
Fault Tolerant Erasure Coded Replication for HDFS Based Cloud Storage

Aye Chan Ko
University of Computer Studies, Mandalay

Myanmar
Ayechankomm86@gmail.com

Wint Thida Zaw
University of Computer Studies, Mandalay

Myanmar
wintthida@gmail.com

Abstract— Businesses and individuals move their data to the
cloud because fault-tolerant data storage is becoming more
important. Currently fault-tolerance cloud storage file systems
are available and being used widely. Hadoop Distributed File
System (HDFS) has been widely adopted to build cloud storage
systems. The default storage policy in cloud file systems has
become triplication (triple replication), implemented in the
HDFS and many others. Triplication has been favoured
because of its ease of implementation, high performance, and
reliability. The storage overhead of triplication is a concern;
we present the HDFS along with how fault tolerance is
achieved by means of erasure coded replication. The placement
of the replicas is critical to HDFS reliability and performance,
the core concept of the consistent hashing is applied in this
work. To evaluate the performance of our HDFS with erasure
coded replication scheme, we focus on least storage space
consumption and good storage space utilization. We conduct
the experiment on original HDFS and HDFS with erasure
coded replication. The experimental results show that our
scheme can save storage space and utilization is significantly
better in erasure coding.

Keywords—cloud storage; consistent hashind; erasure coded
replication; fault tolerant; HDFS.

I. INTRODUCTION
The availability of cloud storage services is becoming a

popular option for consumers to store data that is accessible
via a range of devices, such as personal computers, tablets,
and mobile phones. Business and individuals applications
are moving to the cloud, and it became a big challenge that
how to make sure the information which storages in clouds
are reliable. Private cloud storage is a type of storage
mechanism that stores an organization’s data at in-house
storage servers by implementing cloud computing and
storage technology. Private cloud storage is similar to public
cloud storage in that it provides the usability, scalability and
flexibility of the storage architecture. But unlike public
cloud storage, it is not publicly accessible and is owned by a
single organization and it’s authorized external partners [8].

Cloud storage is becoming a popular business paradigm,
e.g. Amazon S3, ElephantDrive, Gigaspaces, etc. Small
companies that offer large Web applications can avoid large
capital expenditures in infrastructure by renting distributed
storage and pay per use. Ample research on cloud storage
file systems [3, 5, 7] has been done but no detailed study on
the aspect of fault-tolerant mechanisms of cloud storage is
yet to be done at the moment of writing.

. Apache Hadoop is an open source software framework
created by Doug cutting and Michael J. Cafarella [1]. The
Hadoop Distributed File System has been widely adopted to
build cloud storage systems. It provides reliable storage and
high throughput access to large-scale data by Map/Reduce
parallel applications [2]. The primary objective of HDFS is
to store data reliably even in the presence of failures. An
uniform triplication policy (i.e. three replicas for each file)
is used in HDFS for improving data locality and ensure data
availability, and fault tolerance in the event of data and disk
failures

One of the widely used methods to improve data
reliability is distribution of data with redundant information
on several storage devices. As a result, if a storage node
fails, enough information can still regenerate the failed node
or reconstruct the original file. In the distributed cloud
storage environment, reliability can be defined as tolerance
to storage node failure while availability means promptly
access to the original file and the storage efficiency is the
amount of redundant information stored in the system.
Replication is a process where a whole object is replicated
some number of times, thus providing protection if a copy
of an object is lost or unavailable. In the case of replicating
a whole object, the overhead would be 100% even for a
single replica. Erasure coding [11] is a process where data
protection is provided by slicing an individual object in such
a way that data protection can be achieved with greater
storage efficiency that is some value less than 100%.

Erasure codes [4] are space-efficient schemes to encode
data into redundant fragments to protect against erasures of
some of the fragments. Such erasure codes have been used
traditionally in communication systems and more recently,
in storage systems as a way to protect data against node
crashes. Erasure codes provide space-optimal data
redundancy to protect against data loss. A common use is to
reliably store data in a distributed system, where erasure-
coded data are kept in different nodes to tolerate node
failures without losing data.

In this paper, we present the framework of HDFS with
erasure coded replication scheme and analyze how fault
tolerance is achieved by means of erasure coded replication.
This paper is organized as follows: Section II discusses the
related work. HDFS is presented in Section III. Proposed
fault tolerant erasure coded replication scheme for HDFS
based cloud storage framework is presented in Section IV.

2014 IEEE Fourth International Conference on Big Data and Cloud Computing

978-1-4799-6719-3/14 $31.00 © 2014 IEEE

DOI 10.1109/BDCloud.2014.69

104

2014 IEEE Fourth International Conference on Big Data and Cloud Computing

978-1-4799-6719-3/14 $31.00 © 2014 IEEE

DOI 10.1109/BDCloud.2014.69

104

In Section V, system evaluation and results discussion are
provided. Section VI draws conclusions from the work
conducted.

II. RELATED WORK
This section reviews the previous literatures concerning

with distributed file systems for cloud storage which
introduce general architectural issues affecting performance,
and reliability. Maheswaran et al. [11] proposed and
implemented a new set of erasure codes on Hadoop HDFS
to overcome the limitation of high repair cost of Reed-
Solomon codes. Their study showed a reduction of
approximately 2x on the repair disk I/O and repair network
traffic. However, this coding requires 14% more storage
compared to Reed-Solomon codes.

In [14], the author presented the benefits and drawbacks
of existing fault-tolerant file systems by defining criteria on
which fault-tolerant file systems can be graded. Three file
systems: Apache Hadoop File System (HDFS), GlusterFS
and XtreemFS that are architecturally different have been
compared on network related fault-tolerance in this paper. A
total of six criteria each of which is associated with a phase
in a network transaction have been identified and used for
comparison. According to the analysis, HDFS is overall very
capable of delivering fault-tolerance for file storage.
GlusterFS is an robust file system which is the only file
system to receive the good grade on all six criteria. The
XtreemFS file system architecture is not quite as resilient as
the two other tested file systems.

RomanusIshengoma [12] designed and implemented
HDFS+, an erasure coding based Hadoop Distributed File
System for improving both space efficiency and I/O
performance of the HDFS while preserving the same data
reliability level. The performance of the proposed scheme is
compared with the HDFS. The experimental results showed
that their proposed scheme can save storage space while
outperforming the original scheme in write performance.
Their scheme provided the same read performance as the
original scheme as long as data can be read from the
primary DataNode even under single-node or double-node
failure.

III. HADOOP DISTRIBUTED FILE SYSTEM
The Hadoop Distributed File System (HDFS) is a

distributed file system designed to run on commodity
hardware [2]. It has many similarities with existing
distributed file systems. However, the differences from
other distributed file systems are significant. HDFS is
highly fault-tolerant and is designed to be deployed on low-
cost hardware. HDFS provides high throughput access to
application data and is suitable for applications that have
large data sets. HDFS is designed to reliably store very large
files across machines in a large cluster [6]. It stores each file
as a sequence of blocks; all blocks in a file except the last
block are the same size. The blocks of a file are replicated
for fault tolerance. The default replication factor in HDFS is

3. The replication factor can be specified at file creation
time and can be changed later. Files in HDFS are write-once
and have strictly one writer at any time. HDFS has
master/slave architecture. The architecture of Hadoop
distributed file system [10, 13] including daemons is
illustrated in Figure 1. There are three major daemons that
can make up a standard Hadoop cluster. They are Master
Daemons, Client Daemons and Slave Daemons. Each
Daemon has its own participants. The pair of daemons with
its related candidates can be found as follows:
� Master daemons: Primary NameNode, Secondary

NameNode and JobTracker
� Slave daemons: DataNodes and TaskTrackers
� Client daemons: Clients

DataNodes and Task Trackers

JobTracker
Node

Primary
NameNode

Secondary
NameNode

Distributed Data
Processing (mapReduce)

Distributed Data
Storage (HDFS)

 Master Daemons

Slave Daemons

Client Daemons

Figure 1. Conceptual Model of Hadoop Distributed File System.

IV. FAULT TOLERANT REPLICATION FRAMEWORK

Replication

Replication

Client Cache

NameNode

Secondary
NameNode

DataNode

DataNode

DataNode

Replication
 Manager

Figure. 2. Framework of Fault Tolerant Replication

for HDFS.

105105

The conceptual framework of fault tolerant replication
scheme for HDFS based cloud storage is illustrated in
Figure 2. Replication manager is responsible for encoding,
replication and reconstruction of lost data. The processes of
erasure coded replication and placement of replica (Data
Distribution) in HDFS cluster are shown in Figure 3.

 Hashsing

 File Distribution to Data Node

Erasure Coding

H1 H2 H3 H4 Hk

N1 N2 N3 N4 Nn

Key

Value

Fragmentation

F1 F2 F3 Fn

C1 C2EnE1 E2 Cn

Replication Manager

Data Reconstruction of lost Replica

 N1 N2 N3 N4 Nn

Encoding

Replication

Reconstruction

Figure 3. Processes of Replication Manager.

The algorithm of erasure coded replication works for a
file as presented in Figure 4.

Algorithm: Erasure Coded Replication
Input:
F, an input file for replication;
Output:
RF, a reconstructed file after replication;
Method:

(1) encode();// file encoding
(2) replicate(); // encoded file replication
(3) reconstruct();// file reconstruction from replicas
(4) return reconstructed_file;

procedure encode ()

(1) readFile();// Reads the contents of F in byte by byte
manner}

(2) InformationDispersalEncoder(); //Cauchy Reed Solomon
Encoding Process for the file

(3) save_fragment_metadata(); //store the metadata of
encoding fragments of file F to candidate VM

procedure replicate() // To save fragments after encoding

(1) for each fragment frag ϵ fragList {
(2) get_candidateVM(); // get candidate VM from VM pools

with ring topology for file replication
(3) distributeFragToVM(); // send fragment to the candidate

VM and replicate
(4) }

procedure reconstruct() // file reconstruction by collecting the
replicated data over replica VMs

(1) readMetadataFile(); // read the information from a meta
data file specified by a file.

(2) readFragment(); // read each fragment specified by the
fragment-id

(3) decode ();
(4) writeDecodedContent(); // reconstruct file collecting

blocks

procedure decode() // decode the list of packets by erasure
coding.

(1) getDigestforPackets ();
 InformationDispersalDecoder (); //Cauchy
 Reed Solomon Decoding Process

Figure 4. Replication Algorithm.

A. Erasure Coded Replication

 Reliability is usually obtained through redundant nodes
in distributed storage systems. The simplest way of
providing redundancy might be by repetition. Recently, both
academic and industrial storage systems have addressed this
issue by relying on erasure codes to tolerate component
failures. Erasure codes provide space-optimal data
redundancy to protect against data loss. A common use is to
reliably store data in a distributed system, where erasure-
coded data are kept in different nodes to tolerate node
failures without losing data.

106106

In an erasure coded system (Figure 5), a total of n=k+m
disks are employed, of which k hold data and m hold coding
information. The act of encoding calculates the coding
information from the data, and decoding reconstructs the
data from surviving disks following one or more failures.
Storage systems typically employ Maximum Distance
Separable (MDS) codes, which ensure that the data can
always be reconstructed as long as there are at least k disks
that survive the failures.

Encoding

Decoding

K storage disk

m redundant disk

K + m storage disk

K storage disk

System Resilient up
to m disk failures

Figure 5. Data Resiliency.

B. Data Distribution Strategie
The placement of the replicas is critical to HDFS

reliability and performance, the core concept of the
consistent hashing [9] is applied in data distribution. While
running collections of caching machines some limitations
are experienced. A common way of load balancing n cache
machines is to put object 0 in cache machine number
hash(0) mod n. But this will not work if a cache machine is
added or removed because n changes and every object are
hashed to a new location. This can be disastrous since the
originating content servers are flooded with requests from
the cache machines. Hence consistent hashing is needed to
avoid swamping of servers.

Consistent hashing maps objects to the same cache
machine, as far as possible. It means when a cache machine
is added, it takes its share of objects from all the other cache
machines and when it is removed, its objects are shared
between the remaining machines. The main idea behind the
consistent hashing algorithm is to associate each cache with
one or more hash value intervals where the interval
boundaries are determined by calculating the hash of each
cache identifier. If the cache is removed its interval is taken
over by a cache with an adjacent interval. All the remaining
caches are unchanged.

Consistent hashing is based on mapping each object to a
point on the edge of a circle. The system maps each
available machine to many pseudo-randomly distributed

points on the edge of the same circle. Consistent hashing
specifies how keys are to be assigned to nodes and how a
node can discover the value for a given key by first locating
the node responsible for that key. It maps the items to
corresponding nodes where node’s identifier is the hashing
the node’s IP address and the key’s identifier is hashing the
key. According to the example illustrated in Figure 5, there
are two nodes A and B and three objects 1–3 initially.

The objects 3 and 1 are mapped to node A, object 2 to
node B. When a node leaves the system, data will get
mapped to their adjacent node (in clockwise direction) and
when a node enters the system it will get hashed onto the
ring and will overtake objects.

Figure 6. Demonstration of Consistent Hashingd

The illustrated procedure for encoding data replicas can

be seen in Figure 6. To put the encoded blocks (n) in the
storage pool, the core concept of the consistent hashing is
applied. A consistent hash function is the mapping of items
to corresponding nodes. A node’s identifier is defined by
hashing the node’s IP address, Hash(IP), and the identifier
of a key, which is an item, is produced by hashing the key,
Hash(key). During the process, <key, value> is submitted
to a node of the ring which has the associated key. Each
encoded block is in the form of <Hash(nid), ni>. nid is the
identifier of the blocks.

V. EVALUATION
The performance of proposed system is evaluated on

commodity Linux cluster with virtual machines. Cluster
(testbed) is composed of virtual machines. The VMs are
interconnected via a 1-gigabit Ethernet. Each host machine
runs Windows 7 Ultimate.

In the Hadoop cluster implemented, one VM stands for
NameNode, Secondary NameNode, DataNode, JobTracker
and TaskTracker. The other VMs stand for DataNodes and
TaskTrackers. Table I displays the experimental setup to
test the performance of original HDFS and HDFS with
erasure coded replication scheme.

107107

TABLE I. PARAMETERS OF TESTBED

Testing
Environment System Specification

Commodity
Linux VMs
Cluster

Cluster- 8VMs

Hosts
Specification

Intel ® Core™ i7- 2600 CPU @
3.40GHz, 4 GB RAM,
1TB Hard Disk, 1Gigabit Ethernet

Intel® Core™ i5-3337U CPU @
1.80GHz, 4GB RAM,
500GB Hard Disk, 1Gigabit Ethernet

VMs
Specification

VM1
 Intel ® Core™ i7- 2600 CPU @
3.40GHz, 1024MB RAM,
50 GB Hard Disk
NN, SNN, DN, JT, TT

VM2 to VM8
Intel ® Core TM i5-3337U CPU @
1.80GHz
DN, TT

Software
Components

Storage System
� Hadoop 0.20.2
� VMware®Workstation 9.0.2

build-1031769
� Ubuntu 12.04 LTS

NN=NameNode SNN=Secondary NameNode
JT=JobTracker DN=DataNode TT=TaskTracker

We implemented the algorithm shown in Figure 5.
Enwiki dataset [15] is used to evaluate the performance of
proposed system. We tested performance of writing and
reading files of different file sizes.

A. Storage Consumption

Erasure codes are space-efficient schemes to encoded
data into redundant fragments to protect against erasures of
some of the fragments. Such erasure codes have been used
traditionally in communication systems and more recently,
in storage systems as a way to protect data against node
crashes. It can also make the storage systems reliable.

In the experiment, we kept the fault tolerant level at 2
and the obtained result is as shown in Figure 7.

Figure 7. Storage consumption (times) vs. redundant schemes.

We found that, by using 3 way replication, the storage

consumption is 3 times and by using 3 of 5 erasure coded
replication, the storage consumption is only 1.6 times.
Hence, 3 of 5 erasure coded replication can save data
written over the network onto the storage while tolerating
the same number of faults.
 The amount of occupied storage space depends on data
redundant schemes. There can be variants even with erasure
coding techniques according to the configuration shown in
Table II.

TABLE II. DIFFERENT CONFIGURATIONS OF REDUNDANT
SCHEMES

Redundant
Scheme

3-
way

1 of
3EC

2 of 4
EC

3 of 5
EC

4 of 6
EC

5 of 7
EC

n total
nodes 3 3 4 5 6 7

k data
nodes 1 1 2 3 4 5

m coding
nodes 0 2 2 2 2 2

Figure 8. Storage consumption (times) vs. erasure code rate.

108108

The relationship between the rate of encoding and the
storage consumption can be seen in Figure 8. When the
erasure code rate is increased the storage consumption is
decreased.

B. Storage Space Utilization

Storage space utilization is a measure of how well the
available data storage space in an enterprise is used. It
measures how full the space is compared to its capacity.
Utilization rates can be assessed in terms of both actual use
and predicted use.

Figure 9. Storage space utilization vs. redundant schemes

The experimental results of storage capacity utilized by
two different redundancy schemes: pure replication and
erasure coding are illustrated in Figure 9. Beside it
compares the storage space utilization for two kinds of fault
tolerant level. Obviously, to stand for 1fault tolerance, it
needs only 1.5x storage overhead in erasure coding. But the
storage space utilization of erasure code is 50%, and 30% in
pure replication. Therefore the utilization is significantly
better in erasure coded replication.

VI. CONCLUSION
Fault-tolerance is an important aspect in cloud storage

because it concerns the robustness of the data that is stored.
HDFS has become popular due to its reliability, scalability,
and low-cost storage capability. HDFS is designed to
operate on commodity hardware components, which are
prone to failure. Files are triplicated (triple replication) to
guarantee high data reliability. To reduce storage overhead,
the default storage policy in cloud file systems has become
triplication (triple replication), implemented in HDFS and
many others. Triplication has been favored because of its
ease of implementation, good read and recovery
performance, and reliability.

The storage overhead of triplication is a concern, cloud
file systems are transitioning from replication to erasure

codes. In this paper, we implemented HDFS with default
storage policy and HDFS with an erasure coding. We
compared the performance of the HDFS and HDFS with
erasure coded replication scheme. The experimental results
show that the HDFS with erasure coded replication can save
up to 33 % of space while outperforming the original HDFS
scheme. We also found that the storage space utilization for
any fault tolerant level is significantly better in erasure
coding than pure replication.

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org
[2] D. Borthakur, The hadoop distributed file system: Architecture and

design, 2007, Hadoop Project Website, 11, 21.
[3] M. C. Chan, J. R. Jiang, and S. T. Huang, Fault tolerant and secure

networked storage, In proceeding of the 7th International
Conference on Digital Information Management, ICDIM 2012. pp.
186-191, 2012.

[4] A. G. Dimakis, K. Ramchandran, Y. Wu and C. Suh, A survey on
network codes for distributed storage, In proceedings of the IEEE,
vol. 99, no. 3, pp. 476--489, March 2011.

[5] J. Evans, Fault Tolerance in Hadoop for Work Migration, 28-03-
2011, 2011.

[6] http://hadoop.apache.org/docs/r0.20.0/hdfs_design.html
[7] F. Hupfeld, T. Cortes, B. Kolbeck et al., The XtreemFS

architecture - A case for object-based file systems in Grids,
Concurrency Computation Practice and Experience, vol. 20, no. 17,
pp. 2049-2060, 2008.

[8] http://www.techopedia.com/definition/26847/private-cloud-storage
[9] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, & D.

Lewin, Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web. In
proceedings of the twenty-ninth annual ACM symposium on
Theory of computing, May, 1997, pp. 654-663

[10] S. Konstantin, HairongKuang, R. Sanjay, C. Robert, The Hadoop
Distributed File Systemǁ, In proceedings of SST2010, May 2010.

[11] S. Maheswaran, A.Megasthenis, P. Dimitric, G. Alexandros,
Dimakis, V. Ramkumar and C. Scott, XORing Elephants: Novel
Erasure Codes for Big Data, In proceedings of the 39th international
conference on Very Large Data Bases, pp. 325-336, 2013.

[12] F. RomanusIshengoma, HDFS+: Erasure Coding Based Hadoop
Distributed File System, International Journal of Scientific &
Technology Research 2.9 (2013). pp.190-197

[13] The Apache Software Foundation, ―Welcome to Hadoop
Distributed File System,ǁ http://hadoop.apache.org/hdfs.

[14] S. Verkuil, A Comparison of Fault-Tolerant Cloud Storage File
Systems, In proceedings of the 19th Twente Student Conference on
IT, June 24th, 2013, Enschede, The Netherlands.

[15] Wikimedia dump service:
 http://dumps.wikimedia.org/enwiki/20140102/

109109

