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Abstract 
In this paper, some important types of fluid flows are expressed. Then, the rate of flow and 

continuity equation of a fluid flow through a pipe are studied. The flow of viscous 
incompressible fluid through circular pipe is mainly discussed with examples.  

 

1. Introduction 
 This paper deals with the flow of fluids which is viscous and flowing at very low 
velocity. At low velocity the fluid moves in layers. Each layer of fluid slides over the 

adjacent layer. Due to relative velocity between two layers the velocity gradient 
du
dy

 exists 

and hence a shear stress  
du
dy

    acts on the layers.   

 For the flow of viscous fluid through circular pipe, the velocity distribution across a 
section, the ratio of maximum to average velocity, the shear stress distribution and drop of 
pressure for a given length is to be determined. The flow through the circular pipe will be 
viscous or laminar, if the Reynolds number (Re) is less than 2000. The expression for 
Reynold number is given by  

    
uD

Re





, 

where     density of fluid flowing through pipe 
 u  = average velocity of fluid 
             D = diameter of pipe and  
              = viscosity of fluid.   
 

2. Some Important Types of Fluid Flows 
 Steady and unsteady flows 
  Steady flow is defined as that type of flow in which the fluid characteristics like 
velocity V, pressure p, density , etc., at a point do not change with time. Thus for steady 
flow, mathematically, we have 
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where  0 0 0x , y ,z  is a fixed point in fluid field. 

            Unsteady flow is that type of flow, in which the velocity, pressure or density at a 
point changes with respect to time. Thus, mathematically, for unsteady flow 
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Uniform and non-uniform flows 
 Uniform flow is defined as that type of flow in which the velocity at any given time 
does not change with respect to space (i,e., length of direction of the flow). 
Mathematically, for uniform flow 
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where V = change of velocity 
 s = length of flow in the direction s. 
   Non-uniform flow is that type of flow in which the velocity at any given time changes 
with respect to space. Thus, mathematically, for non-uniform flow 
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Laminar and turbulent flows 
  Laminar flow is defined as that type of flow in which the fluid particles move along 
well-defined paths or stream lines and all the stream lines are straight and parallel. Thus 
the particles move in laminas or layers gliding smoothly over the adjacent layer. This type 
of flow is also called stream line flow or viscous flow. 
 Turbulent flow is that type of flow in which the fluid particles move in a zig-zag 
way. Due to the movement of fluid particles in a zig-zag way, the eddies formation takes 
place which are responsible for high energy loss.  



 For a pipe flow, the type of flow is determined by a non-dimensional number 
uD


 

called the Reynold number. 
         If the Reynold number is less than 2000, the flow is called laminar. If the Reynold 
number is more than 4000, it is called turbulent flow. If the Reynold number lies between 
2000 and 4000, the flow may be laminar or turbulent. 
 
Compressible and incompressible flows 
 Compressible flow is that type of flow in which the density of the fluid changes 
from point to point or in other words the density  is not constant for the fluid. Thus, 
mathematically, for compressible flow 
      constant. 
  Incompressible flow is that type of flow in which the density is constant for the 
fluid flow. Liquids are generally incompressible while gases are compressible.  
Mathematically, for incompressible flow 
     = constant. 
 
Rotational and irrotational flows 
 Rotational flow is that type of flow in which the fluid particles while flowing along 
stream lines, also rotate about their own axis.  
 If the fluid particles while flowing along stream lines, do not rotate about their own 
axis then that type of flow is called irrotational flow. 

3. Rate of Flow or Discharge Q 
  It is defined as the quantity of a fluid flowing per second through a section of a 
pipe or a channel.  
 For an incompressible fluid (or liquid), the rate of flow or discharge is expressed as 
the volume of fluid flowing across the section per second.  
 For compressible fluids, the rate of flow is usually expressed as the weight of fluid 
across the section.  
Thus 

(i) for liquids, the units of Q are 3m s  or litre /s 
(ii)  for gases, the units  of Q is Newton /s. 

We consider a liquid flowing through a pipe in which 
 A = cross-sectional area of pipe 



          u = average velocity of fluid across the section. 
Then, the discharge  is    
                                                     Q Au.                                             (1) 

 
4. Continuity Equation 

 The equation based on the principle of conservation of mass is called continuity 
equation. Thus for a fluid flowing through the pipe at all the cross-section, the quantity of 
fluid per second is constant.  
 
 
 
 
 
 
 
 
                         

Figure 1. Fluid flowing through a pipe 
We consider two cross-sections of a pipe as shown in Figure 1. 

Let    1u  average velocity at across-section 1-1, 

        1   density at section 1-1, 

        1A area of pipe at section 1-1 

and 2 2 2u , ,A  are corresponding values at section 2-2. 

Then rate of flow at section 1-1  is  1 1 1A u    and 

The rate of flow at section 2-2    is  2 2 2A u . 
According to law of conversation of mass, 
    the rate of flow at section 1-1   the rate of flow at section 2-2 

     1 1 1 2 2 2A u A u   .                                                      (2)  
Equation (2) is applicable to the compressible as well as incompressible fluids and is 
called continuity equation. 

 If the fluid is incompressible, then 1 2   and continuity equation (2) reduces to      

               1 1 2 2A u A u .                                                    (3) 
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5. Flow of Viscous Fluid Through Circular Pipe 

 
 
 
 
   (a)              (b) 
   Figure 2. Viscous flow through a pipe 
 We consider a horizontal pipe of radius R. The viscous fluid flowing from left to 
right in the pipe as shown in Figure 2 (a). 
 We consider a fluid element of radius r, sliding in a cylindrical fluid element of 
radius (r  dr). Let the length of fluid element be x.  
 If p is the intensity of pressure on the face AB, then the intensity of pressure on 

face CD will be 
p

p x
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.  

 Then the forces acting on the fluid element are 

(i)  the pressure force  2p r   on face AB 

(ii) the pressure force  2p
p x r

x
 
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   on face CD 

(iii) the shear force 2 r x   on the surface of fluid element.  

As there is no acceleration, hence the summation of all forces in the direction of flow 
must be zero. 
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The shear stress  across a section varies with r as  
p
x



  across a section is constant. 

Hence shear stress distribution across a section is linear as shown in Figure 3(a).  
 
 
 
 
 
              Figure 3.   Shear stress and velocity distribution across a section 
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Velocity distribution 
 To obtain the velocity distribution across a section, the value of shear stress 

du
dy

     is substituted in equation (4). 

But this relation 
du
dy

     , y is measured from the pipe wall.  

Hence      y R r    and    dy dr  . 

 So,          
du
dr

   . 

Substituting this value in equation (4), we get 

                 
du 1 p

r
dr 2 x




 
. 

Integrating this above equation with respect to r, we get 

                   21 p
u r C,

4 x


 
 

                                                                      (5) 

where C is the constant of integration and its value is obtained from the boundary 
condition that at r  R, u  0. We get 
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Substituting this value of C in equation (5), we get 
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In equation (6), values of , 
p
x



  and R are constant, which means the velocity u varies 

with the square of r. Thus equation (6) is the equation of parabola. 
This shows that the velocity distribution across the section of a pipe is parabolic. This 
velocity distribution is shown in Figure 3(b). 
 
Ratio of maximum velocity to average velocity 

 The velocity is maximum, when r  0 in equation (6). Thus maximum velocity maxU  
is obtained as 

   2
max

1 p
U R .
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                                                   (7) 



 The average velocity u  is obtained by dividing the discharge of the fluid across the 
section by the area of the pipe (R2). The discharge Q across the section is obtained by 
considering the flow through a circular ring element of radius r and thickness dr as shown 
in Figure 2 (b). The fluid flowing per second through this elementary ring 
         dQ   velocity at a radius r  area of ring element 
                2u r dr  
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Therefore, average velocity is   
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u
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Dividing equation (6) by equation (9), 
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So,the ratio of maximum velocity to average velocity  is 2. 
That is,            

  maxU 2u.  
 
Drop of pressure for a given length (L) of a pipe 
 
 
 
 
 
                                             Figure 4 
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From equation (9), we have 
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Integrating the above equation with respect to x, we get  
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where 1 2p p  is the drop of pressure. 

Then, the loss of pressure head is    1 2p p
g



.      

So,     1 2
2

p p 32 uL
.

g gD
 


 

                                                            (11) 

Equation (11) is called Hagen Poiseuille Formula. 
 
Example (1)  
 A crude oil of viscosity 0.97 poise and relative density 0.9 is flowing through a 
horizontal circular pipe of diameter 100 mm and of length 10m. 

Therefore,      20.97
0.97 poise 0.097Ns / m

10
    . 

 Since the density of water is 1000 kg /m3, 

 the density of oil is   30.9(1000) 900kg / m   .  

If 100 kg of the oil is collected in a tank in 30 seconds, 

we can calculate difference of pressure ( 1 2p p ) at the two ends of the pipe. 

The difference of pressure ( 1 2p p ) for viscous flow is given by 

    1 2 2

32 uL
p p ,

D


   



 where u   average velocity  Q
.

Area
 

Now, mass of oil /sec   100
kg / s.

30
  

Since the mass of oil/sec is  Q 900Q  , 

        100
900Q.

30
  

Then,                  3100 1
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30 900
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(12) 

The average velocity is    
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(13) 

For laminar flow, the Reynolds number (Re) is less than 2000. Let us calculate the Reynolds 
number for this example. 

Reynolds number is   
uD

Re





, 

where   900, u   0.471, D  0.1m,   0.097.            

 Then,     
0.471 0(0.1)

Re 900 436.91
0.097

  .              (14) 

As Reynolds number is less than 2000, the flow is laminar. 
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2
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        20.1462N/ cm .             (15) 
 
Example(2)  
 A laminar flow is taking place in a pipe of diameter 200 mm. The maximum velocity 
is 1.5 m /s.  

That is,  D = 200mm = 0.20 m and maxU =1.5m/s. 
We can find the mean velocity u  and the radius r at which this occurs. 

Since maxU 2u , 
1.5

u 0.75m / s.
2.0

   

The velocity u at any radius r is given 
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But from equation maxU  is given by 2
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Now, the radius r at which u  u   0.75m/s, 

            0.75 
2

r
1.5 1

D / 2

  
    
   

 

                    0.75

1.5
   

2
r

1
0.1

 
  
 

 

                  
2

r 0.75 1 1
1 1

0.1 1.5 2 2
 

     
 

 

                       
r 1

0.5
0.1 2

   

                          r 0.0707m 70.7mm.   
We can also calculate the velocity at 4 cm from the wall of the pipe. 
        r  R 4.0  104.0  6.0cm  0.06 m. 

Then, the velocity at a radius 0.06 m 
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