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Abstract— Businesses and individuals move their data to the 
cloud because fault-tolerant data storage is becoming more 
important. Currently fault-tolerance cloud storage file systems 
are available and being used widely. Hadoop Distributed File 
System (HDFS) has been widely adopted to build cloud storage 
systems. The default storage policy in cloud file systems has 
become triplication (triple replication), implemented in the 
HDFS and many others. Triplication has been favoured 
because of its ease of implementation, high performance, and 
reliability. The storage overhead of triplication is a concern; 
we present the HDFS along with how fault tolerance is 
achieved by means of erasure coded replication. The placement 
of the replicas is critical to HDFS reliability and performance, 
the core concept of the consistent hashing is applied in this 
work. To evaluate the performance of our HDFS with erasure 
coded replication scheme, we focus on least storage space 
consumption and good storage space utilization. We conduct 
the experiment on original HDFS and HDFS with erasure 
coded replication. The experimental results show that our 
scheme can save storage space and utilization is significantly 
better in erasure coding. 

Keywords—cloud storage; consistent hashind; erasure coded 
replication; fault tolerant;  HDFS. 

I.  INTRODUCTION 
The availability of cloud storage services is becoming a 

popular option for consumers to store data that is accessible 
via a range of devices, such as personal computers, tablets, 
and mobile phones. Business and individuals applications 
are moving to the cloud, and it became a big challenge that 
how to make sure the information which storages in clouds 
are reliable. Private cloud storage is a type of storage 
mechanism that stores an organization’s data at in-house 
storage servers by implementing cloud computing and 
storage technology. Private cloud storage is similar to public 
cloud storage in that it provides the usability, scalability and 
flexibility of the storage architecture. But unlike public 
cloud storage, it is not publicly accessible and is owned by a 
single organization and it’s authorized external partners [8]. 

Cloud storage is becoming a popular business paradigm, 
e.g. Amazon S3, ElephantDrive, Gigaspaces, etc. Small 
companies that offer large Web applications can avoid large 
capital expenditures in infrastructure by renting distributed 
storage and pay per use.  Ample research on cloud storage 
file systems [3, 5, 7] has been done but no detailed study on 
the aspect of fault-tolerant mechanisms of cloud storage is 
yet to be done at the moment of writing. 

. Apache Hadoop is an open source software framework 
created by Doug cutting and Michael J. Cafarella [1]. The 
Hadoop Distributed File System has been widely adopted to 
build cloud storage systems. It provides reliable storage and 
high throughput access to large-scale data by Map/Reduce 
parallel applications [2]. The primary objective of HDFS is 
to store data reliably even in the presence of failures. An 
uniform triplication policy (i.e. three replicas for each file) 
is used in HDFS for improving data locality and ensure data 
availability, and fault tolerance in the event of data and disk 
failures 

One of the widely used methods to improve data 
reliability is distribution of data with redundant information 
on several storage devices. As a result, if a storage node 
fails, enough information can still regenerate the failed node 
or reconstruct the original file. In the distributed cloud 
storage environment, reliability can be defined as tolerance 
to storage node failure while availability means promptly 
access to the original file and the storage efficiency is the 
amount of redundant information stored in the system. 
Replication is a process where a whole object is replicated 
some number of times, thus providing protection if a copy 
of an object is lost or unavailable. In the case of replicating 
a whole object, the overhead would be 100% even for a 
single replica. Erasure coding [11] is a process where data 
protection is provided by slicing an individual object in such 
a way that data protection can be achieved with greater 
storage efficiency that is some value less than 100%.    

Erasure codes [4] are space-efficient schemes to encode 
data into redundant fragments to protect against erasures of 
some of the fragments. Such erasure codes have been used 
traditionally in communication systems and more recently, 
in storage systems as a way to protect data against node 
crashes. Erasure codes provide space-optimal data 
redundancy to protect against data loss. A common use is to 
reliably store data in a distributed system, where erasure-
coded data are kept in different nodes to tolerate node 
failures without losing data.  

In this paper, we present the framework of HDFS with 
erasure coded replication scheme and analyze how fault 
tolerance is achieved by means of erasure coded replication. 
This paper is organized as follows: Section II discusses the 
related work. HDFS is presented in Section III. Proposed 
fault tolerant erasure coded replication scheme for HDFS 
based cloud storage framework is presented in Section IV. 
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In Section V, system evaluation and results discussion are 
provided. Section VI draws conclusions from the work 
conducted. 

II. RELATED WORK 
This section reviews the previous literatures concerning 

with distributed file systems for cloud storage which 
introduce general architectural issues affecting performance, 
and reliability. Maheswaran et al. [11] proposed and 
implemented a new set of erasure codes on Hadoop HDFS 
to overcome the limitation of high repair cost of Reed-
Solomon codes. Their study showed a reduction of 
approximately 2x on the repair disk I/O and repair network 
traffic. However, this coding requires 14% more storage 
compared to Reed-Solomon codes. 

In [14], the author presented the benefits and drawbacks 
of existing fault-tolerant file systems by defining criteria on 
which fault-tolerant file systems can be graded. Three file 
systems: Apache Hadoop File System (HDFS), GlusterFS 
and XtreemFS that are architecturally different have been 
compared on network related fault-tolerance in this paper. A 
total of six criteria each of which is associated with a phase 
in a network transaction have been identified and used for 
comparison. According to the analysis, HDFS is overall very 
capable of delivering fault-tolerance for file storage. 
GlusterFS is an robust file system which is the only file 
system to receive the good grade on all six criteria. The 
XtreemFS file system architecture is not quite as resilient as 
the two other tested file systems. 

RomanusIshengoma [12] designed and implemented 
HDFS+, an erasure coding based Hadoop Distributed File 
System for improving both space efficiency and I/O 
performance of the HDFS while preserving the same data 
reliability level. The performance of the proposed scheme is 
compared with the HDFS. The experimental results showed 
that their proposed scheme can save storage space while 
outperforming the original scheme in write performance. 
Their scheme provided the same read performance as the 
original scheme as long as data can be read from the 
primary DataNode even under single-node or double-node 
failure. 

 

III. HADOOP DISTRIBUTED FILE SYSTEM 
The Hadoop Distributed File System (HDFS) is a 

distributed file system designed to run on commodity 
hardware [2]. It has many similarities with existing 
distributed file systems. However, the differences from 
other distributed file systems are significant. HDFS is 
highly fault-tolerant and is designed to be deployed on low-
cost hardware. HDFS provides high throughput access to 
application data and is suitable for applications that have 
large data sets. HDFS is designed to reliably store very large 
files across machines in a large cluster [6]. It stores each file 
as a sequence of blocks; all blocks in a file except the last 
block are the same size. The blocks of a file are replicated 
for fault tolerance. The default replication factor in HDFS is 

3. The replication factor can be specified at file creation 
time and can be changed later. Files in HDFS are write-once 
and have strictly one writer at any time. HDFS has 
master/slave architecture. The architecture of Hadoop 
distributed file system [10, 13] including daemons is 
illustrated in Figure 1. There are three major daemons that 
can make up a standard Hadoop cluster. They are Master 
Daemons, Client Daemons and Slave Daemons. Each 
Daemon has its own participants. The pair of daemons with 
its related candidates can be found as follows: 
� Master daemons: Primary NameNode, Secondary 

NameNode and JobTracker 
� Slave daemons: DataNodes and TaskTrackers 
� Client daemons: Clients 
 

DataNodes and Task Trackers 

JobTracker 
Node

Primary 
NameNode 

Secondary 
NameNode 

Distributed Data 
Processing (mapReduce)

Distributed Data 
Storage (HDFS) 

 Master  Daemons

Slave Daemons
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Figure 1. Conceptual Model of Hadoop Distributed File System. 

 

IV. FAULT TOLERANT REPLICATION FRAMEWORK 
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Figure. 2. Framework of Fault Tolerant Replication 

for HDFS. 
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The conceptual framework of fault tolerant replication 
scheme for HDFS based cloud storage is illustrated in 
Figure 2. Replication manager is responsible for encoding, 
replication and reconstruction of lost data. The processes of 
erasure coded replication and placement of replica (Data 
Distribution) in HDFS cluster are shown in Figure 3. 
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Figure 3. Processes of Replication Manager. 
 

The algorithm of erasure coded replication works for a 
file as presented in Figure 4. 

 
 

Algorithm: Erasure Coded Replication 
Input: 
F, an input file for replication; 
Output: 
RF, a reconstructed file after replication; 
Method: 

(1) encode( );// file encoding 
(2) replicate(); // encoded file replication 
(3) reconstruct( );// file reconstruction from replicas 
(4) return reconstructed_file; 

 
procedure encode ( )  

(1) readFile( );// Reads the contents of F in byte by byte 
manner} 

(2) InformationDispersalEncoder( ); //Cauchy Reed Solomon 
Encoding Process for the file 

(3) save_fragment_metadata( ); //store the metadata of 
encoding fragments of file F to candidate VM  

 
procedure replicate() // To save fragments after encoding 

(1) for each fragment frag ϵ fragList { 
(2) get_candidateVM( ); // get candidate VM from VM pools 

with ring topology for file replication 
(3) distributeFragToVM();  // send fragment to the candidate 

VM and replicate 
(4) } 

 
procedure reconstruct( ) // file reconstruction by collecting the 
replicated data over replica VMs 

(1) readMetadataFile( ); // read the information from a meta 
data file specified by a file. 

(2) readFragment( ); // read each fragment specified by the 
fragment-id 

(3) decode ( ); 
(4) writeDecodedContent( ); // reconstruct file collecting 

blocks 
 

procedure decode( ) // decode the list of packets by erasure 
coding. 

(1) getDigestforPackets ();  
         InformationDispersalDecoder ( ); //Cauchy  
                            Reed Solomon Decoding Process 
 

 
Figure 4. Replication Algorithm. 

 

A. Erasure Coded Replication  
 

 Reliability is usually obtained through redundant nodes 
in distributed storage systems. The simplest way of 
providing redundancy might be by repetition. Recently, both 
academic and industrial storage systems have addressed this 
issue by relying on erasure codes to tolerate component 
failures. Erasure codes provide space-optimal data 
redundancy to protect against data loss. A common use is to 
reliably store data in a distributed system, where erasure-
coded data are kept in different nodes to tolerate node 
failures without losing data.  
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In an erasure coded system (Figure 5), a total of n=k+m 
disks are employed, of which k hold data and m hold coding 
information. The act of encoding calculates the coding 
information from the data, and decoding reconstructs the 
data from surviving disks following one or more failures. 
Storage systems typically employ Maximum Distance 
Separable (MDS) codes, which ensure that the data can 
always be reconstructed as long as there are at least k disks 
that survive the failures.  
 

Encoding

Decoding

K storage disk

m redundant disk

K + m storage disk

K storage disk

System Resilient up 
to m disk failures

 

Figure 5. Data Resiliency. 
 

B. Data Distribution Strategie 
The placement of the replicas is critical to HDFS 

reliability and performance, the core concept of the 
consistent hashing [9] is applied in data distribution. While 
running collections of caching machines some limitations 
are experienced. A common way of load balancing  n cache 
machines is to put object 0 in cache machine number 
hash(0) mod n. But this will not work if a cache machine is 
added or removed because n changes and every object are 
hashed to a new location. This can be disastrous since the 
originating content servers are flooded with requests from 
the cache machines. Hence consistent hashing is needed to 
avoid swamping of servers. 

Consistent hashing maps objects to the same cache 
machine, as far as possible. It means when a cache machine 
is added, it takes its share of objects from all the other cache 
machines and when it is removed, its objects are shared 
between the remaining machines. The main idea behind the 
consistent hashing algorithm is to associate each cache with 
one or more hash value intervals where the interval 
boundaries are determined by calculating the hash of each 
cache identifier. If the cache is removed its interval is taken 
over by a cache with an adjacent interval. All the remaining 
caches are unchanged. 

Consistent hashing is based on mapping each object to a 
point on the edge of a circle. The system maps each 
available machine to many pseudo-randomly distributed 

points on the edge of the same circle. Consistent hashing 
specifies how keys are to be assigned to nodes and how a 
node can discover the value for a given key by first locating 
the node responsible for that key. It maps the items to 
corresponding nodes where node’s identifier is the hashing 
the node’s IP address and the key’s identifier is hashing the 
key. According to the example illustrated in Figure 5, there 
are two nodes A and B and three objects 1–3 initially.  

The objects 3 and 1 are mapped to node A, object 2 to 
node B. When a node leaves the system, data will get 
mapped to their adjacent node (in clockwise direction) and 
when a node enters the system it will get hashed onto the 
ring and will overtake objects. 

 
 

 
Figure 6. Demonstration of Consistent Hashingd 

 
The illustrated procedure for encoding data replicas can 

be seen in Figure 6. To put the encoded blocks (n) in the 
storage pool, the core concept of the consistent hashing is 
applied.  A consistent hash function is the mapping of items 
to corresponding nodes. A node’s identifier is defined by 
hashing the node’s IP address, Hash(IP), and the identifier 
of a key, which is an item, is produced by hashing the key, 
Hash(key). During the process, <key, value> is submitted 
to a node of the ring which has the associated key. Each 
encoded block is in the form of <Hash(nid), ni>. nid is the 
identifier of the blocks. 

V. EVALUATION 
The performance of proposed system is evaluated on 

commodity Linux cluster with virtual machines. Cluster 
(testbed) is composed of virtual machines. The VMs are 
interconnected via a 1-gigabit Ethernet. Each host machine 
runs Windows 7 Ultimate.  

In the Hadoop cluster implemented, one VM stands for 
NameNode, Secondary NameNode, DataNode, JobTracker 
and TaskTracker. The other VMs stand for DataNodes and 
TaskTrackers. Table I  displays the experimental setup to 
test the performance of original HDFS and HDFS with 
erasure coded replication scheme. 
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TABLE I.  PARAMETERS OF TESTBED 

Testing 
Environment System Specification 

Commodity 
Linux VMs 
Cluster 

Cluster-  8VMs 

Hosts 
Specification 

Intel ® Core™ i7- 2600 CPU @ 
3.40GHz, 4 GB RAM,  
1TB Hard Disk, 1Gigabit Ethernet 
 
Intel® Core™ i5-3337U CPU @ 
1.80GHz, 4GB RAM,  
500GB Hard Disk, 1Gigabit Ethernet  

VMs 
Specification 

VM1 
 Intel ® Core™ i7- 2600 CPU @ 
3.40GHz, 1024MB RAM,  
50 GB Hard Disk 
NN, SNN, DN, JT, TT 
 
VM2 to VM8   
Intel ® Core TM  i5-3337U CPU @ 
1.80GHz 
DN, TT 
 

Software 
Components 

Storage System 
� Hadoop 0.20.2 
� VMware®Workstation 9.0.2 

build-1031769 
� Ubuntu 12.04 LTS 
 

 
NN=NameNode   SNN=Secondary NameNode 
JT=JobTracker     DN=DataNode    TT=TaskTracker

  

We implemented the algorithm shown in Figure 5. 
Enwiki dataset [15] is used to evaluate the performance of 
proposed system. We tested performance of writing and 
reading files of different file sizes. 
 

A. Storage Consumption  
 

Erasure codes are space-efficient schemes to encoded 
data into redundant fragments to protect against erasures of 
some of the fragments. Such erasure codes have been used 
traditionally in communication systems and more recently, 
in storage systems as a way to protect data against node 
crashes. It can also make the storage systems reliable. 

In the experiment, we kept the fault tolerant level at 2 
and the obtained result is as shown in Figure 7. 
 

 
Figure 7.  Storage consumption (times) vs. redundant schemes. 

 
We found that, by using 3 way replication, the storage 

consumption is 3 times and by using 3 of 5 erasure coded 
replication, the storage consumption is only 1.6 times. 
Hence, 3 of 5 erasure coded replication can save data 
written over the network onto the storage while tolerating 
the same number of faults. 
 The amount of occupied storage space depends on data 
redundant schemes. There can be variants even with erasure 
coding techniques according to the configuration shown in 
Table II. 

 

TABLE II. DIFFERENT CONFIGURATIONS OF REDUNDANT 
SCHEMES 

 
Redundant 
Scheme 

3-
way  

1 of 
3EC 

2 of 4 
EC 

3 of 5 
EC 

4 of 6 
EC 

5 of 7 
EC 

n total 
nodes 3 3 4 5 6 7 

k data 
nodes 1 1 2 3 4 5 

m coding 
nodes 0 2 2 2 2 2 

 

 

Figure 8.  Storage consumption (times) vs. erasure code rate. 
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The relationship between the rate of encoding and the 
storage consumption can be seen in Figure 8. When the 
erasure code rate is increased the storage consumption is 
decreased. 
 

B. Storage Space Utilization 
 

Storage space utilization is a measure of how well the 
available data storage space in an enterprise is used. It 
measures how full the space is compared to its capacity. 
Utilization rates can be assessed in terms of both actual use 
and predicted use. 
 

 

Figure 9. Storage space utilization vs. redundant schemes 

The experimental results of storage capacity utilized by 
two different redundancy schemes: pure replication and 
erasure coding are illustrated in Figure 9. Beside it 
compares the storage space utilization for two kinds of fault 
tolerant level. Obviously, to stand for 1fault tolerance, it 
needs only 1.5x storage overhead in erasure coding.  But the 
storage space utilization of erasure code is 50%, and 30% in 
pure replication. Therefore the utilization is significantly 
better in erasure coded replication.  

VI. CONCLUSION 
Fault-tolerance is an important aspect in cloud storage 

because it concerns the robustness of the data that is stored.  
HDFS has become popular due to its reliability, scalability, 
and low-cost storage capability. HDFS is designed to 
operate on commodity hardware components, which are 
prone to failure. Files are triplicated (triple replication) to 
guarantee high data reliability. To reduce storage overhead, 
the default storage policy in cloud file systems has become 
triplication (triple replication), implemented in HDFS and 
many others. Triplication has been favored because of its 
ease of implementation, good read and recovery 
performance, and reliability.  

The storage overhead of triplication is a concern, cloud 
file systems are transitioning from replication to erasure 

codes. In this paper, we implemented HDFS with default 
storage policy and HDFS with an erasure coding. We 
compared the performance of the HDFS and HDFS with 
erasure coded replication scheme. The experimental results 
show that the HDFS with erasure coded replication can save 
up to 33 % of space while outperforming the original HDFS 
scheme. We also found that the storage space utilization for 
any fault tolerant level is significantly better in erasure 
coding than pure replication. 
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