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Abstract

We calculated the differential cross section for 7~ +n—> A+ K™ by using Fermi Golden
Rule . Firstly, the total transition rate is the transition probability per unit time. This formula is
of great practical importance. It is called Fermi’s golden rule. Firstly, we formulated the
transition rate from initial state to finial state. We calculated threshold energy of above
reaction and momentum of product particle lambda. Threshold energy is obtained
758.43MeV. We calculated various differential cross section for various incident energy. It is
seen that the differential cross section is largest at incident energy 812.105 MeV. This value of

differential cross section is 9.51x107*A/ Sr.

1. INTRODUCTION

Quantum mechanics cannot predict the occurrence of an event with certainty. Suppose a single
photon of radiation strikes the metal surface. Then, it is impossible to predict whether it will be
absorbed. If it is absorbed it is difficult to know exactly where and when it is absorbed.
However, if a beam containing many photons strikes the metal surface, it is possible to predict
from the intensity of radiation used, the average number of photons absorbed in a certain
region. Thus, in this case, quantum mechanics appears to determine only the probability of an
event. This behavior is true not only for the photoelectric effect but also for all quantum
processes. This means that probability plays a fundamental role in quantum mechanics.

The wave function y which represents the wave nature of the particle can be regarded as a
measure of the presence of the particle. The particle cannot be expected to find in the region of
space where y # (. This suggests that represents, in some manner, the probability of finding
the particle somewhere in the region of space. However, i is a complex function where as
probability is real and positive. Probability ranges from zero (0) to one (1). A probability of 1
means certainty where as probability of 0 means non-occurrence.

2. CALCULATION OF TRANSITION RATE
2.1 Time Dependent Potential

Only few problems in quantum mechanics with either time independent (or) time-dependent
Hamiltonians can be solved exactly. Time-dependent Hamiltonian is split into two parts,
namely,

H=H,+V(r,t) M
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Where Hy does not contain time explicity. The problem V(t) = 0 is assumed to

be solved in the sense that the energy ¢ eigenvalues E, defined by.

H, |n)=E,|n) @)
At any time (t > 0), Theschrodinger equation for a state ket

., 0

1/‘7a|a,t0,t)s =Hla, t,, t), (3)
To transform from Schrodinger picture to interaction picture,

_ iH /A

o1y, ), =™ |, t,, 1), 4)

We define observables in the interaction picture as

A, =e"""a,t, =0,t),
Vl :e.nntmve—.untm (5)
Where V is the time-dependent potential in the Schrodinger picture. The connection between
the Schrodinger picture and the Heisenbeng picture:
lay, =™ |a, t,,t),
A, :eimmAse—iHm

We now derive the fundamental differential equation that characterizes the time evolution of a
state ket i m the interaction picture.
0.

|0L t(,,t) ﬁ%{e'“ ot/

(6)

(7
ihgl(x,to,t% =-H,e"""|a,t,.t) +e"""in \oc to-t),
ot “ (8)
5 _ _
i~ ot ) = =Hoe™ o tg, 1), + ™ (Hy + Vi (0w 1, 1), )
1fr_2|0t,t0,t)I =—H,e"""|a,t,,t) +Hge""” ‘oa, tU_l>_ +e"™MV (1) a ty, t)
: s : (10)
o,t,,t s
12t o0, "
i i —iHgt/h _iHgt/'h . O
‘h§|°~at0at>l :e”“‘”VS(t]e Hot/ giHqt/? |(I-st0"t>s (l2)1ﬁa‘a,t0,t>l =V, (t)‘a,tﬂ,t)l (13)

Which is a Schrodinger like equation with the total H replaced by V;. In other words,
| o, ty,t); would be a ket fixed in time if V(t) are absent.

In the interaction picture, we continue using |n) as our base |n)kets. Thus, we expend as

follow.
|a’t0’t>l : n n(t)|n> (14)
Multiplying both sides of eqn: (12) by (n | from the left, we obtain

., O
mam [a,ty, ), =(n |V a,ty, 1), (15)
Since |n) kets are complete orthonormal set,

[V [m) (m]|o,t,,t), (16)

m

., 0
1ha(n|a, »t =@ |V, |2 |m)(m|a,t,,t), =%
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This can also be written using
0l e Ve M [my =V (e B E and
(n|

nm

C“(t) =(n | cx,to,t), (17)
i"’%cn (H)=2,V,,e"™""C (1) (18)

This is the basic coupled differential equation that must be solved to obtain the probability of
finding |n).
2.2 Time Dependent Perturbation Theory

We must be content with approximate solution obtained by perturbation expansion :

¢, (=c +¢ +c? +... (19)

Where ¢, ¢, ... signify amplitudes of first order, second order , and so on in the

strength parameter of the time dependent potential. The time evolution operator in the
interaction picture is defined by

‘avt{)’t>| =Ul(t’t0)|a’t0’t0>l

(20)
Where, U, (t,t,) = time-evolution operator
In the interaction picture, differential equation for the state ket is
., 0
ih—|o,t,,t) =V (t)|a,t,,t
8’t| 0 >| I()l 0 )1 (21)
we expand the above equation as follow,
ih 0 U =V (t)U
i a{ (L) asty) } =Vi(OU () e ty), o)
ith,(t, t,)=V,(HU,(t,t,)
ot (23)

We must solve this operator differential equation subject to the initial condition
U (t,t,)

First, let us note that the differential equation together with the initial condition is equivalent to
the following integral equation.

1=, =1

ihjdul(t, t,) =jv, (YU, (1, t,)dt’

b t (24)
By integrating both sides, we obtain the followingequation,
i ! r r r
U, (t,t,)—1 =—;jvl(t YU, (1, t,)dt
o (25)
We can obtain an approximated solution to this equation by iteration.
U (tht) =1- %‘[Vl (tDU, (1"t )dt”
to (26)

Uyt ty) =1 - % | V[(z')dt'{l -% lj Vi (tU (1", t,) dt”
0 (27)

1y
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i 1 i, t t g L t
U (t,ty)=1—— | V,(tYdt' + (=) | dt’| dt" V(1Y V,(t") +...+| — dt’| dt”...
() fu{'() (h)l{l{ (V") [ﬁjjj

in=1)

x [ dt"V () V(). V™) +.
ty (28)
This series is known as Dyson series.
2.3 Transition probability
Once U, (t,t,) is given, we can predict the time development of any state ket .If the initial state
at t = o is one of energy eigen states of Hp.Then to obtain the initial state ketat alater time t is
li,t,.t), = U (t,0)|i)
=%, [n){n| U0

=2, (n]U,(t.0)]i)|n) (29)
Comparing the above expression with the expansion, |i,t,,t) =2, ¢, (t)|n),
Then, ¢, (t)=(n|U, (t,0)|i). (30)

Then, time evolution operator in the Schrodinger picture U( t ,0) and the interaction picture
Uy(t ,0) are related to each other as

Ii,to,t>l :ei]-lgtfh i,to,t>s
=" MU (1o, )i, tg. t),
iHt/h —iHgt/h |
:e' ot U(to,t)e 1Hgt/ ‘l,to,to)l (31)
The time evolution operator in the interaction picture is defined by
Ul (to,t) — Moy (to’t)e—iHntiﬁ (32)
i,to, 1), = U (to,t)]i,to, to), (33)
Now, the matrix element of U(t, to) is taken between the energy eigen state of Hy.
(n‘ UI (to,t)‘i> — (n|eillotﬁrU (to,t)e_lem ‘1>
=B B U (41,
(34)
Where ,(n|U(t,t,)|i) is defined to be the transition amplitude. For transition probability,
A2 2
[l ()] =[c, (1)
(35)

The matrix elements of Uj( t,ty ) are taken between initial and final states that are not energy
eigenstates. We can also expend C( t) as in

G, (t) - (nlul (t’to)m

i 0 r ] l 2 0 rlj " ] " .
=<n|l—E!V,(l)dt ) ;[dltJ:dt V(1) V,(t") +...|i)

=(n|]|i)—éj.(n|vl(t’) i)dt'+{%)3jj(n V, (V) V, (17)]i)dedt” +... (36)

Iy Ly

Comparing the expression of both sides of Eqn.(32 ) with Eqn.( 25 ), become as follow;

A (t)=(n|1)i) =8, 7
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ct:’(t)=—§j<n|v. (©)]i)ae

(38)

[ ']H‘”(n[V[ )V, (1)) dtd”
i (39)
By using potential in interaction picture, V; (t') =™V (t')e """

-t

cV(t)= —%jei""""\/ﬂi (t')dt’

(40)
20-(2) e v (el
m g, 1, (41)
We have used, ¢ """ = glon!,
The transition probability for |i) — |n)state with i # n is obtained by
¢, ( t)‘ ‘ D(t)+c? +...... ‘2
p((i—>n))=|c (1) +e (1) +....] W)

2.4 Constant Perturbation

At t=0,a constant perturbation term is

_fo, frwo
V(t) - { v (independent of t) , fort) 0
V( t) may be dependent on space coordinates , spin of isospin etc.
Suppose at t=0, we have only initial state|i), H,|i)=E,|i).Witht, taken to be zero, we obtain

D (O=-3 [ Va ()

(43)
The probability for fi ndmg‘n) state at time t (t=0), the first order is
(1) : — ]Hl Sln (a)j“'t)
n 2
(44)

The probability of finding |n)depends not only on |V, but also on the energy difference

ni

(E, —E,).If the final state is continuous,there are many states with E~E . The transition

)2
¢, |-

nE, =L,
The density of final states is defined as the number of states within energy interval (E,E + dE)
as p(E)dE.

(1)

Z Cn :IdEnp(En)cn
n,E, =E;
= 4| sin?| "l o(E )dE 4
R e ey GO (45)

Att — a, we can take advantage of
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2h 2h

llm;sinz[wj M S(E, ~E,).

(46)
It is now possible to take the advantage of |V, | outside the integral sign and perform the

integration with the § - function:
ZCE'] o \Y 2p(En)t
n § @47)

Thus the total transition probability is proportional to t for large values of t. The total transition
rate is the transition probability per unit time. It is defined by

d
i = Wi
(43)
Where,[n] stands for a group of final states with energy similar to, we obtained
2n 2
\V-I_>[n] - ? Vni p(En )En IE, (49)

This formula valid the first order time-dependent perturbation theory. It is of great practical
importance, it is also called Fermi’s golden rule.
2.5  Calculation of Differential Cross Section for 7" +n —> A +K"
Reaction
The transition from initial state to finial state is,

PEANE (e k]

(he’ (50)
T {2502
7 =% (5)
§=" i{;:"‘ (53)

The differential is defined as the transition rate by incident flux ,

3
doc = Lst xz—“a(E ~E,)dKdK , (o)’
K. h “4EE,

i

( 3 } S(O)S(K K K\) Kq Hq)‘ (54)

When we explained equation (51), we get the following equation as

2 _elem qg'ltla
L2 € 4E. h (55)
The total energy of initial state is
E, =E_+M/c’ (56)
The total energy of finial state is
E, = \/(thK)z +mct + J(hc)z(!(ﬁ +K, —2K_K, cosb, + M3c*) (57)

dE — K cos
f 2 £+KK K.T(’Obgl_‘ (58)

=(h
dK ¢ (C){EK E\
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When we substitute the equation (58) in the equation (51) , we get the following equation as

2 __elem 4 4
do 1)) ge oot 1 (59)

d*Q, “hK,c* AE, h (ﬁc’){K“ N K¢ =K, cosb, ]
E E

K A

We solved above equation by using FORTRAN CODE to obtain differential cross section.

3. RESULT AND DISCUSSION
We formulated the transition rate independent of time. The total transition rate is the transition
probability per unit time. This formula is of great practical importance. It is called Fermi’s
golden rule. The transition rate is as a cross section. The total rate or cross section is obtained
by summing over all possible relevant states, which involves integrating over magnitudes all
solid angles in the final state. This formula has been applied to such a wide variety of quantum
phenomena that it was called the Golden Rule by Enrico Fermi.

The differential cross section is transition rate by incident flux. Therefore we calculated the
differential cross section by using Fermi Golden Rule. Firstly, we calculated threshold energy

of 77 +n—> A+K"reaction and momentum of product particle lambda. Threshold energy
is obtained 758.43 MeV and the momentum of product particle lambda is 430.94 MeV/c.
Finally, we calculated the differential cross section by using above energy and momentum. We
calculated various differential cross section for various incident energy. The results are shown
in the following figure. It is seen that differential cross section is largest at incident energy

812.105 MeV. This value of differential cross section is 9.51x107*5/ Sr.
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'Figure(3.l) differential cross section at various incident energy

4. CONCLUSION

We formulated the transition rate independent of time. This formula is of great practical
importance. This formula has been applied to such a wide variety of quantum phenomena that
it was called the Golden Rule by Enrico Fermi.

This rule is used not only the scattering of a single particle in a fixed potential but also the
nuclear reaction.

The differential cross section is largest at incident energy 812.105 MeV. This value of
differential cross section is9.51x107* 5/ Sr. Therefore, this reaction is strong interaction because

incident energy is high energy and strangeness is conserved.
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