Cl(A))  f (A). 

(vi) open if for each open set U of X, f(U) is open in Y.  

(xviii) closed if for each closed set F of X, f(F) is closed in Y. 

(xix) preopen  if for each open set U of X,  f (U) is preopen in Y. 

(xx) preclosed if for each closed set F of X,  f (F) is preclosed in Y. 

 

2.Weakly Preopen Functions 

2.1 Definition. A function : ( , ) ( , )f X Y    is said to be weakly preopen 

if ( )f U pInt (f (Cl(U)) for each open set U of X. 

 

2.2 Proposition . A function :f X Y  is a preopen function if and only if  
1 1( ( ) ( ( ))f Cl V Cl f V   for each open subset V of Y. 

Proof: Assume that f  is a preopen. Let V be any open subset of Y. 

 Suppose  1( ( ))x f Cl V ,and U is an open subset of X containing x, 

 then ( ) ( ) ( ( ))f x f U Cl V   , 

f (x) ( ( ( ))) ( ( ))Int Cl f U Cl V   
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so that  ( ( ( )))V Int Cl f U  , since Cl(V) is closed.  

Thus ( )V f U    , so 1( )U f V  . 

Hence 1( ( ))x Cl f V .  

Conversely, suppose that 1 1( ( )) ( ( ))f Cl V Cl f V   for each open subset V of Y. If f is not 

preopen then for some open subset U of X, ( ) Int( ( ( )))f U Cl f U .Let  \ ( ( ))V Y Cl f U . 

Then ( )f U V  but ( ) ( )f U Cl V  .Thus 1( ( ))U f Cl V  , and, by hypothesis,  
1( ( ))U Cl f V  . Hence 1( )U f V    is contradiction to the fact that ( )f U V  . 

2.3 Proposition . If :f X Y  is a preopen function, then ( ( )) ( ( ))Cl f U f Cl U  for each 

open set U of X. 

Proof:  Let U be an open set in X.  Let V = f (U). Then 1( )U f V . Since f is preopen, then by 

proposition 2.2, 1 1( ( )) ( ( ))f Cl V Cl f V  . Thus 1( ( )) ( )f Cl V Cl U   and ( ) ( ( ))Cl V f Cl U .  

Therefore ( ( )) ( ( ))Cl f U f Cl U . 

 

2.4 Proposition. If the function :f X Y  is preopen and if for each open set U of X, then  f  

is weakly open.  

Proof: Since f is preopen, then for each open subset U of X such that ( ) ( ( ( )))f U Int Cl f U . 

From Proposition 2.3, we have ( ) ( ( ( )))f U Int f Cl U . Thus f  is weakly open. 

2.5 Proposition.  

(i) Every weakly open function is weakly preopen. 

(ii) Every preopen function is weakly preopen. 

Proof(i): Let : ( , ) ( , )f X Y   be a weakly open function. Since f is weakly open, 

then f (U)  Int(f (Cl(U)))  for each open U of X.  

Moreover, Int (f (Cl(U))) is open and then we have  Int(f (Cl(U))) which  is preopen.  

Thus Int (f (Cl(U))) pInt (Int (f (Cl(U)))).  

Furthermore, pInt (Int (f (Cl(U))))pInt(f (Cl(U))). 

Hence, f (U) pInt(f (Cl(U))) and we have f  which is weakly preopen.  

Proof(ii): Let : ( , ) ( , )f X Y    be a preopen function. Since f  is peropen,  

then f (U)  Int(Cl (f (U))), for each open U of X.  

By proposition 2.3, f (U)  Int(f (Cl(U))), so we have, f (U)  pInt(f (Cl(U))). 

Hence f  is weakly preopen. 

2.6 Example. A weakly preopen function need not be weakly open.  

Let X = {a, b}, { }a b X      , { , }Y x y  and { , }y   . Let : ( , ) ( , )f X Y    be given 

by ( )f a x  and ( )f b y .  

        We have   , X , {a} , {b} are preopen sets in X and   , Y , {x} , {y} are preopen sets in Y.  

pInt(f(Cl( ))) = pInt (f( )) = pInt( ) =  , 

pInt(f(Cl(X))) = pInt (f(X)) = pInt(Y) = Y, 

pInt(f(Cl({a}))) = pInt (f({a})) = pInt({x}) = {x}, 

pInt(f(Cl({b}))) = pInt (f({b})) = pInt({y}) = {y}. 

Hence ( ) ( ( ( )))f pInt f Cl      , 

( ) ( ( ( )))Y f X pInt f Cl X Y   , 

{ } ({ }) ( ( { }))) { }x f a pInt f Cl a x   , 

{ } ({ }) ( ( ({ }))) { }y f b pInt f Cl b y    

and so f is weakly preopen. But, f is not weakly open, since  

{ } ({ }) ( ( ({ })))y f b Int f Cl b   . 
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2.7 Definition. A topological space (X,τ) is said to be a regular space if for any closed subset 

A of  X and any point \x X A , there exist open sets U and V such that ,x U A V   and 

U V  . 

 

2.8 Theorem. Let X be a regular space. Then : ( , ) ( , )f X Y     is weakly preopen if and 

only if f  is preopen. 

Proof:  The sufficiency is clear. We will prove that the necessity.  

 Let W be a nonempty open subset of X. For each x in W, let xU  be an open set such that   

( )x xx U Cl U W   . Hence we obtain that    | ( ) |x xW U x W Cl U x W     and    

 ( ) ( ) |xf W f U x W   ( ( ( ))) |xpInt f Cl U x W   ( ( ( ) | ))xpInt f Cl U x W    

( ( ))pInt f W . 

Thus, f  is preopen. 

 

2.9 Theorem. For a bijective function : ( , ) ( , )f X Y    , the following conditions are  

      equivalent: 

(xxi) f is weakly preopen. 

(ii) For each x X  and each open subset U of X containing x, there exists a preopen set V 

      containing f (x) such that ( ( ))V f Cl V . 

(xxii) For each closed subset F of X,  ( ( )) ( ( ))f Int F pInt f F . 

(iv) For each open subset U of X, ( ( ( ))) ( ( ( )))f Int Cl U pInt f Cl U . 

(v) For every preopen subset U of X, ( ) ( ( ( )))f U pInt f Cl U . 

 

Proof:   

(i) (ii) Let x X  and U be an open set in X with x U . Since f  is weakly preopen, then 

( ) ( ) ( ( ( )))f x f U pInt f Cl U  . Let ( ( ( )))V pInt f Cl U . Hence ( ( ))V f Cl U ,with V 

containing x. 

(ii) (i) Let U be an open set in X and let ( )y f U . Since ( ( ))V f Cl U , for some preopen 

V in Y containing y. Hence, we have ( ( ( )))y V pInt f Cl U  . This shows that 

( ) ( ( ( )))f U pInt f Cl U , i.e., f  is a weakly preopen function. 

(i) (iii) Let f  be a weakly preopen set and U be an open set in X. So, we have  

( ) ( ( ( )))f U pInt f Cl U .  Let F be a closed subset of X and U = Int ( F ).  

Then we have ( ( )) ( ( ( ( ))))f Int F pInt f Cl Int F . Since F is closed then F is also preclosed,  

so we obtain ( ( )) ( ( ))f Int F pInt f F . 

(iii) (iv) Let F be a closed set of X and ( ( )) ( ( ))f Int F pInt f F . Let U be an open subset of  

X. Then Cl(U) is closed. So, we choose  F= Cl(U). Thus ( ( ( ))) ( ( ( )))f Int Cl U pInt f Cl U . 

(iv) (v) Let U be a preopen subset of X. So, ( ( ))U Int Cl U and so we have 

( ) ( ( ( )))f U f Int Cl U .Since ( ( ( ))) ( ( ( )))f Int Cl U pInt f Cl U , then ( ) ( ( ( )))f U pInt f Cl U . 

(v) (i) Let U be an open subset of X. Then U is preopen and from (v), 

( ) ( ( ( )))f U pInt f Cl U . 

 

2.10 Theorem. Let : ( , ) ( , )f X Y    be a bijection function. Then the following statements 

are equivalent. 

(i) f  is weakly preopen. 

(ii) ( ( ( ))) ( )pCl f Int F f F  , for each F closed in X. 
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(iii) ( ( )) ( ( ))pCl f U f Cl U , for each U open in X. 

Proof: 

(i) (ii) Let F be a closed set in X. Then, we have ( \ ) \ ( )f X F Y f F . Since  

( \ ) ( ( ( \ )))f X F pInt f Cl X F ,then \ ( ) \ ( ( ( )))Y f F Y pCl f Int F . Hence 

( ( ( ))) ( )pCl f Int F f F . 

(ii) (iii) Let U be an open set in X. Since Cl(U) is a closed set and ( ( ))U Int Cl U , 

  then  ( ( )) ( ( ( ( ))))pCl f U pCl f Int Cl U ( ( ))f Cl U .                           . 

(iii) (ii) Let F be a closed set in X. Since ( )Int F   is open and ( ( ))Cl Int F F , then 

( ( ( ))) ( ( ( ))) ( )pCl f Int F f Cl Int F f F  . 

(ii) (i) Let U be an open set in X and \F X U . Since ( ( ( \ ))) ( \ )pCl f Int X U f X U ,  

then \ ( ( ( ))) \ ( )Y pInt f Cl U Y f U . Thus, we have ( ) ( ( ( )))f U pInt f Cl U . 

 

2.11 Theorem. If : ( , ) ( , )f X Y    is weakly preopen and strongly continuous, 

 then f  is preopen. 

Proof: Let U be an open subset of X. Since f is weakly preopen, then ( ) ( ( ( )))f U pInt f Cl U . 

Moreover, f is strongly continuous, so we have ( ) ( ( ))f U pInt f U  and therefore, ( )f U  is 

preopen. Hence f  is preopen. 

 

2.12 Example. A preopen function need not be strongly continuous. 

 Let  , ,X a b c  and   be the indiscrete topology for X. Then the identity function of  ( , )X 

onto ( , )X   is a preopen function which is not strongly continuous. 

 

2.13 Theorem. A function    : ( , ) ( , )f X Y    is preopen if  f   is weakly  preopen  and  

relatively weakly open. 

Proof: Suppose that f is weakly preopen and relatively weakly open. Let U be an open subset 

of X and let ( )y f U . Since f  is relatively weakly open, then there is an open subset V of Y for 

which ( ) ( ( ))f U f Cl U V  . Because f  is weakly preopen, it follows that  

( ) ( ( ( )))f U pInt f Cl U .  

Then ( ( )) ( ( ( )) ) ( ( )) ( )y pInt f U pInt f Cl U V f Cl U V f U       and therefore ( )f U   is 

preopen. 

3.Weakly Preclosed Functions 

(xxiii) Definition. A function : ( , ) ( , )f X Y     is said to be weakly preclosed if  

( ( ( ))) ( )pCl f Int F f F for each closed set F in X. 

 

3.2 Proposition. 

  (i) Every closed function is preclosed. 

  (ii) Every weakly closed function is weakly preclosed. 

(xxiv) Every preclosed function is weakly preclosed.                  

Proof: (i) Let : ( , ) ( , )f X Y    be a closed function and F be a closed set in X. Then f(F) is 

also a closed set in Y. By Theorem(1.4(ii)), f(F) is preclosed in Y. Therefore, we have f is a 

preclosed function. 

Proof (ii) and (iii) it can be proved similar to proposition (2.5)(i) and (ii). 

 

3.3 Example.  

(i) Every preclosed function is not closed. 

(ii) Every weakly preclosed function is not weakly closed. 
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Proof: (i) Let X = {x, y, z}and { }x x y X      . Then a function : ( , ) ( , )f X X   which 

is defined by f(x) = x, f(y) = z and f(z) = y . This function is preclosed. But it is not closed, since 

({ }) { }f z y  is not a closed set in Y. 

(xxv) Let : ( , ) ( , )f X Y    be the function from Example (2.6). It can be shown that f is 

weakly preclosed, but it is not weakly closed. For, Y = Cl (f(Int({a})))  f({a}) = {x}. 

 

3.4 Theorem . For a function : ( , ) ( , )f X Y   , the following conditions are equivalent. 

(i)  ( ( ( ( )))) ( ( ))pCl f Int Cl U f Cl U for each set U in X, 

(ii)   f is weakly preclosed, 

(iii)  ( ( )) ( ( ))pCl f U f Cl U for every open set U of X, 

(iv)  ( ( )) ( ( ))pCl f U f Cl U for each preopen set U of X,  

(v)   ( ( ( ))) ( )pCl f Int F f F for each closed subset F in X, 

(vi)  ( ( ( ))) ( )pCl f Int F f F for each preclosed subset F in X, 

(vii)  ( ( )) ( ( ))pCl f U f Cl U for each regular open subset U of X. 

(xxvi) For each subset F in Y and each open set U in X with 1( )f F U  , there exists a 

preopen  

        set A in Y with F A  and 1( ) ( )f F Cl U  , 

(xxvii) For each point y Y  and each open set U in X with 1( )f y U  , there exists a 

preopen  

        set A in Y containing y and 1( ) ( )f A Cl U  .  

Proof:   

(i) (ii)  Let  U be any set in X and ( ( ( ( )))) ( ( ))pCl f Int Cl U f Cl U . Since ( )Cl U  is closed 

and choose ( )F Cl U . Then we obtain, ( ( ( ))) ( )pCl f Int F f F and  f  is weakly preclosed. 

(ii)  (iii)  Let f  be a weakly preclosed function and F be a closed set of X. Then F is 

preclosed. Since we have ( ( ( ))) ( )pCl f Int F f F , and we choose ( )U Int F ,then U is open 

and we obtain, ( ( )) ( )pCl f U f F ( ( ( )))f Cl Int F ( ( ))f Cl U . 

(iii) (iv) Let U be an open subset of X and ( ( )) ( ( ))pCl f U f Cl U . Since, U is also 

preopen, then we obtain ( ( )) ( ( ))pCl f U f Cl U . 

(iv) (v)  Let U be any preopen of X and ( ( )) ( ( ))pCl f U f Cl U . Let F be a closed set in X. 

Then Int(F)  is open and it is also preopen. Choose  U = Int(F) .  

So, we have ( ( ( ))) ( ( ( )))pCl f Int F f Cl Int F .Since F is preclosed, then we obtain

( ( ( ))) ( )pCl f Int F f F . 

(v) (vi)  Let F be a closed set in X and ( ( ( ))) ( )pCl f Int F f F . Since F is also preclosed, 

then we obtain ( ( ( ))) ( )pCl f Int F f F .   . 

(vi) (vii)  Let F be any preclosed set in X and ( ( ( ))) ( )pCl f Int F f F  . Suppose that  

( )U Int F  and ( )F Cl U . Then ( ) ( ( ))U Int F Int Cl U   and we have  U is regular open. 

Since, we obtain ( ( ( ))) ( )pCl f Int F f F  , then ( ( )) ( ( ))pCl f U f Cl U . 

(vii) (viii)  Let F be a subset in Y and U be open in X with 1( )f F U  . Then 
1( ) ( \ ( ))f F Cl X Cl U    and consequently, ( ( \ ( )))F f Cl X Cl U  .Since \ ( )X Cl U  is 

regular open, ( ( \ ( )))F pCl f X Cl U   by(vii). Let \ ( ( \ ( )))A Y pCl f X Cl U . Then A is 

preopen with F A  and  1 1( ) \ ( ( ( \ ( ))))f F X f pCl f X Cl U   
1\ ( ( ( \ ( ))))X f f Cl X Cl U by(vii)   

\ ( ( \ ( )))X Cl X Cl U \ ( \ ( )) ( )X X Cl U Cl U  .                                                     
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(viii) (ix)  Let y  be any point in Y and each open set U in X with 1( )f y U  . 

Then there exists a preopen set A in Y and we obtain  

\ ( ( \ ( )))A Y pCl f X Cl U ,by(viii) 
1 1( ) \ ( ( ( \ ( ))))f A X f pCl f X Cl U  1\ ( ( \ ( )))X f f X Cl U ( )Cl U  . 

(ix) (i) Let U be any set in X and F be a closed set in X. Suppose that ( )F Cl U  and 

\ ( ( ))y Y f Cl U  . Since 1( ) \ ( )f y X Cl U  , then there exists a preopen set A in Y with 

y A  and 1( ) ( \ ( ))f A Cl X Cl U  = \ ( ( ))X Int Cl U . 

Therefore, ( ( ( )))A f Int Cl U  , and \ ( ( ( ( )))y Y pCl f Int Cl U . So, we obtain  

( ( ( ( )))) ( ( ))pCl f Int Cl U f Cl U . 
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Abstract 
In this paper we shall define one of the most fundamental concepts in mathematics, the 

notation of a function. We shall discuss the notation used to describe functions and 

investigate some of their graphs. 

 Key words: Function, graph, relation, domain, range. 

Introduction 

 In mathematics, the concept of a function is very important and useful. It appears in 

almost every branch of the subject. We shall use the word function to denote a certain specific 

type of correspondence or association between the elements of two sets. And then, we shall 

show how to represent a functions geometrically by graphs. Such graphs provide a useful way 

of visualizing the behavior of a function. We shall also develop some basic techniques for 

using graphs of simple functions to constant graphs of more complicated functions. 
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