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Abstract— Cryptographic hash functions are an important 

building block for a wide range of applications such as the 

authentication of information and digital signatures. In this 

paper we give special emphasis on the design and security of 

the standard hash functions.  
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I. INTRODUCTION 

 
Hash function is a fundamental tool in Information 

Security. In its simplest from a hash function is an algorithm 

that takes an input of any size and outputs a fixed length 

“hash code” that is, in some sense, difficult to predict in 

advance. The basic idea is that, the hash code serves as 

compact representative image of an input string and can be 

used as if it is uniquely identifiable with that string. That is, 

the output of the hash function serves as a digital finger-

print for the input and should be the same each time the 

same message is hashed. We use hash functions to help 

provide data integrity in Message Authentication Codes 

(MACs), to produce message digests for use with digital 
signature schemes and to produce Manipulation Detection 

Codes (MDCs) in entity authentication and key 

establishment schemes. 

For a hash function to be secured it is required to be one-

way and collision resistant. The one-way property can be 

achieved if it is easy to generate the message digest of a 

message but, is hard to determine the original message when 

the digest of it is known. On the other hand, collision 

resistance can be attained if it is hard to find two different 

messages, having same message digest as output. Apart 

from these requirements, the hash function should be 
accepting a message of any size as input and computation of 

the message digest must be fast and efficient. 

Hash functions have been fairly widely standardized by 

International Electrotechnical Commission (ISO/IEC), 

National Institute of Standards and Technology (NIST), and 

the Internet Engineering Task Force (IETF). In this paper, 

we give special emphasis on the design and security of 

Message Digest (MD) family which has standard by IETF 

and Secure Hash Algorithm (SHA) family of NIST secure 

hash standard.  

The paper is organized as follows. Section 2 describes the 

design and security of standard hash functions. Section 3 

deals with their software performance. Section 4 presents 

the conclusions. 

II. DESIGN AND SECURITY OF STANDARD HASH 

FUNCTIONS 

The most commonly used hash functions are MD5 and 

SHA-1. These are dedicated or custom-designed hash 

functions, this is, algorithms that were especially designed 

for hashing operations. Other examples of custom-designed 

hash algorithms are MD2, MD4, and MD5 (the MDx-

family), SHA-0, SHA-1, SHA-224, SHA-256, SHA-384, 
SHA-512 (the SHA-family), RIPEMD-160, HAVAL and N-

hash. 

Dedicated hash algorithms are designed to be very 

efficient on 32-bit machines, which make them very 

popular; even through their security is only based on 

heuristic arguments. None of the desired properties of 

cryptographic hash functions can actually be proven for 

them. However recent advances in cryptanalysis have 

shown that this is not good enough. In fact, all of the hash 

functions mentioned above apart from the SHA-2 algorithm 

(i.e. SHA-224, SHA-256, SHA-384, and SHA-512) are 

currently considered broken. Although not all of the 
theoretical attacks are practical yet, they are rapidly being 

improved and put into practice. Trust in dedicated hashing 

has long been undermined, leaving hardly any cryptographic 

hash functions that can still be used without concern. 

The two most widely used dedicated or custom-

designed hash algorithms MD5 SHA-1, how their security is 

argued and how they have been attacked. This motivates the 

research of hash functions with provable security, which 

will be investigated in the following. 

A. MD5 

This Message Digest Algorithm 5, known as MD5, was 

designed by Ronald Rivest of MIT in 1991 and is specified 

in the MD5. It takes a message of arbitrary length as input 

and produces a 128-bit message digest.  

MD5 is used widely in the software world to compute 

cryptographic checksums and to store passwords. It is part 

of applications such as GPG (public key encryption), 
Kerberos (network authentication), TLS (secure client-

server connections), SSL (client-server authentication), 
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Cisco type 5 enable passwords (password storage system) 

and RADIUS (remote user authentificatiion). 

 The MD5 Algorithm. Let M be the input message of length 

b bits. M is first padded to a multiple of 512 bits and then 

divided into 512-bit blocks 
10

....,,
n

MM  each consisting of 

16 words. Each block is then processed in 4 rounds; each 
consisting of 16 operations, using a 4-word buffer denoted 

A, B, C, D. After all blocks have been processed, the buffer 

contains the message digest. More specifically, the steps in 

MD5 are: 

Padding. A single bit “1” is appended at the end of the 

message. The “0” bits are appended until the length of the 

new message is congruent to 448 modulo 512. Finally a 64-

bit representation of b (the length of the original message) is 

appended. The resulting message is an exact multiple of 512 

bits long.

Initialize buffer. The buffer is initialized to the hex values 

 
76543210,98

,89,01234567

DFEDCBAC

ABCDEFBA   

(with the least significant bit listed first). 

Compute constants. A 64-element table is computed from 

the sine function according to the formula )1sin(.2
32

tKt
 

for 63,...,0t , where t is in radians. 

Auxiliary functions. Four auxiliary functions, which each 
take as input three 32-bit words and produce as output one 

32-bit word, are defined as                

63...,,48)(),,(

,47...,,32),,(

31...,,16)()(),,(

,15...,,0)()(),,(

tforDBCDCBf

tforDCBDCBf

tforDCDBDCBf

tforDBCBDCBf

t

t

t

t  

Word order. Defined the following vector that determines in 

which order the words of a block will be processed in each 

round: 
 )15...,,1,0(),...,(:1 150 jjRound  

)9,2,11,4,13,6,15,8,1,10,3,12,5,14,7,0(

),...,(:4

)2,15,12,9,6,3,0,13,10,7,4,1,14,11,8,5(

),...,(:3

)12,7,2,13,8,3,14,9,4,15,10,5,0,11,6,1(

),...,(:2

6348

4732

3116

jjRound

jjRound

jjRound

Shift amounts. Define the following shift amounts 

)21,15,10,6,21,15,10,6,21,15,10,6,21,15,10,6(

)...,,(:4

)23,16,11,4,23,16,11,4,23,16,11,4,23,16,,11,4(

)...,,(:3

)20,14,9,5,20,14,9,5,20,14,9,5,20,14,9,5(

)...,,(:2

)22,17,12,7,22,17,12,7,22,17,12,7,22,17,12,7(

)...,,(:1

6348

4732

3116

150

ssRound

ssRound

ssRound

ssRound

 

Process message in 16-word blocks.
/* Process each 16-word block.*/
   donifor 1....,,0  

(a) Divide Mi into words 
150 ....,, WW      where W0 is 

the left-most word. 

(b) Save A as A , B as B , C as C  and D 

as D : DDCCBBAA ,,,                  

(c) for t = 0, …, 63 do 

)),,((
ttjtt

SKWDCBfBX ,

XBBCCDDA ,,,     

(d)  Then increment each of the four registers by the 

value it had before this block was started: 

DDDCCC

BBBAAA

,

,, , 

   end /*of loop on i* /                                

 Output. The message digest is A, B, C, D. 
One MD5 operation at step can be described in the 

following diagram: 

 

jtW

tK

ts

tf

 
Fig 1: Step operation for MD5 

B. Security of MD5 

MD5 is computationally infeasible to produce two 

messages having the same message digest, or to produce 

any message having a given prespecified target message 

digest, that is , to be collision resistant and preimage 

resistant. In addition, MD5 was made to be fast on 32-bit 

machines and to operate without large substitution tables; 

hence it can be coded compactly. 

While the second and third attributes can be easily 

verified and are definitely true, the security of MD5 is based 

on a number of heuristic arguments and no proofs of 

security exist. Heuristic arguments include that the auxiliary 
functions are non-invertible, non-linear and asymmetric, if 

bit in B, C and D are independent and unbiased, then each 

bit of ),,( DCBf  will be independent and unbiased, each step 

adds in the result of the previous step, each step has a 

unique additive constant, input words are accessed in a 

different order in each round, and shift amounts in different 

rounds are distinct. 
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 All of these attributes are said to increase the avalanche 

effect, meaning that if an input is changed slightly (for 

example, changing a single input bit), then the output 

changes significantly (for example, half the output bit flip). 

While its speed and the fact that the algorithm is fairly 

simple and publicly available have made MD5 very popular, 
it seems rather alarming that the algorithm is used in many 

cryptographic applications to this day, considering its 

security is not supported by any proof at all. 

 

C. Attacks on MD5  

MD5 was designed in 1991 to replace an earlier hash 
function MD4 in which flaws had been found. However, it 

was soon discovered that MD5 also has its problems. 

Starting in 1993 the use of MD5 was more and more 

questioned by several successful collision attacks, and 

recent results have completely destroyed confidence in the 

algorithm. 

In 1993, Boer and Bosselaers were able to find a so-called 

pseudo-collision for the compression function of MD5, that 

is, two different initialization vectors that produce a 

collision when the MD5 compression function is applied to 

the same message. Although this is an attack that has no 
practical significance, it exposed the first weakness in MD5.  

Dobbertin announced a collision of the MD5 compression 

function in 1996. While this was not an attack on the full 

version of MD5, it worried cryptographers enough to 

recommend switching to a replacement, such as SHA-1, 

WHIRLPOOL, or RIPEMD-160. 

Also, a hash of 128 bits is small enough to allow birthday 

attacks. Cooke and his company launched a distributed 

search project in 2004 with the aim of finding collisions for 

MD5 by a brute force search using Pollard’s rho method. 

The project was a abandoned a few months later, when it 

was announced that collisions had actually been found by 
analytical for many, and it is said that Wang and her team 

received a standing ovation when they reported that they 

had found collisions for the full MD5 at the CRYPTO 

conference in August 2004.  

D. SHA-1 

SHA-1 is the most commonly used member of the SHA 

family. It was published by the National Security Agency 

(NSA) in 1995 as a US government standard and to replace 

the SHA-0 algorithm from 1993, in which a flaw had been 

found. SHA-1 takes an input message of at most 2
64-1 bits 

and produces a message digest of length 160 bits. 

Since MD5 become untrustworthy, SHA-1 has become 

the most commonly used hash function. It is employed in 

security applications and protocols such as Open PGP 

(encryption of data), S/MIME (public key encryption and 

signing of e-mail), IPSec (encryption and / or 
authentification of IP packets) and SHH (secure remote 

login). The copy prevention of Microsoft’s Xbox game 

console also relies on SHA-1. 

The SHA-1 Algorithm. SHA-1 is often considered a 

successor of MD5 because its design is very similar. 

Padding is performed in the same way, then a message M of 

length b bit is split into 16-word blocks 
10

....,, nMM  and 

each block is processed in 4 rounds, consisting of 20 

operations each, and using a 5-word buffer A, B, C, D, E. 

After all blocks have been processed, the buffer contains the 

message digest. More specifically, the steps in SHA-1 are: 

Padding. M is considered as a bit string and a single bit “1” 

is a appended at the   end of the message. Then “0” bits are 

appended until the length of the new message is congruent 

to 448 modulo 512. Finally a 64-bit representation of b is 

appended, resulting in a message which is an exact multiple 

of 512 bits long. 

Initialize buffer. The buffer is initialized to the values 

0123,10325476,98

,89,67452301

FEDCEDBADCFEC

EFCDABBA  

Constants. The following constants are used (in hex): 

 
39,...,,20196

19...,,08279995

tforEBAEDK

tforAK

t

t         

79....,,606162

59....,,4018

tforDCCAK

tforBBCDFK

t

t  

Auxiliary functions. A sequence of logical functions is 

used, each operating on   three words and producing one 
word as output. They are defined as follows:    

39...,,20),,(

,19...,,0)()(),,(

tforDCBDCBf

tforDBCBDCBf

59,...,40

)()()(),,(

tfor

DCDBCBDCBf t

79,...,60),,( tforBCDDCBf

Process message in block.  
/* Process each 16-word block.*/ 

donifor 1....,,0  

(a) Divide Mi into words
150 ....,, WW  where W0 is the 

left-most word 

(b) For 79...,,16t   

let 1)(
161483 tttt

WWWWW  

(c) Save A  as A , B  as B , C  as C , D as D  

and E as E : EEDDCCBBAA ,,,,   

(d) for t = 0, …, 79  do  

(e) KWEDCBfAX ),,()5(

XAABBCDDE ,,30,,  

(f) Then increment each of the four   registers by the 

value it had before this block was started: 

EEEDDD

CCCBBBAAA

,

,,,  

end /* of loop on i *                 

Output. The message digest is A, B, C, D, E. 

One SHA-1 operation at step can be described by the 

following diagram: 
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jtW

tK

t
f

30

5

 

Fig. 2: Step operation for SHA-1 

 

1) Security of SHA-1 
 

The authors of the SHA-1 claim that it is computationally 

infeasible to find a message which corresponds to a given 

message digest, or to find two different message which 

produce the same message digest for SHA-1. As with MD5, 

however, no proofs of security exist and all there is to 

support this statement are heuristic arguments like those 

mentioned for MD5 in Section 2.1.1. 
SHA-1 is also very fast on 32-bit machines and can be 

coded quite compactly, and it is thus used very widely. In 

fact, as flaws were found in MD5, cryptographers 

recommended replacing MD5 by SHA-1, which was done in 

many applications. Since SHA-1 has been broken as well 

(meaning that collisions can be produced with less 

computational complexity than that of a brute force attack). 

NIST now plans to replace SHA-1 by members of the SHA-

2 family (SHA-224, SHA-256, SHA-384, SHA-512 named 

after their digest lengths), for which no attacks have been 

reported, by 2010. 

 

2) Attacks on SHA-1 
 

The members of the SHA-family were designed as 

successors of MD4, just as MD5 was, but they lasted a bit 

longer. SHA-1 is very similar to its predecessor SHA-0, and 

so the first reason to doubt the security of SHA-1 was the 

announcement that SHA-0 had been broken by Chabaud and 

Joux at CRYPTO’98. The next milestone in the 

cryptanalysis of SHA-0 was when Wang and her team 

announced their collision attack in 2004, which also works 

for SHA-0. That was when cryptographers first started to 

recommend finding alternatives to SHA-1, especially in the 
design of new cryptosystems. Also as a result of that, NIST 

announced it would phase out the use of SHA-1 by 2010 

and replace it by SHA-2 variants. 

 

The first successful attack on SHA-1 itself was performed 

by Rijmen and Oswald in early 2005. They were able to 

break a reduced version of SHA-1: 53 out of 80 rounds. 

Only a month later a break of the full version of SHA-1 was 

announced by Wang, Yin and Yu. This was another famous 

day for Wang and her team, who based their attack on 
several different methods used in earlier attacks on SHA-0 

and MD5. This attack required 2
69 operations, but was soon 

improved to take only 263. Such collision attacks generally 

work by starting off with two messages and continually 

modifying them throughout the attack. That means that the 

structure of the colliding messages is determined by the 

attack, and they will almost certainly turn out to be complete 

gibberish. Although this is of theoretical importance, it is 

hard to turn it into a practical attack. 

Recheberger and de Canniere announced the first 

collision attack on SHA-1 where the attacker can influence 

the colliding messages. According to Rechebger, the new 
attack allows up to 25% of the amount to be freely selected 

can be further increased by optimizing the attack. This is 

now a quite practical attack itself, considering that HTML 

documents, for example, may have complete nonsense after 

the tag that will never be printed. So it is now possible to 

produce two seemingly identical html documents with the 

same SHA-1 hash. This leaves SHA-1 no better off than 

MD5. 

Just as with MD5, (second) preimage attacks on SHA-1 

have not been accomplished, but the collision attacks have 

reached a level that causes serious concern and makes 
urgent a quick replacement of the algorithm.  

 

III. PERFORMANCE OF HASH FUNCTIONS 

 

In order to compare the performance of software 

implementations of hash functions, an overview has been 

compiled in Table 1. All timings were performed on a 

90MHz Pentium processor. The implementations were 

written by A. Bosselaers [3]. Most of them use additional 

memory to improve the speed. The C-code was compiled 

with a 32-bit compiler in protected mode. Some algorithms 

like Snefru and SHA would perform relatively better on a 
RISC processor, where the complete internal state can be 

stored in the registers. On this type of processor, SHA is 

only about 15% slower than MD5. 

 

TABLE 1: PROCESSING SPEED (IN MBIT/S) FOR A 90MHZ PENTIUM 

PROCESSOR, FOR BOTH ASSEMBLY IMPLEMENTATION AND PORTABLE C 

IMPLEMENTATION. 
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IV. CONCLUSION 

In this paper we discuss about the security features which 
are essential to construct a cryptographic hash function. We 

also present the design of cryptographic hash functions 

which are both secure and efficient in software and 

hardware implementation. An important note is that the 

increased security of hash functions is achieved at the 

expense of lower performance.  
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