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1.2 Fundamental interactions

In nature, there are four different types of fundamental interactions. These ars
gravitational, electromagnetic, weak and strong interactions. According to the quantum theor
of field, all the interactions rely on the mechanism of exchange of quanta. All the forces z-:
transmitted from one particle to the other by successive processes of emission, propagation ar:
absorption of such mediators. :

1. Gravitational interaction — It is the weakest of all the fundamental interactions and -
between all bodies having mass and is described by the long range inverse square ty7<
This interaction is. believed to be mediated through the quantum of interaction -
graviton — which is yet to be discovered. This interaction provides a large attracti-:
force between planets and produces the acceleration due to gravity in the vicinity -7
planets. It is of extreme importance for astral bodies in galaxies and on cosmologicz.
scale since large masses and distances are involved.

I1. Collisions

2.1 Four-vectors

It is convenientat this point to introduce some simplifying notation. We define t-=

position-time four-vector x*, u=0,1,2,3, as follows:
x’ =ct X' =x X=y X’=z

In term of x*, the Lorentz transformations take on a more symmetrical appearance:

X0 = Y(XO = BXI)
x =y(x! - px) | @.1.1)
x? =x?
X3' — x3
X =3 A (=0123) 2.12)

v=0

The coefficients A, may be regarded as the elements of a matrix A:

- 0 0
—P 0 0
A= Y - (2.1.3)
0 0 1 0 .
0 0 1

(e, A=A, =v;A, = AS =—yB; A2 = A% =1; and all the rest are zero). To avoid writing lots =7
2's, we shall follow Einstein’s “summation convention,” which says that repeated Grezs

indices (one as subscript, one as superscript) are to be summed from 0 to 3. Thus equaticz
(2.1.2)) becomes, finally, ;

A= Aty (2.1.4)

=0 F 0 f - -G f =6 F -6 F -6 -6 21.5)
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Such a quantity, which has the same value in any internal system, is called an invariant. (In the
same sense, the quantity r* = x>+ y2 + 7? is invariant under rotations.) This invariant is in the

3
form of a sum: ZX”X“ , but unfortunately there are those three irritating minus signs. To keep
=0 : .

track of them, we introduce the metric, g, ,, whose components can be displayed as a matrixg:

1 0 0 O
|0 -1 0 0 e 8 2.1.6)
o 0 -1 0 B
0 0 0 -1
ie., 240 =1;8,, = &,, = 43 =—1; all the rest are zero. With the help of g, the invariant can be
3 3 i
written as a double sum: I= ZZ g =g (2.1.7)
p=0v=0 . :

Carrying things a step further, we define the covariant four-vector y, (index down) as follows:

A =G s (2.1.8)
- We define a fouf-vectof, a", as a four-component object that transforms in the same way does
when we go from one inertial system to another, to wit: ,
a¥ = Atg" ' | - (2.1.9)
With the same coefficients Af,. To each such (contravariant) four-vector we associate a

covariant four-vector a_, obtained by simply changing the signs of the spatial components, or,

W

more formally
a, =g,

Of course, we can go back from covariant to contravariant by reversing the signs again:
2t =g"a | | (2.1.10)

Where g""are technically the elements in the matrix g~ (however, since our metric is its own

‘nverse, g"” is the same as g, ). Given any two four-vectors, a"and b", the quantity

a'b, =a b* =a’b’ -a'b' —a’d’ —a’b’ © o (2.1.11)
s invariant (the same number in any internal system).
ab=ab"
ab=a’b’-ab (2.1.12)

~ We also use the notation a” for the scalar product of a* with itself: -

azza.az(ao)z—a2 (2.1.13)
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2.2 Energyand Momentum

If we want to go from the lab system, S, to a moving system,z S', both the numerz::~
and the denominator must be transformed only the numerator transforms; dt; as we have see-.
is invariant. In fact, proper velocity is part of a four-vector:

’ .
=% 2.2.1)
dr , .
Whose zeroth component is
.
n° = a _ _dlet) =vc (2.2.2)
Y
Thus n' = y(c,vx,vy,vz)

Incidentally, n,n" should be invariant, and it is:

=P —vE 2 —v2)= 4 (1__v%2)= & O 23)

If we defined momentum as mv, then the law of conservation of momentum would ==
inconsistent with the principle of relativity. But if we define momentum as mmn, thzr

conservation of momentum is consistent with the principle of relativity. This doesn’t guaran:=:
that momentum is conserved; that’s a matter for experiments to decide. But it does say tha: -
we’re hoping to extend momentum conservation to the relativistic domain, we had better v
define momentum as mv, whereas mm is perfectly acceptable.

The upshot is that in relativity, momentum is defined as mass times proper velocity:
p=mn . i (2.2.4)
Since proper velocity is part of a four-vector, the same goes for momentum:
p* =mn’ . e (2.2.5)

The spatial components of P* constitute the (relativistic) momentum three-vector:

B =ymy = ——m (2.2.6)
[1-v2/c? T
Meanwhile, the “time” component is
p’ =yme . 2.2.7)

For reasons that will appear in a moment, we define the “relativistic energy”’, E, as -

mc?

E=ymc’=—108
1-v?/c?

(2.2.8)

The zeroth componerit of p*, then, is E/c. Thus energy and momentum together make u: :
- four-vector-the energy- momentum four-vector:

E
p“ :(;,px;p}upzj v (2.2.9)
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Incidentally, from equations ( 2.2.9) and we obtain

2
[T 2 n2.2
pup "?“p =mc

which, again, is manifestly invariant.

II1. Calculatiqn of Momentum Transfer

3.1 Calculation of Threshold Eﬁergy of K™ +7n— 77 + AReaction

We calculate general formulation of threshold energy of K~ +7-> A+ 7 reaction as
shown in figure. ’ ‘

My

Ma

Figure(3.1) Schematic diagram of K™ +7n—> A+ 7~ reaction

Let pior be the total energy-momentum four-vector in the laboratory; it is conserved. We
calculate the total energy-momentum four-vector before collision in the laboratory frame.

L Eo =
Pror =(—;“1‘~,pm) : | (3.1.1)
B, =total energy of before collision

;)m = total momentum of before collection

Where E =total energy of before collision

m, =mass of N particle

Dot = Px- P,

;H =0, target particle is at rest.

e B = Pl (3.1.2)
By substituting equation (3.1.2) into equation (3.1.1), we get
2 .
B/‘:EM,}?_] (3.1.3)
ot c K

Let be the total energy-momentum four-vector in the centre of mass frame. We calculate the
total energy-momentum four-vector after collision in centre of mass frame.



