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~ Application of Finite Element Method to Fluid Flow

Ni Ni Win
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Abstract- Applications of the finite element method to a
restricted class of problems in potential flow have required the
availability of an  associated variational principle.
Incompressible flow under prescribed pressure fields and
compressible flow in which the continuity equation is implicitly
satisfied and the fluid density is known as a function of time. As
such, they do not represent completely general models of general
tluid flow or of the Navier-Stokes equations. It is the purpose
herein to present brief derivations of the finite element equations
describing a discrete model of compressible and incompressible
Stokesian fluids.

o

Flow, Finite Element

Keywords—Linearized  Compressible

Method, Fluid Flow

1. INTRODUCTION

Let us consider isothermal motion of an arbitrary fluid, If
the continuity equation and the principle of balance of linear
momentum is satisfied, then a global form of the law of
conservation of energy can be written [6]

Dy, i
'[p o Vi + !:,J.d,.jdv =Q .
in which p = the mass density; v; = component of velocity

field; tj= Cauchy stress tensor; dj= the rate of deformation
tensor and Q = the mechanical power of external forces;

(1)

_DH‘LE- = ﬂ " vm vr i (2)
Dt dt ' -
1
dg= 5 Wt ®
4)

Q= [Fvdv+[SvdA
v A

in which F.

)
comma denotes partial differentiation with respect to a fixed

and §are body and surface forces; and the

system of spatial Cartesian coordinatesX;. In addition to
equation (1), it is required that the continuity equation

op
o (), =0 ©)

must be satisfied at every point in the continuum.

I. FINITE ELEMENT METHOD OF FLUID FLOW

Now construct a finite element model of the region R
through which the fluid flows. This consists of a collection of
a finite number of connected subregions R called finite

elements, which are generally assumed fo be of some
relatively simple geometric shape. A number of nodal points
are identified in and on the boundaries of each element, so that

the whole assembly is viewed as being connected together at
various boundary nodes. A typical finite element is isolated
and the flow of fluid through it independent of the other
elements is considered.

Let p and v, denote the density and velocity fields
associated with a typical element €. Proceed by constructing
local approximations of these fields over the element which
are uniquely determined by the values of o and v, at the node
points of the element:

N N e
Py =¥ (x)py’ and Viey=¥ () (©)
in which ,O‘,(\f} and v;ﬁ.’ are the values of the local fields

Pand v, at node N of element e. The repeated nodal
indices N in Equation (6) are to be summed from 1 to N,, in
which &, is the total number of nodes of element e. The local
interpolation functions ;VN (x) are generally selected so that

£ and V. are continuous across interelement boundaries once

the elements have been connected to form the complete
discrete model. Procedures for connecting elements together
and applying boundary conditions are well-documented and
will not be described herein. The functions 1" (x) also have
the properties

N
v ) =68 =Sy (x) =1
N=I

in which 5;}' is the Kronecker delta; and X, = X,, is the
coordinates of node M of the element. Substituting equation

(6) into equation (1) and simplifying
(7

m

MON = MORN N N
VM‘(“ PV Qf'+b o )QMVQMVR;"'J.%'% dv—pf )"‘"O
i

is obtained in which Ve is the volume of the element p;v is

the component of generalized force at node N; and aMQN,

MORN i :
b, ORN" are multidimensional arrays:

a"® = [y (O (Y (D ®
Ve

B = [y (w2 oyt (o™ (x)dv ©)
Ve

P = [Fy" (x)dv+ [y (x)da (10)

Ve Ae
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- where M, N, Q, R=12,......,
repeated indices are summed.

As equation (1) and consequently equation (7), must hold
for arbitrary continuous velocity fields, the term in
parentheses in equation (7) must vanish., Thus, for the
equations of motion for a typical fluid element the system of
nonlinear equations is obtained:

Ne and i, j, m=1,2,3 and all

MQ\’ bMQRJ\

vaQx m {11)

N N
PuVouVei T jfg'w,j dv=p;
Ve
This result applies to arbitrary fluids as the form of the
constitutive equation for stress is, as yet, unspecified. By
following a similar procedure, a finite element model of
equation (2), the continuity equation, is also obtained,;

" oy +A PV =0 (12)
in which ¢ —Igz/‘”(x);y (x)dv (13)
00 = Jw @Y et @y s

Ve
in which 1, =the components of a unit vector normal to the
bounding surface area of the element Ae.

I1I. COMPRESSIBLE STOKESIAN FLUIDS
For adiabatic of compressible Stokesian fluids, the stress

tensor Z;; is of the form

t, =|-7(07,0) + Ady 5, + 244, (15)
in which 7z is the thermodynamic pressure which must be
given by an equation of state for the fluid; € is the absolute
temperature; A, and 4, and are the dilatational and shear
viscosities, respectively.

The tensor dg. for the finite element is obtained in terms
of the nodal velocities by introducing equation (6) into
cquation (3). If equation (15) is then incorporated into

equation (11), the finite equations for compressible Stokesian
fluids are obtained:

ON . MQORN
pM in + b pM vavRa +

I[(ivv/,fm 7)o, +2zuv'f/; Vw]WNdV p,

The finite element analogue of the continuity equation (12)
must be added.

(16)

I'V.INVOMPRESSIBLE STOKESIAN FLUIDS
In the case of incompressible fluids, 7 becomes the
hydrostatics pressure p ; the density o is a constant; and the
incompressibility condition
dy, =0
must be satisfied. Then equation (15) reduces to

~po;+24Ld;

and the equation of motion for an element becomes

(17

(18)

MM+ el + [V QU - popav=p! (19

Ve

in which m™ and € " are the mass and convected mass

matrices for the element

m™ = _[p;u Y (x)w M (x)dv 20)

’\"Mr{

m - IPW (V)V/ (x)!/; m(r)d""

Allhough equation (12) is now implicity satisfied, equation
(19) represents 3/Ne nonlinear differential equations in the

20

3Ne+1 unknown nodal velocities vy and the uniform

element hydrostatic pressure p. To complete the system, an
additional equation is needed. This is furnished by the
incompressibility condition equation (17), which, for the finite
element, is satisfied in an average sense by

jd;dcd“' Vg IEVA (x)dv=0
Ve

Equations (19) and (22) complete the description of motion of
a finite element of an incompressible Stokesian fluid.

(22)

V. EXAMPLE OF ONE DIMENSIONAL FORMS

Although a detailed exploration of results obtained using
these equations is not within the scope presented herein, it is
informative to examine the forms of nonlinear equations for a
sample one-dimensional case. Consider the case of one-
dimensional compressible flow through a typical finite
element of unit length. In this case, if x is a local coordinate,
a first approximation is

V =a, +a2x:[l x][m}
a;
= f(x)'[a]

If nodal velocity v,and v, are needed at x=0 and x=1.
Then

)
V, 1 1] a;
Therefore [¢]= G [V ],
V=f(x)c'V]
=(1-x)v, +xv,.
Then shape functions are
w'(x)=1-x and y*(x)=x

and (7) becomes

. I 4 i L 1 .
Evlvl P +EV1V1 e +EV|V:P1 +Evtv::02 +E"’zvr At
v,V 1 e A VP, N : w1 3 v I I
PR e i 5 2 V
12" Pyt 2 2P 4 301 — 12 VA~ 12 ,Pz 12 V2P
1 1
0 ,va~ ‘ ‘n9| 2 — Wi, + 2";91 vip, +

J'U (v, +v, )dx =0

and continuity equation becomes
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- . . 2 2
PV +4v] + Vi) +p(Viy + Vi) +p(Viy + Vi)V +

(33)
6(Ay +2p) (Vi — Vi) —6m =0
while the continuity equation becomes
Vi =V =0 (34)

This, in this case, is identical to the central difference
approximation of the incompressibility condition equation

(17).

VI. CONCLUSION

For compressible and incompressible Stokesian fluids,
finite element equation describing the motion of the fluids
may be developed without resorting to variational principles
by considering energy balances over an element. These
involve systems of non-linear ordinary differential equations
in the nodal velocities 7/, and, for compressible fluids, the

nodal densities p, . As the interpolation functions used in the

local approximations can generally be designed so that the
velocity and density converge in the mean to continuous
velocity and density distributions, and since the formulation
amounts to enforcing exact satisfaction of the principle of
conservation of energy for each element, it is reasonable to
expect that the proposed finite element model is a very good
approximation of the continuum.

In the case of compressible fluids, a finite element model
of the continuity equation must be derived to supplement the
equations of motion. For incompressible flows, an
incompressibility condition involving the nodal velocities
must be added, both to ensure incompressibility in an average
sense over the element and to compute element hydrostatic
pressure if they are not specified a priori.
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