
English Syntax Analyzer for English-to-Myanmar Machine Translation

Myat Thuzar Tun

University of Computer Studies, Yangon,

Myanmar

myathuzar@gmail.com

Ni Lar Thein

University of Computer Studies ,

Yangon, Myanmar

nilarthein@mptmail.net.mm

Abstract

Although there are many natural language

syntax analyzers existed before, it still remains to

fulfill the requirements for analyzing English text

for English to Myanmar Machine Translation. In

this paper, we have proposed a chunk based

syntax analyzer for English to Myanmar Machine

Translation System.

The proposed syntax analyzer consists of two

components; Chunker and Grammatical Function

Tagger. Chunker divides source text into chunk

structure using hand written chunk structure

Context Free Grammar(CFG) rules and then

merge chunks for some particular chunk

constructions. After chunking, we decide the

intra-chunk dependency relations. This task is

done by grammatical function tagger. This

module finds the syntactic function of each chunk

such as subject, object, etc that is based on

Dependency Grammar (DG) by using Maximum

Likelihood Estimation (MLE). Finally, the

analyzer labels important lexical, syntactical and

functional tags to sentence's element for Machine

Translation. Proposed approach is the

combination of rule-based and statistical model.

1. Introduction

A syntax analyzer has emerged as an important

component in a variety of Natural Language

Processing applications. Our presented work aims

at building a syntax analyzer for English to

Myanmar Machine Translation. The analyzer

analyzes English text in chunk structure. Our

analyzer composes of two components; a chunker

and a grammatical function tagger. Chunker

identifies simple or non-recursive chunk in

running text. This work has been broken up into

subtasks; identifying the chunk boundaries,

labeling the chunks with their syntactic

categories, merging chunks and indexing chunk in

sentence as linear order. We begin with an

intuition. When we read a Myanmar sentence, we

read it a chunk at a time. Almost these chunks

have the same boundaries with English chunk.

For example, the following sentence in figure

1 is broken up and read like this:

Figure 1 : A sample Myanmar sentence

Grammatical function tagger specifies the

syntactic functional relation such as subject or

direct object between chunks. The functional

relation between two chunks can be estimated by

using Maximum Likelihood Estimation (MLE)

models. Based on these relations, each chunk is

labeled with corresponding function tag.

The chunk order of English and Myanmar is

different in reading after transferring English text

to Myanmar text since English is SVO language

and Myanmar is an SOV language. More

precisely, Myanmar is a verb-final language.

Moreover, Myanmar is modifier and adjunct

proceeding Language while English allows both

pre modification and post modification [7].

Therefore, it is needed to reorder English text.

The relationships between chunks and the order in

which chunks occur are much flexible for

reordering after transferring English to Myanmar

language. It is also needed to complement some

particle words to make raw Myanmar text

smooth. This task can be done by adding

appropriate words between chunks since the

places to add these words are at chunk

boundaries. And the complementary words to be

concatenated can also be decided based on

function tag of the chunk. For example, if a chunk

has SUBJ function, then concatenate (the)

and if OBJ, concatenate (ko) at the end of

this chunk. Figure 2 illustrates these tasks.

Figure 2: An English sentence and translated

Myanmar sentence

The paper composes of four sections. Section

1 is the introduction of proposed work. A brief

survey on related works is represented in section2

and section 3 illustrated analyzing processes and

analyzer output representation. Finally section 4

discusses about proposed analyzer and concluded

with future works.

2. Survey of related work

Chunking has been studied for English and

other languages, though not very extensively.

The earliest work on chunking based on machine

learning goes for English. Ramshaw and Marcus

[11] used transformation based learning using a

large annotated corpus for English. Kudo and

Matsumato [8] used support vector machine for

chunking. [2] Presented an attractive finite state

cascades architecture for parsing unrestricted

text and show that its distinct processing

advantages. These advantages explained why the

human parser might adopt a chunk-by-chunk

strategy. An approach to parsing phrase

grammars based on rule sequence is presented

by Marc and David [13]. A new formal

grammatical system called link grammar was

defined by Daniel Sleator and Daby [5] for

efficient parsing. This formalism is lexical and

makes no explicit use of constituents and

categories. Waston and Carrall [14] presented an

approach based on the Inside Outside Algorithm

for producing weighted grammatical relation

output directly from a unification-based parse

forest.

Zavreal and W. Dadlemans [15] presented a

memory-based learning approach to shallow

parsing in which POS tagging, chunking and

identification of syntactic relations are

formulated as memory-based modules. But their

system identified only subject and object

relations.

3. Syntax Analyzing

3.1 Analyzer’s components

Syntax analyzer analyzes English sentence and

set required tags for Machine Translation.

Analyzer composes of two main components. A

CFG based chunker and a DG based grammatical

function tagger. A schematic diagram of syntax

analyzer is depicted in figure 3.

Figure 3: Syntax analyzer

3.2 Analyzing steps

A sentence is analyzed step by step as

illustrated in figure 4. Analyzing includes three

main steps.

(1) Morpho-lexical analysis

(2) Constituent analysis and

(3) Syntax analysis

Morpho-lexical analysis and constituent

analysis are accomplished by the chunker and

syntax analysis is the role of grammatical function

tagger.

Figure 4: Illustration of analyzing steps

3.2.1 Morpho-lexical analysis

Morpho-lexical analysis contains tokenization

and part of speech tagging. Tokenization splits

input text into words by using token marker such

as space, punctuation marks. Part of speech

tagging marks up the words in a text with their

corresponding part of speech such as noun, verb,

and adjective and so on.

For morpho-lexical analyzing, we made use of

lexical and contextual information by combining

transformation-based learning. We first tag each

word with its most possible tag by TreeTagger

which is a language independent part-of-speech

tagger. And then construct list of transformation

rules that reduces error rate of POS tag output

from TreeTagger. Transformation rules can be

formed on words and on a combination of words

and tags of current word and context of current

word.

A transformation consists of two parts, a

triggering environment and a rewrite rule. Rewrite

rules have the form t
1
� t

2
, meaning “replace tag t

1

by tag t
2
” for a specified triggering environment.

3.2.2 Constituent analysis

Constituent analysis consists of chunking and

merging some chunks that are necessary to merge.

Firstly, chunker recognizes higher level units

(chunks) of structure of a sentence and set the

chunk type label to each chunk. Then merge some

chunks by taking account on chunk information. A

chunk is the non-recursive core of an intra-claused

constituent, extending from the beginning of the

constituent to its head, but not including post-head

dependents. We generate CFG rules for chunking

based on part of speech (POS) tags .We also use

root of word if it is necessary to disambiguate

chunk boundary.

We specify nine different chunk types. Types of

chunk we specified are:

1. NC Noun Chunk

2. VC Verb Chunk

3. VGNC Participle Chunk

4. INFC Infinitive Chunk

5. AC Adjective Chunk

6. RC Adverb Chunk

7. COC Coordination/ Subordination Chunk

Lexical
Analysis

Constituent
Analysis

Syntactical
Analysis

Raw Text

Analyzed

Text

Tokenizing
POS taggig

Chunking

Merging
Chunks

English

Lexicon

Grammatical

function

tagging
Dependency

Grammar

CFG

Grammar

8. PTC Particle Chunk

9. PPC Prepositional Chunk

We identify additional chunk types than usual

in order to make all sentence element included in

chunks since we only consider functional relation

between chunks. For marking chunk boundaries

and labeling chunk, we use hand written Context

Free Grammar (CFG) rules based on POS of

words. CFG rules are translated into finite state

automata. If there is a final state at more than one

position in the input, generally the longest match is

taken. But sometime we use roots of words also for

disambiguation of chunk boundaries. We illustrate

the disambiguation by mean of root of words in

figure 5. The chunking and labeling chunk are

completely rule-based.

Figure 5: Verb chunk's boundary

disambiguation

We may identify wrong verb chunk boundary in

the above example since we takes the longest

match for each chunk type. In such a case, we can

disambiguate for chunk boundary with the aid of

root of word. For above example, we take the

longer match Rule1 only if the root of word that is

located at the start of chunk is "be". Otherwise,

take Rule 2.

 We use four types of tag to identify the

location of each word in a chunk. <STRT> for a

word located at the start of chunk, <CNT> for

word located inside a chunk, <STP> for word

located at he end of chunk and <STRT-STP> for

word that is located at the start as well as at the end

of chunk (single word chunk).

Figure 6: Sample chunk labeling algorithm

In chunk labeling, we firstly label the chunk by

taking account on the POS of word located at start

of chunk and after matching a rule, if necessary,

we verify and edit chunk label based on the POS of

word located at the end of chunk. A sample chunk

labeling algorithm mentioned in figure 6 is to

disambiguate noun chunk, adjective chunk and

adverb.

After chunk labeling, if it is necessary, we

merge some chunk for particular chunk structures

by setting lexical criteria on these chunks. For

example, correlative conjunction construction in

noun chunk and model verb substitution

construction in verb chunk (eg. have to, ought to).

For noun correlative coordination construction, we

need to merge three consecutive chunks appearing

in a linear order as noun chunk, coordination

chunk and noun chunk. Here we use the

following criteria to merge these three chunks.

1. The words at the start of first noun chunk
must be correlative conjunction (either,

neither, etc.).

2. The word in the coordination chunk (single
word chunk) must be corresponding

conjunction with the start word of first noun

chunk (or, nor, etc.)

3. The chunk following the coordination chunk
must be noun chunk.

Then we tag the index 'i' },...,2,1,0{ ni∈ to

chunks where n is the number of chunk in current

chunking sentence. Chunk indexing can support

clear representation of functional relation between

chunks. Moreover, chunk label and index can also

support much for reordering source text to a

Begin

 1. If chunk starts with R Then Label as NC

 2. If chunk ends with N

 Then Label No change

 Else if chunk ends with A

 Then Label change to AC

 Else if chunk ends with R

 Then Label change to RC

End

specified structure that is close to target language

structure. This can see clearly at section 3.3

where we express our sketch analyzer output.

Chunker output representation for sample

sentence in figure 2 is as shown in. figure 7.

Figure 7: Chunker output representation

3.2.3 Syntax analysis

We made following assumptions for functional

relation.

1. All chunk directly depends on at least one
chunk

2. If chunk A directly depends on B and some
chunk C intervenes between them (in linear

order), then C depends directly on A or B or

some other intervening chunk

3. If two chunks have same functional relation to
a chunk, then these two chunks depends on

each other (coordination)

4. The whole set of chunks in a sentence is
connected by functional relation

Each relation type includes a head chunk and a

dependent chunk. Dependent chunk includes

complements (eg. subject and object) and

modifiers (eg. adverb, infinitive modifier). For

example, subject relation has a verb chunk as head

and a noun chunk as dependent.

Different sets of function tags are useful for

different purpose. We specify twenty one

functional relation and twenty one function tags.

Some sample functional relation and

corresponding functions are illustrated in table 1.

Bold chunk represents for dependent chunk and

italic for head chunk.

Grammatical function tagger searches the

functional relation between chunks based on DG

by using Maximum Likelihood Estimation and

then identifies the function of each chunk.

Table 1: Example functional relations and

corresponding function tags

Chunk Function

Tag

Example

Subject SUBJ He goes

Formal Subject F-SUBJ

There was some

argument about

that.

Direct Object OBJ
He reads a book.

Indirect Object I-OBJ
He gave Mary a

book.

Predicative

Complement
AD-A She is beautiful.

Prepositional

Object
POBJ He is in the car.

Subject

Complement
PCOMPL-S

She is a manager.

Noun Modifier NOM
I saw the man

sitting.

Adverbial ADVL
She drives very

slowly.

To identify a function we take account on

chunk type of target chunks, the types of relation,

direction of relation and distance between targets.

The distance between a head and a dependent is a

limiting factor for the probability of a dependency

between them. Not all relations have the same

typical distances, however. Moreover, not all

relations have the same direction. A relation-

specific simple MLE estimation is thus employed

to prefer typical distances. The distance between

chunks is measured in number of chunks and the

direction of relation is identified as left or right.

The MLE estimation for functional relation

identifying is mentioned in equation 1.

),(

),,
,

head,depdis,dir#

head,depdis,dir#(R
head,dep)rP(R\dis,di ≅

 (1)

If we need further constraints to disambiguate

functional relation, we also use some additional

information (eg. the POS of word at the start of

dependent chunk and the type of chunk intervening

dependent and head chunks). Then the MLE in

equation 1 becomes as mentioned in equation 2.

),,(

),,,
,,

Infhead,depdis,dir#

Infhead,depdis,dir#(R
Inf)head,deprP(R\dis,di ≅

 (2)

Where dist stands for number of chunks

between head and dependent chunks, dir for

direction of relation, head for type of head chunk,

dep for type of dependent chunk and Info for

additional chunk information.

For example, chunk type B is located at the

right of chunk type A and there are D intervening

chunks between them and there is no more further

constraint to disambiguate functional relation.

MLE for relation type R between A and B can be

estimated as in equation 3.

),,,(#

),,,,(#
),,,\(

BArightD

BArightDR
BArightDRP ≅ (3)

After identifying functional relation, we

identify function of dependent chunk. We

illustrate the function tagging in table 2 using the

following sample sentence.

They bought roses.

Table 2: Function tagging for sample sentence

Chunk
Corresponding

Functional Relation

Function

Tag

[They] Subj (bought, they) SUBJ

[roses] Obj(bought, roses) OBJ

3.3. Analyzed text presentation

For each relation, we set the function following

index of head chunk to dependent chunk as

dependent chunk’s function and also set the index

of dependent chunk to corresponding head chunk

as head chunk’s argument. If a chunk has no

dependent chunk then set NULL to head chunk’s

argument and set NULL to dependent chunk’s

function if it has no head chunk.

Finally, syntax analyzer tags lexical,

syntactical and functional labels to sentence

element. Figure 8 shows the representation of

analyzer output for the following sample sentence.

Figure 8: Analyzer output representation

4. Conclusion

We have presented a two-layer syntax

analyzer. Analyzer uses chunk structure CFG

rules and dependency grammar (DG) rules. Our

system combines shallow and deep linguistic

methods by integrating chunking and functional

relation finding. The analyzed text generated by

this system is intended to be used for English to

Myanmar language machine translation system. .

Analyzer tags necessary lexical, syntactical and

functional label to sentence element for Machine

Translation. Proposed system can make effective

preparation to translate simple and complex

sentence with one subordinate clause.

Since we generate chunk structure grammar

rules based on a training corpus, there may be

some chunk not covered by our grammar rules. It

is needed more training to be completely perfect.

In future, we plan to add more chunk grammar

rules in order to provide broad coverage. We don't

take account on detail differentiation between

types of modifier (time, location and other

modifiers). We plan to provide this kind of

differentiation in future.

References

[1] S. Abney, “Partial Parsing via Finite-State
Cascades", In proceedings of the ESSLLT, 96

Robust Parsing Workshop, 1996.

[2] S. P. Abney, "Parsing By Chunks", Kluwer
Academic Publishers, Dordrecht, 1991.

[3] S. Ait-Mokhtar and J.P. Chanod, "Incremental
Finite-State Parsing", In proceedings of the fifth

Conference on Applied Natural Language

Processing.

[4] J. Courtin and D. Genthial (1998), "Parsing with
Dependency Relations and Robust Parsing", In

proceeding of COLING-ACL's 98 Workshop on

proceeding of Dependency-Based Grammars,

Montreal, August 1998.

[5] D. Daniel Sleator and D.Temperley, "Parsing
English with a Link Grammar", Third International

Workshop on Parsing Technologies, August, 1993.

[6] A. Frank, "Projecting LFG F-structure from
chunks", In proceeding of the LFG03 Conference,

University of Albany,2003.

[7] P.M.Hopple, “The structure of nominalization
in Burmese” Ph.D. thesis. University of Texas at

Arlington. xxiv, 445 p.14

[8] T.Kudo and Y. Mastumoto, "Chunking with
Support Vector Machines", In proceeding of

CoNLL-2000, 2000.

[9] M. de Marie-Catherine, B.M. Cartney and
D.C.Manning," Generating Dependency Parses

from Phrase Structure Parses", Computer Science

Department, Stanford University, 2006.

[10] T.Mitamura, E. Nyberg," Automatic Rewriting for
Controlled Language Translation", In proceeding

of the NLPRS 2001,Workshop on Automatic

Paraphrasing.

[11] L.A. Ramshaw and P.M.Marcus, "Text Chunking
Using Transformation-Based Learning", In

proceedings of the 3rd Workshop on Very Large

Corpora, 1995.

[12] L. da. Sylva,M.Gagnon, A.Kharrat, S.Knoll and
A. Maclachlan, "A Case Study in Implementing

Dependency-Based Grammars", In: Proceedings of

COLING-ACL '98 Workshop on Processing of

Dependency-Based Grammars, Montreal, 15

August 1998, 78-87.

[13] M. Vilian and D. Day, "Finite-state phrase parsing
by rule sequences", In proceeding of the 2nd

Workshop on Language Learning in logic and 4th

Conference on Computational Natural Language

Learning, 2000.

[14] R. Waston, J. Carrall and T. Briscoe, " Efficient
extraction of grammatical relations", In

proceedings of 9th International Workshop on

Parsing Technologies, Canada, 29

September,2005.

[15] J. Zavreal and W. Daelemans, “Memory-Based
Learning: Using Similarity for Smoothing”, In

Proceeding of ACL’97, pages 436-443, Madrid,

Spain, 1997.

