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This paper presents an comprehensive study on Burmese (Myanmar) morphological analysis, from prepa-
ration of annotated corpus to investigation based on experiments by statistical approaches. Twenty thou-
sand Burmese sentences in news filed are annoteted with morphological information, as one component of
the Asian Language Treebank Project. The annotation includes two-layer tokenization and part-of-speech
(POS) annotation, to provide rich information on morphological level and on syntactic constituent level. The
annotated corpus has been released under a CC BY-NC-SA license, which is the largest open access database
of annotated Burmese when this paper was written in 2017. Detailed description of the preparation, the
refinement, and the features of the annotated corpus is provided in the first half of the paper. Facilitated
by the deliberately prepared corpus, experiment-based investigation on Burmese morphological analysis is
presented in the second half of the paper, where standard sequence labeling approach of conditional ran-
dom fields and a long short-term memory (LSTM) based recurrent neural network (RNN) are applied and
discussed. We obtain several general conclusions on the Burmese morphological analysis task, covering the
scheme design of output tags, the effect of joint tokinzation and POS-tagging, and the importance of ensem-
ble to stabilize the performance of LSTM-based RNN. This study provides a solid basis for further study on
Burmese processing. Burmese should no longer be referred to as a low-resourced or under-studied language,
in terms of morphological analysis, attributed to this study.
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1. INTRODUCTION

In linguistics, morphology studies the formation of meaningful units and the relation
among them in specific languages. As to the engineering practice of natural language
processing (NLP), automatic morphological analysis can be regards as a general con-
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cept covering shallow processing related to basic meaningful units on textual data. In
contrast, tasks as topic models are not belong to morphological analysis because they
are not focusing on basic meaningful units, though the meaning of larger textual units
are processed; tasks as syntactic parsing are not belong to the specific task neither, as
they focus on deep, i.e., nested, structures which are not shallow, i.e., linear.

The specific processing within morphology analysis is diverse, depend on the dif-
ferent types of languages, or, in a more formal term, on linguistic typology. Conse-
quently, most references on the morphological analysis in NLP are focusing on specific
languages, as the features of languages largely affect the task in engineering. As to
most inflected Indo-European languages, the process includes related tasks as stem-
ming, lemmatization, and part-of-speech (POS) tagging of words, where a core part is
around identification the stems and affixes. The same case is also for many agglutina-
tive languages with clear word separator in orthography, e.g., Finnish, Turkish, and
Korean [Na 2015], where the identification of various affixes turns to be a main and
heavy task. For those languages without word separators in their scripts, a further
word segmentation, or tokenization process is required.! A typical example on agglu-
tinative languages is Japanese. According to the definition in Neubig et al. [2011]:
Japanese morphological analysis takes an unsegmented string of Japanese text as in-
put, and outputs a string of morphemes annotated with parts of speech. Briefly, the
process is concluded as cutting and tagging textual strings. However, conjugated forms
of numerous suffixes in Japanese should also be recovered in deeper analysis because
of the agglutinativeness and the syllabic writing system [Kudo et al. 2004]. A typical
example on isolation languages is Chinese, where the term of morphology analysis is
less used and the cutting process is usually treated as a separate task called Chinese
word segmentation [Zhao et al. 2010], because there is no further recovering process
besides cutting, in tokenizing an isolate language.

This study focuses on Burmese,? whose features can be observed as a mixture of Chi-
nese and Japanese. Morphologically, Burmese is highly analytic with no inflection of
morphemes. Similar to Chinese, morphemes can be combined freely with no changes.?
Syntactically, Burmese is typically head-final where the functional dependent mor-
phemes succeeding content independent morphemes and the verb constituent working
as the root of a sentence always comes at the end of a sentence. Subordinative clauses
are also placed before their modifying parts and before the main clause of a sentence.
All these features are identical to Japanese.* The Burmese word segmentation, which
can be compared with the Chinese word segmentation, has been preliminarily inves-
tigated in our previous work with in-house data [Ding et al. 2016]. In this study, we
conduct comprehensive study covering more details in Burmese morphological analysis
on our prepared and released dataset.

From the features of Burmese, this study on Burmese morphological analysis can
thus be regarded as how to cut and tag Burmese textual strings, without any fur-
ther insertion, substitution, or deletion process in tokenization. The contribution of
the study is two-folded, on both linguistics and NLP practice. Linguistically, we con-
structed a deliberately designed and annotated Burmese corpus, with two-layer tok-
enization and part-of-speech (POS) annotation, to provide rich information on mor-

IThe terms of “word segmentation” and “tokenization” are used in an exchangeable way in this paper.

2The language is referred to as Burmese or Myanmar in the literature. We use Burmese in this paper
because it is the name more likely to be familiar to English readers

3Sandhi of consonant mutation from unvoiced to voiced may happen when morphemes are combined, but
the phenomenon is not reflected on writing forms. A minor exception on contracted genitive case-marker for
some nouns may affect the tone and spelling, which will be mentioned in Section 3.1.3.

4Some modifiers of nouns can be placed after the head noun they modify, which is an exception to the head-
final restriction in Burmese. This will be mentioned in Section 3.1.3.
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phological level as well as on syntactic constituent level. The tokenization and POS-
tagging scheme are well designed to cover various and important linguistic phenomena
in Burmese. Seven rounds of cross-checking on twenty thousand Burmese sentences
were conducted to achieve a consistent and precise annotation. The corpus is thus the
best prepared Burmese morphologically annotated corpus in terms of quality as well
as quantity when this paper is written in 2017. The corpus has been released under
a CC BY-NC-SA license for research community,® as one component of the Asian Lan-
guage Treeback (ALT) Project.® The guidelines of the annotation are also available for
public,” to provide more details for users of the corpus. For NLP practice, we experi-
ment two mainstream engineering approaches on the Burmese morphological analysis
task, i.e., the classic and standard sequence labeling approach of conditional random
fields (CRFs) [Lafferty et al. 2001], as well as a popular and state-of-the-art approach
of long short-term memory (LSTM) based recurrent neural network (RNN) [Greff et al.
2017]. Based on the experimental results, we obtain several general conclusions on the
Burmese morphological analysis task, covering the scheme design of output tags, the
effect of joint tokinzation and POS-tagging, and the importance of ensemble to stabi-
lize the performance of LSTM-based RNN. This study thus provides a solid basis for
further study on Burmese processing, such as syntactic parsing and machine trans-
lation. Burmese should no longer be referred to as a low-resourced or under-studied
language, in terms of morphological analysis, attributed to this study.

The remainder of the paper is organized as follows. In Section 2, we discuss re-
lated work on general approaches of word segmentation and POS-tagging, and previ-
ous work on processing Burmese. In Section 3, detailed description of the annotated
corpus is provided. Since the final data and guidelines have been released, the moti-
vation and the design of the overall annotation scheme, with several important issues
in data annotation and refinement are presented in this section. Experiments of CRFs
and LSTM-based RNN are presented in Sections 4 and 5, respectively, where various
explorations and comparisons are organized. Section 6 contains discussion based on
the experimental results. Section 7 concludes the paper and lists our future work on
Burmese and other Southeast Asian languages.

2. RELATED WORK

Shallow processing tasks in NLP, such as word segmentation, POS-tagging, and chunk-
ing, can generally be modeled as a classification task to label tokens, or a structured
prediction task further taking the relation between output tags into modeling, which
fits the sequential feature of textual data better. A classic and standard approach for
such tasks are CRFs, i.e., a structured learning method for sequential labeling. Typical
works on the application of CRFs on morphological analysis are: Kudo et al. [2004] of
Japanese morphology analysis, Zhao et al. [2010] of Chinese word segmentation, Na
[2015] of Korean morphology analysis, and our note of Burmese word segmentation
[Ding et al. 2016]. Also, non-structured approaches, such as a classifier of support vec-
tor machine (SVM), are also widely studied and applied in practice. Typical SVM-based
works are: Kudo and Matsumoto [2001]® and Neubig et al. [2011] on Japanese morphol-
ogy analysis. Such approaches may apply a dynamic programming method to integrate

Shttp://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/my-nova-170405.zip

Shttp://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/

"Basic guidelines: http://www2.nict.go. jp/astrec-att/member/mutiyama/ALT/
Myanmar-annotation-guideline.pdf

and supplementary instructions: http://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/
Myanmar-annotation-guideline-supplemantary.pdf

8A more detailed version in Japanese is Kudo and Matsumoto [2002].
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the surrounding information on output tags to achieve a similar effect of the structured
learning [Kudo and Matsumoto 2001], or simply adopt a pure point-wise way [Neubig
et al. 2011] to archive fast processing by a lightweight model. However, Stratos and
Collins [2015] have illustrated that well-programmed point-wise approaches can ac-
tually comparable results of standard CRFs on POS-tagging several Indo-European
languages. A similar conclusion is also reached in the note of Burmese word segmen-
tation, that the performance differs not much between CRFs and point-wise SVM. It
can be considered that the capacity of a general supervised machine learning frame-
work is adequate for the morphology analysis task in NLP, that the difference brought
by structured learning is not so significant as long as a classier is well trained.

Besides classic feature-based approaches, NN-based approaches are overwhelmingly
studied in NLP in recent years. An early comprehensive work in NLP is Collobert et al.
[2011], where various classification and sequence labeling tasks in NLP are processed
unified by NNs. Generally, an NN-based approach is a pure end-to-end processing,
where the relation between input and output are modeled directly by connected non-
linear units. The crucial issues of NN-based approaches are thus in 1) the topology of
the network, i.e., how to connect different basic units, and 2) the composition of basic
units, i.e., how to conduct nonlinear transformation. Two typical structures of NNs are
convolutional neural network (CNN) and recurrent neural network (RNN). As to NLP
tasks, RNN is more popular than CNN, as it fits better the sequential features in tex-
tual data [Mikolov et al. 2010; Sutskever et al. 2014]. The nonlinear units can be a sim-
ple S-shape nonlinear function, e.g., sigmoid function or hyperbolic tangent, or a more
complicated and powerful block, such as the LSTM unit, which is actually a standard
component in an RNN. LSTM-based RNN thus has been a standard state-of-the-art
approach in various NLP tasks. As to the related works on morphology analysis, typi-
cal studies are Chen et al. [2015] and Ma and Hovy [2016] on LSTM-based approaches
for Chinese word segmentation.

On the line of research on Burmese processing, to the best of our knowledge, there
are only two comprehensive works on data-driven morphological analysis: our previ-
ous note on word segmentation and Khin War War Htike et al. [2017] on POS-tagging.
In our previous work, various word segmentation approaches are compared on a to-
kenized Burmese dataset over sixty thousand sentences. The study illustrates that
data-driven supervised approaches outperform previous rule-based matching and un-
supervised approaches. While the differences among different supervised approaches
are not significant. The drawbacks of the study, as addressed in the note, are 1) no de-
tailed comparison in feature engineering, 2) the annotated data have relatively incon-
sistence among annotators, and 3) the in-house data cannot be shared by the research
community. The recent work of Khin War War Htike et al. [2017] compares various
POS-tagging approaches on a POS-tagged Burmese dataset of ten thousand sentences,
which the authors have released.? However, a serious limitation of this study is that
all the experiments were conducted on golden-standard tokenization of the specific
dataset. That is, various models are trained on manually tokenized data and tested
on manually tokenized data as well. As the “words”, i.e., tokens in processing, is not
natural units in Burmese texts, this study is not oriented for a practical setting that
all the details of tokenization are omitted by supporting there is a perfect tokenizer.

This study covers all ranges of the two previous studies. Essentially, this study is a
natural extension of our previous note in terms of open access data and detailed com-
parison in engineering approaches. We have released well-annotated Burmese corpus
around twenty thousand sentences, and experimented with representative approaches
of CRFs and LSTM-based RNN with various comparisons. Experiments on the data

9https://github.com/ye-kyaw-thu/myP0S
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released by Khin War War Htike et al. [2017] are also conducted and investigated in a
uniformed framework. So, this study provides reliable conclusions, and a solid bench-
mark of the numeral results on the Burmese morphology analysis, which is reproduc-
tive and comparable for further studies.!®

3. ANNOTATED BURMESE CORPUS
3.1. ALT Burmese Corpus

3.1.1. Overview. The overview of the the ALT project and the international collabora-
tion can be referred to early reports of Ye Kyaw Thu et al. [2016] and Riza et al. [2016],
respectively. Briefly, twenty thousand English sentences collected from Wikinews are
manually translated into different Asian languages as the raw data. Further annota-
tions are then conducted on each language, including tokenization (if needed), POS-
tagging, phrasal structured tree-building, and word alignment with original English
sentences. The Burmese language is the first Southeast Asian language we work on.

The Burmese data prepared and used in this study cover two annotation tasks: tok-
enization and POS-tagging. The data were preliminarily processed by different native-
speaker annotators through an annotation server [Ye Kyaw Thu et al. 2016]. The pre-
liminary annotation was largely based on the common sense of native speakers, which
caused considerable inconsistence from tokenization. We thus design a unified frame-
work for joint tokenization and POS-tagging called nova for annotating highly-analytic
languages. An example of an annotated Burmese sentence is illustrated in Fig. 1. A
feature of the annotation is that brackets are used to provide a two-layer annotation
to adapt the ambiguities in tokenization, as well as to annotate some larger syntactic
constituents which can be applied as an integrate unit for further analysis, e.g., syn-
tactic parsing. As the guidelines for annotating Burmese data have been released, we
do not mention detailed instructions here, but present an introduction on the overall
process in annotation and the features of the annotated Burmese data.

3.1.2. Process of Annotation. The preliminarily annotated Burmese data were firstly
mapped into the nova system, and the ambiguous and inconsistent cases in annota-
tion were kept as much as possible by the brackets. Then a CRF-based 8-fold cross-
validation on the whole dataset was applied, using tri-gram features on the syllable
units [Ding et al. 2016]. We did not pursue a high precision in the cross-validation but
tried to filter out inconsistent patterns in annotation. Based on the results of cross-
validation, the annotation of the data was modified and improved in a systematic way.
That is, we did not only focus on specific inconsistent patterns in the results, but to
conclude the linguistic phenomena which were annotated inconsistently and to modify
them into a consistent way. The automatic cross-validation and manual refinement
were thus applied repeatedly to improve the quality of the annotation. Table I shows
the statistic on data of different versions, where the original is the preliminarily an-
notated data and the latest 17-04-05 data are the finally released version. Figs. 2 and
3 are the visualization of the final and the second columns in Table I, respectively.

Specifically, the #tag error in Table I is the count of syllables with wrong tags in the
cross-validation, and the #syllable is the total number of the syllables. The tag error
rate (graphed in Fig. 2) is thus the quotient of the #tag error divided by #syllable.

10 According to the description on https://github.com/ye-kyaw-thu/myP0S, the data of Khin War War Htike
et al. [2017] are still “draft released”. The released data are not identical to the data used in their publica-
tion and the data are further updated after we conducted the experiments reported in this paper. So it is
still not a stable dataset and the numerical results on the data are thus not strictly comparable among dif-
ferent references up to now (2017). We used the dataset in this study in an auxiliary way, to confirm the
conclusions we obtained are available on different datasets. The data used in this study can be accessed at
https://github.com/chenchen-ding/mycicling
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Table |. Statistics on 8-fold cross-validation of annotated Burmese data in different versions.

pattern error

data version type number #tag error #syllable tag error rate
original 54,059 93,269 138,630 1,170,587 11.84%
16-10-31 33, 048 18,672 71,939 1,171,548 6.14%
16-11-14 31,825 42,230 62,599 1,171,577 5.34%
17-01-01 28,580 37,150 52,426 1,171,107 4.48%
17-01-15 28,144 36,763 51,315 1,171,218 4.38%
17-01-26 27,598 36,177 49, 980 1,170,980 4.27%
17-03-09 27,332 35,996 50, 449 1,170,980 4.31%
17-04-05 26,418 35,130 48, 869 1,170,922 4.17%
12.00% 100,000
10.00% 80,000 type
8.00% number
60,000
6.00%
40,000
4.00%
2.00% 20,000
0.00% 0
original 161031 161114 170101 170115 170126 170309 170405 original 161031 161114 170101 170115 170126 170309 170405
Fig. 2. Tag error rate in Table I Fig. 3. Type /number of error patterns in Table I

The type and number of pattern error are counted by the maximum-length match-
ing of the wrongly-tagged syllable sequences. From the version of 16-10-31 to 17-01-26
the data are annotated by four basic tags (n, v, a, and o) and brackets ([, 1), which can
be referred to the basic guidelines. The tags in versions of 17-03-09 and 17-04-05 are
further modified by attaching functional markers (- and /o0-), which can be referred
to the supplementary instruction of the annotation. It can be observed that both the
tag error rate and the pattern errors converged along the refinement. Notice the tag
error rate increased a little from 17-01-26 to 17-03-09, because the type of tags were
enlarged by the modification, while the pattern errors decreased stably, indicating the
data were always improved in terms of consistence.

In Table I, it can be observed that the number of syllables changed slightly among
different versions. This is because the spellings were modified and normalized along
the refinement of the annotation. There are two main normalizations as follows.

— The order of the creaky tone-marker aukmyit (U+1037) and the virama (U+1034), i.e.,
inherent vowel-depressor, is arranged in “aukmyit virama” in coding nasal-ended
creaky-toned syllables, in accordance with the process in Ding et al. [2017].1! The
order of the two diacritics are used quite inconsistently in daily typing, while the
order we adapt is considered as a standard order and supported by different fonts.

— The Burmese letter wa (U+101D) and the Burmese digit zero (U+1040) are both an
o-shape character and extremely similar to each other (if not identical in some
fonts).!2 The two characters are used in an exchangeable way in casual typing. We
thus paid specific attention to clean up the misuse of them case by case.

! Notice the token [ in Fig. 1, which is a nasal-ended creaky-toned syllable (only in spelling, and the nasal
coda /p/ is denasalized as /j/ in real pronunciation). The tiny circle at the lower right is aukmyit and the arc
at the upper right is the virama.

2Notice the full circles in tokens BJ and @ in Fig. 1. The circle in B} is the Burmese letter wa, and in [
the Burmese digit zero.
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3.1.3. Features and Statistics. Based on the design and the practice of the annotation
processing, the tokenized and POS-tagged Burmese data have specific features besides
the quality and quantity. We conclude them as follows.

— A two-layer tokenization and POS-tagging annotated by brackets, covers a por-
tion of ambiguities in tokenization and identifies the composition of specific con-

stituents. Typical examples can be observed in the Fig. 1, where tokens BJ ), tokens

B, tokens are composing further constituents playing certain syntac-

tic roles.!3 The two-layer annotation addresses a large range of linguistic phenomena
in Burmese, e.g, derivation, compounds, heavily-agglutinative constituents, reversed
nominal-attributive constituents, and number-counter constituents.

— The tags contain analytic informations. Four basic tags are used for a sketchy anno-
tation, and further modification of functionality (-) and contraction (/o-) are added
to basis tags for more detailed information. As to the example in Fig. 1, o- tags are

used to annotated various affixes and particles.* The token [ is a pronoun with

a contracted genitive case-marker!® where a basic tag n for nominal tokens is first
modified by a - to address the functionality, and then the /o- is attached to annotate
there is a contracted case-marker which should be tagged as o-.16

The annotated Burmese corpus thus contains abundant multi-layer information,
which is feasible and flexible for various downstream NLP practical applications. The
corpus also provided a refined and stable platform for academic research on investi-
gating the techniques on Burmese morphology analysis. For this purpose, the whole
corpus is split into three datasets of training, development, and test for experiments
and comparison. The statistics on the Burmese corpus are listed in Table II,'” where
small token is the number of finally segmented tokens and the large token are coun-
tered by taking bracketed tokens as one token. As to the example in Fig. 1, there are
19 small tokens and 15 large tokens.!8

Compared with the in-house data used in Ding et al. [2016], the annotated Burmese
corpus in this study has less sentences, but contains more syllables and is segmented
into smaller tokens. Comparing the Table II here and the Table I in Ding et al. [2016],
we can find there are more than one million (M) syllables in this ALT dataset but only
less than 0.8 M syllables in that in-house dataset. The average sentence length is thus
has a large difference that only 12.67 syllables per sentence in that in-house dataset.
The difference is mainly cased by the field of the textual data in the corpora. The
ALT data are composed of news articles where formal and long sentences are common,
while, as stated in Ding et al. [2016], the in-house data are in a restricted filed of
travel expressions, which are generally simple in syntax and vocabulary. It can also
be calculated that there are 1.63 syllables per token (word) on average in the previous

13A verb-derived nominal expression, a verb-derived attributive expression, and a multiply-suffixed verbal
expression, respectively.

14The basic o tag is used to annotate a general modifier (e.g., adverb).

15The creaky tone-marker aukmyit at the lower right.

16 As Burmese is highly analytic, this is the only productive contraction phenomenon.

17The three datasets are divided by articles from the original English Wikinews. The lists of original URL
are at http://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/index.html. Notice the total number of
sentences listed in Table II is slightly smaller than that of raw data on the linked page. This is because a
little portion of wrongly translated or segmented sentences were excluded in the annotation process.

18There are 31 syllables in this example. Most tokens are single-syllabled; &, &, £, £, and §J are

composed of two syllables; EIJ is composed of five syllables; ] contains four Burmese digits which are
counted as four syllables.
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Table Il. Statistics on the ALT Burmese corpus. (the version of 17-04-05 in Table I)

#token
dataset #syllable small large #sentence
training 1,054, 829 664, 174 198, 227 17,965
development 57,607 36,133 27,081 993
test 58, 486 36, 830 27, 740 1,007
total 1,170,922 737,137 553,048 19,965
average syllable(s) 1 1.59 2.12 58.65

in-house data. So, the Burmese data in this study are tokenized more finely, though
the topic and field are more complicated.

The data introduced in Table II will be mentioned as ALT data for short in the
following Sections 4 and 5 of experiments.

3.2. CICLING Burmese Corpus

In Sections 4 and 5, we also report experimental results on the data released by Khin
War War Htike et al. [2017], which will be mentioned as CICLING data. The statistics
on the version we used is presented in Table III. As there is no explicit division of the
dataset, we selected the test data by each eleven sentences from the whole dataset, and
selected the development data by each ten sentence in a same way from the left data.

The annotation structure in this data is simpler than ALT corpus, where tokenized
Burmese textual data are annotated by fifteen different tags. There was one more tag
for negative particle in the original publication but then removed, as this tag was exclu-
sively used for only one pre-positional negative particle. Even though, the temporary
tag set is still not designed and applied in a refined way. For example, there are tags
of abbreviation (abb), foreign words (fw), and text numbers (tn), which are not decided
by syntactic roles, but by surfacing spellings. The two tags of abb and fw are mostly
used for nominal tokens in the data. However, according to the examples illustrated
in the instruction, abb is also used for adverbs and fw also for Arabic numbers.!® The
difference between particle (part) and post-positional marker (ppm) are also not obvi-
ous. It seems those ppm-tagged tokens are only restricted to a portion of post-positional
case-markers, and other post-positioned functional tokens are all classified to be part.
Generally, there is a lack of clarity and consistency on the design and the use of the
tags in CICLING corpus, even not so serious a problem in practice.

Some compounds are also annotated in the corpus, by concatenating several tokens,
annotated but a vertical bar. Compared to the ALT corpus, the annotation is not in a
systematic and complete way, and there is no further annotation for the larger con-
catenated tokens.?’ In Table III, the basic and concatenated units are represented as
small and large token, respectively, as a comparison of the ALT corpus. The sizes of
small tokens are nearly the same on the two corpora, because the tokenization prin-
ciples are not quite different from each other. On CICLING corpus, the size of large
tokens does not differ much from that of small tokens, because only a few concatena-
tion is annotated. On ALT corpus, the average length of large tokens are around 133%
of small tokens, while on CICLING corpus, it is only 110%. Compared with ALT corpus,
the CICLING corpus has a weak and incomplete two-layer annotation. We thus only
conducted experiments over small tokens on CICLING corpus in this study, because
large tokens are insignificantly different from small tokens, what is more, there is a
lack of POS information on large tokens.

1980, a number may be annotated in three ways dependent on the script, which is unnecessarily complex.
20 Most cases are nominal expressions from our observation.
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Table lll. Statistics on the CICLING Burmese corpus used in this study.

#token
dataset #syllable small large #sentence
training 303, 588 194,024 - 9,000
development 34,675 22,172 — 1,000
test 33,335 21,315 - 1,000
total 371,598 237,511 215,931 11,000
average syllable(s) 1 1.56 1.72 33.78

4. BURMESE MORPHOLOGICAL ANALYSIS BY CRFS
4.1. Feature, Tag, and Tool

In this section, we presented the experiments by CRFS. Generally, the CRFs model
can be formulated in a framework of a maximum-entropy principle as Eq. (1).

p(ylz,A) = exp(3; i fi(y, ®))
. 2oy P25 A fi(y, @)

Specifically to a sequential labeling task, in Eq. (1), « represents a sequence of to-
kens z{ = z,71, -+ ,7;, and y represents a sequence of labels y{ = yo,y1,- - ,;, for
corresponding tokens with the same index. f; is feature functions and \; is the cor-
responding weight for features. Thus A, a set of );, is the parameter of the model.
For a given parameter A and a token sequence x, the most likely labeling sequence is
9 = arg max, p(y|z, A). In order to get a sound model parameter A, it should be tuned

on a set of training data {z°,y°}, {z',y'},- -, {z*,y*}. Generally, the X is optimized
by maximizing the following log-likelihood of Eq. (1) on training instances.

L) =Y {0 Nfiwk.2") —logd exp(d> A fi(y*, aM))} (@)
k j yk J

o)

Here we only give an overall review of the the CRFs framework and we do not step
much into the details of optimization and implementation, as there are already ma-
tured framework of algorithm and off-the-shelf tools can be referred and applied. In
this paper, we focus on the feature selection and the tag set for labeling, which is the
most practical issue for our morphological analysis task. The notation of f(y,z) in
Eq. (1) is in a quite generalized form, which can be decomposed further in specific
tasks. In the interface of tokenization and POS-tagging in NLP tasks, the features
used are usually binary on a sliding window for each postion of token-label pair, with
local contextual information by previous and succeeding tokens. So the Eq. (1) can be
transformed into Eq. (3), where 27, offers a context window for the label y; at a spe-
cific position, and ¢; is the Kronecker delta, that the value of feature is 1 if and only if
x', and y, match exactly, otherwise 0. Notice Eq. (3) is the probability of one training
instance while §; is cross-instances, i.e., that the co-occurrence of specific z]., and y
can appear in different instances. The weight ); can thus be intuitively interpreted as
how “important” the co-occurrence of =]}, and y;, should be regarded over all the given
training instances. Even the features are restricted to be local windows, the normaliza-
tion in Eq. (3) is still over the whole sequence of labels (i.e., the summation over y{ in
denominator), so a g = arg max,; p(yy|zp, A) is still searched under a global optimum.

eXP(Z;-c:Q Zj Aj6;(Yks 1))
Dy XD koo 225 Aj i (YK, 7))

Consequently, there are two basic issues in CRFs that we should investigate by ex-
periments, on y; and z],, respectively.

p(yolzh, A) = <n<k<m<i) 3)
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REL. IDX.: -5 -4 -3 -2 -1 0 1 2 3 4 5
SYLLABLE: Ol Q06 ) 0t e, @5 &¢ 2005 I
= * GP o] o Qo L 8

SMALL-TOK: B I I I E S B E S S S

LARGE-TOK: B I I I E S B I I E S

SMALL-POS: B-n I-n I-n I-n E-n S-o- B-v E-v S-o- S-o- S-.
LARGE-POS: B-n I-n I-n I-n E-n S-o- B-v I-v I-v E-v S-.

Fig. 4. IBES tagging scheme for tokens I} §E 18] in Fig. 1. By changing B to I and S to E, it
turns an IE scheme; by changing E to I and S to B, it turns an IB scheme.

Table IV. Feature templates with different size of context window.

uni-gram bi-gram tri-gram 4-gram
0 g—1 gt 0
2 sg, sf%, st . s%,,8}
0 g—1 gt g—2 g2 0 gl 0 ol g2
3 53,5, 81,855,88 s°,, st s0,,8t,,82
0 - 1 - 2 - 3 0 1 0 1 2 0 1 2 3
4 S0, S_1,81,5_5,85,8_3, 83 S~ 1,5, 8~ 5,824, S5, S~ 3,8.,,8%, S,

— A feasibility tag set for y. The issue is trivial in a pure POS-tagging task, as in Khin
War War Htike et al. [2017], that the POS tag set is used directly. In the interface
of tokenization, however, the boundary of tokens should be identified and thus there
are variants in notation differ from addressing the beginning or the end of a token.
The size of tag set, i.e., the number of different tag types, should also be considered in
practice. As more types of tags lead to a larger space of y in the normalization term
of Egs. 1 and 2, which requires more calculation in model training and decoding.

— A proper window size, i.e., the magnitude of m — n in z7,. Generally, if we use a
large window size, more contextual information can be modeled, but it will cause
sparseness on features, where superfluous patterns of 27, and y;, i.e., numerous §;,
will be collected from the training instances, which makes the parameter training
slow and insufficient.

We adapt the Burmese syllable as the basic unit in the morphological analysis, as in
the tokenization task of Ding et al. [2016]. The syllables can be identified decisively by
rules, and can be considered as stand-alone units comparable to Chinese characters.?!
Based on the syllables, we design different tagging schemes and feature templates.
Fig. 4 illustrates an IBES tagging scheme for tokenization on the final part of the sen-
tence in Fig. 1. The IBES tags can be further attached with POS-tags for joint tokeniza-
tion and POS-tagging, as the two lower rows in Fig. 4. Generally, the IBES notation
is the most popular scheme used in tokenization tasks, where the four tags represent
beginning of a token, end of a token, inside a token,2? and single unit as a token,23
respectively. As simplified versions, there are IE and IB tagging schemes, where, only
the end or beginning of a token is addressed. In the work of Ding et al. [2016], the IE
scheme was used as a matter of fact. Basically, two different tags are enough for the
tokenization task, while the performance of different tagging scheme may differ due
to the nature of specific languages. There can be more complex schemes as further

210Qr as the characters in Hangul, but more complex in the relation between composition and pronunciation.
22That is, the unit is neither the beginning nor the end of a token. Instead of I, M for middle is also used.
23That is, the unit is the beginning and the end of a token at the same time.
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classification of the I tag [Zhao et al. 2010], while as stated in Kudo and Matsumoto
[2002], a too complex tagging scheme may lead to more “illegal” combinations of tags,?*
which does not always help the performance but make the model and process heavier.
On our specific data, the average length of token is only between one and two syllables,
so we did not further classify the I tag to a more complex scheme. Only IBES, IE, and IB
schemes are compared in the experiments. Table IV lists the three feature templates
we used in experiments, where S2 stands for the syllable sequence of the relative in-
dices within [m, n]. Fig. 4 illustrates the example of relative indices (upper row of REL.
IDX.) when tagging the syllable with the gray background.

We used the CRF++ toolkit?® consistently in the experiments in this section. Another
popular off-the-shelf tool is the CRFsuit,?® which is an implementation much faster
than CRF++. In our preliminary experiments, we found that the CRFsuit and CRF++
have comparable performance using identical feature templates. However, CRF++ fur-
ther supports bi-gram features on output tags, which can lead to slightly increased per-
formance by further “tons of distinct features”. We find that to add non-lexicalized bi-
gram features on output tags is a good trade-off in performance and the time/memory
consuming in model training. So, all the experimental results reported in this section
are with the features on syllables listed in Table IV and the non-lexicalized bi-gram
features on output tags.2’

4.2. Evaluation

We use the F-score (f-s.) consistently to evaluate and compare experimental results.
Specifically, the tokens segmented out in a Burmese string are compared with the
golden tokenization results. And F-score then is calculated as the harmonious average
of the precision and the recall in terms of tokens. The accuracy (ace.) on tagging basic
units, i.e., syllables, is also presented as an auxiliary measure, which is not compara-
ble across different output tag sets. As development data are not required in training
CRFs, the development data in Tables II and III are added to training data for all
the experiments of CRFs. We also varied the training data size, to investigate how the
quantity of training data affects the quality of performance on test data. Specifically,
the training data are halved gradually until around one thousand sentences, i.e., up to
one sixteenth on ALT data and one eighth on CICLING data.

Table V illustrates the tagging accuracy and F-score on tokenizing small tokens on
ALT data, with different feature-tag combination and different training data size. A
noticeable phenomenon is that the IE and IB scheme have much higher ace. than IBES
scheme, while the f-s. is obviously lower. It is clear that the IBES scheme, though tuning
the task more difficult, codes more useful information. As mentioned, some impossible
tagging sequences may appear in IBES scheme. However, such inconsistency only ap-
pears rarely (once or twice) with smaller training data (on sixteenth and eighth), which
is negligible. As a minor fact, IB is slightly better than IE. A related phenomenon has
been mentioned in Kudo and Matsumoto [2002], that IB scheme may reserve more in-
formation in segmenting continuous chunks, while our task is actually a chunking task
on Burmese syllables.?® As to the features, bi-grams on syllables (2-) seem adequate
and tri-grams (3-) bring a limited gain, but further features (4-) will decrease the per-

24In the IBES scheme, the sequences of IB, IS, BB, BS, EI, EE, SI, and SE are impossible. In the IE and IB
schemes, all sequences are possible, except the final tag in a sequence cannot be I in IE scheme and the first
tag cannot be I in IB scheme.

25http://taku910.github.io/crfpp/

26nttp://www.chokkan.org/software/crfsuite/

27The non-lexicalized bi-gram feature on output tags is annotated by a “B” according to the format of CRF++’s
template. And it is a feature of §(yi_1, yx) in the notation used in this paper.

2830, the IE scheme used in Ding et al. [2016] is actually the worst option.
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formance, due to sparseness and over-fitting. The Table V is graphed in Fig. 6, where
the performance against training data size is illustrated clearly. Generally, there is still
a large space to improve the performance, when more training data provided, where
the 4-gram features may boost the performance more significantly.

Table VI illustrates the tagging accuracy and F-score on joint tokenizing and POS-
tagging small tokens on ALT data, where the tokenization tags are combined with POS
tags to form a larger tag set, and the tokeniztion and POS-tagging are generated si-
multaneously. The F-score in evaluation is thus on the jointed token and POS tag. The
phenomena observed in Table VI is identical to those in Table V but with lower nu-
meral results, as the tagging task turns more difficult and evaluation turns stricter.
Table VII compares the tokenization performance with and without the POS infor-
mation, where +pos is the F-score on pure tokens from the results in Table VI and
—pos is identical to those corresponding results in Table V. It can be observe +pos is
always better than —pos. So, the POS tag information can boost the performance of
tokenization, which is addressed as a future work in our previous note, and we prove
it in this study. As the performance of —pos is already lower than +pos, a two-path
first-tokenizing-then-POS-tagging process cannot achieve a better performance than
the joint evaluation in Table VI. We can conclude that the one-path joint tokenization
and POS-tagging should be a standard way in Burmese morphological analysis, as the
process is simpler and the performance is better. The f-s. in Table VI and the F-score of
+pos in Table VII are graphed in Figs. 7 and 8 respectively. As well, the performance
is on test data still far from being saturated on the given training data.

Tables V, VI, and VII are a basic group of the experimental results. Tables VIII,
IX, and X (graphed in Figs. 9, 10, and 11, respectively) are corresponding results on
large tokens on ALT data; Tables XI, XII, and XIII (graphed in Figs. 12, 13, and 14,
respectively) are corresponding results on CICLING data. The general phenomena and
conclusion in the basic group can also be observed and concluded in the further two
groups of experimental results. Specifically, the numerical results on large tokens in
ALT data is lower than those on small tokens. Notice the average length is 1.59 on
small tokens but 2.12 on large tokens. So bi-gram features are adequate to cover the
range of small tokens but still insufficient for large ones. On the other hand, high
order features bring the problem of sparseness, that 4-grams features do not increase
the performance. Consequently, the processing on large tokens turns more difficult
than that on small tokens. On the CICLING data, an obvious difference from ALT
data is that the gain on tokenization precision brought by the joint tokenization and
POS-tagging is not so significant (Table XIII). This may be caused by some defects in
the POS system they applied, which have been discussed in Section 3.2. Consequently,
information of POS tags does not provide supplementary information consistently for
tokenization and thus lead to limited improvement.

There are two-layer information in the notation of ALT data, while they are pro-
cessed separately in the illustrated experimental results. Tables XIV and XV (graphed
in Figs. 15 and 16, respectively) provide further results in two-path processing be-
tween the two-layer annotations. In the two tables, IBES scheme is applied as it have
been proved informative and efficient in previous results. Table XIV shows the small-
to-large token processing (S->L), where SYL.S->L means the processing is still based
on syllables, i.e., the syllables with labeled information of small tokens are labeled
again to generate large tokens; TOK.S->L means the labeling is directly based on gen-
erated small tokens where the small tokens are labeled to compose large tokens. The
acc. in tables is the labeling precision on the test data trained by the golden train-
ing data in the second path, so the numerical results is quite high. The f-s. in tables
is the final F-score of the two-path processing, where the automatically generated re-
sults with noises are processed again by the models trained on golden training data.
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The final three ranks of Table XIV is identical to the results of IBES in Table IX, pro-
vided for comparison. Although not in a large margin, the two-path processing from
small tokens to large tokens is better than the one-path processing from unlabeled
syllables to large tokens. And token-based two-path processing is better than syllable-
based one. As to a reasonable explanation, the information of small tokens, even not
accurate, can help the performance on large tokens; and small token-based features
can cover a longer context, which lead to a little better results than syllable-bases fea-
tures. Another benefit brought by the small-token based processing for large tokens is
the boundary will be always consistent in the two-layer processing, i.e., the boundary
of large tokens will always be the boundary of small tokens. The composition of Ta-
ble XV of large-to-small token processing (L->S) is simpler than that of Table XIV. As
the large token-based processing for small tokens is impossible, there is only syllables
based processing (TOK.L->S) and the final three lines are identical to the results of
IBES in Table VI, provided for comparison. The large-to-small token processing cannot
provide a better performance. We hence consider, from syllables to small tokens and
then from small tokens to large tokens is a natural way and thus efficient way, which
build larger units by small units gradually.?®

5. BURMESE MORPHOLOGICAL ANALYSIS BY LSTM-BASED RNN
5.1. Network Structure, Ensemble, and Implementation

In the previous section, the experimental results of CRF-based Burmese morpholog-
ical processing have been illustrated and investigated. In this section, the approach
is switched to LSTM-based RNN. We first describe the overall network structure and
the specific approaches applied before the experiment-based evaluation. The overall
network structure is illustrated in Fig. 5, where the three modules of representation,
classification and structured interface is a standard configuration for structured learn-
ing in many NLP tasks [Collobert et al. 2011; Chen et al. 2015]. More modifications
can be further added into the overall configuration, as using CNN in the representa-
tion module, or integrating a CRF-based module into the structured interface [Ma and
Hovy 2016]. We applied the most general structure used in Fig. 5, with details based
on several observations from our preliminary experiments.

— The structured interface can accelerate the converging in training, but cannot im-
prove the performance substantially on our data. We observed that, even without the
structured interface, the performance on the development data can achieve compa-
rable results of that using the structured interface, only requiring more iterations in
training. We attribute this to the ability of the representation module, that contex-
tual information can be represented well for the classification, as a compensation for
the absence of structured learning. In the structured interface, we thus only applied
a standard Viterbi algorithm to model the relationship of neighboring tags, which is
adequate for the task.

— The LSTM layers in representation module affects the performance obviously, that
only one layer is not adequate. We used two-layer bidirectional LSTM, which is a
trade-off of performance and training speed. A third layer cannot bring as much im-
provement as the second layer does, but increases the training time. We also tried
other light-weight non-linear units as gated recurrent units (GRUs) [Cho et al. 2014]
but the performance differed little. In practical, we applied a compact variant of
LSTM with peepholes [Gers et al. 2002] in the representation module.

29There is an ultimate joint way to combine the two-layer information, including tokenization and POS tags,
into single tags. However, this will lead to a huge tag set with more than 180 different tags on ALT data,
which results in an unnecessarily heavy model and learning process.
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Fig. 5. Structure of the LSTM-based networks used in Burmese morphological analysis.

— The type non-linear function in classification module does not affect the performance
much. So we applied the most common tanh function.

— The dimension of each layer affects the performance relatively. The dimensions illus-
trated in Fig. 5 are selected by the trade-off of training time and performance.

— As illustrated in Fig. 5, the embedding is based on single syllables, i.e., uni-gram
of syllables. Higher orders like bi- or tri-gram of syllables turn the training heavier
and slower without obvious gains in performance. We also tried pre-trained embed-
ding, which did not bring gains in performance but could accelerate the training to
converge more or less.

We have introduced the overall structure of the network we used in experiment.
However, there is a serious problem in practice that the training is quite unstable. Even
we used development data to control the over-fitting and by selecting models having
good performance on the development data, the final performance on test data still
diverged a lot with different initializations. This may be caused by the training data
size, which is still not sufficient for NN-based processing.?’ We tried several parameter
optimizing approaches which did not differed much in performance, and applied Adam
[Kingma and Ba 2014] consistently in experiments. We tried further techniques such
as dropout [Srivastava et al. 2014] in training to stabilize the performance, while the
effect is not significant.

After many attempts, we discover a practical ensemble method to combine a large
amount of independently fast-trained networks, to alleviate the instability in perfor-
mance caused by initialization. The method is efficient and robust as well, to improve
the performance by single networks. Specifically, we separately trained different net-
works with different initializations only with few iterations, and then combined the
results by a voting ensemble. The basic idea is to release the difficulties in tuning one
refined model by multiple roughly tuned models. It is also a practical solution in terms
of computing resources. The fast training of multiple networks can be conducted in par-
allel if there are plenty computing resources or can be trained one by one successively
to increase the performance of ensemble gradually under limited computing resources.
The followings are the details in the ensemble.

30Considering the upper bound of the capacity of CRFs has not been reached yet.
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— For training single networks, we applied one initial iteration without structured in-
terface and then applied several further iterations with the Viterbi searching. Specif-
ically, further three iterations for tokenization and further five iterations for joint
tokenization and POS tagging. We selected the iteration times by observing the per-
formance on development data, that the improvement on performance is most obvious
in these rounds of iterations. As we do not pursue refined models in ensemble, this
kind of fast training is adequate for ensemble.

— The ensemble is by simple voting on each output tags, to select the most common
one from results of multiple models. As the ensemble is point-wisely, it may generate
illegal tag sequences.?! The problem is not serious, that under 100-model ensemble,
less than 0.1% illegal sequences occurred in tokenization and less than 0.2% in joint
tokenization and POS tagging. We applied a straightforward solution to collect all
possible bi-grams on output tags from training data and only select the possible se-
quences in ensemble.??

— We tried some more complex ensemble schemes, such as adding weights to different
models, but none achieved better results. As all the models taking part in the ensem-
ble are “equal” in mechanism, we consider that to treat them in a simple and equal
ways is the most nature solution.

All the above-mentioned model structures and ensemble processes were tested and
decided by the performance on the development data in Tables II and III, and only
the corresponding training data were used in model training for evaluation. We used
the DyNet toolkit (version 2.0) [Neubig et al. 2017] in the implementation. Besides the
above-mentioned settings, we adopted the default settings in DyNet for other param-
eters. On one GPU of Tesla K80, the training of one tokenization model took around
twenty minutes and that of one joint tokenization and POS tagging model took around
one hour, with the described times of iterations on the full ALT training data. We ex-
perimented up to ensemble of one hundred models. It hence would take approximately
one day and a half for tokenization model training, and four days for joint tokenization
and POS tagging model training, if one hundred models are trained serially.

5.2. Evaluation

The metrics used here are identical to those in the evaluation in CRFs. The training
data are also halved gradually for comparison. As a small portion of development data
are used in model selection rather than model training, the training data get slightly
smaller than those used in CRFs’ experiments. The tagging scheme of IBES is used
consistently in all the experiments of LSTM-based RNN, as it is the most efficient
scheme illustrated in previous experiments. The number of models in ensemble are
also compared to investigate the effect of ensemble.

Tables XVI, XVII, and XVIII are LSTM-based RNN-version of Tables. V, VI, and
VII, respectively. The results of ensemble (ENS.) over 5, 10, 20, 50, and 100 models are
illustrated. The best and the worst single model among the total one hundred mod-
els are also listed. The results of 2- and 3-IBES in Tables V, VI, and VII are listed in
the corresponding tables for comparison. The comparison of ENS.-100 of LSTM-based
RNN with CRFs’ results in Tables XVI, XVII, and XVIII, are graphed in Figs. 17, 18,

31 Ag there is the structured interface in single model training, illegal tag sequences hardly occurred except
on very few training data.

3280, the possible sequences may change along the training data size. In tokenization, there is actually no
effect as there are only four tags of IBES. In joint tokenization and POS tagging, smaller training data may
contain less variants in combination. However, as mentioned, this is not a serious problem and effects the
numerical results negligibly.
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and 19, respectively.?® The comparison of ensemble effects in Tables XVI, XVII, and
XVIII, are graphed in Figs. 20, 21, and 22, respectively. It can be observed that the en-
semble can bring a considerable gain in the performance, even compared with the best
single model. Generally, LSTM-based RNN boosted by ensemble can achieve similar
performance as that of CRFs on the full training data. In the joint tokenization and
POS-tagging, the LSTM-based RNN have better performance on small training data,
compared with the case of pure tokenization. It is obviously that a more informative
output tag set has more significant effects, especially on small training data, as the
sparseness in discrete features used in CRF's is alleviated by the embedding to a dense
representation in low-dimension real space facilitated by RNN. As to the effect of en-
semble, it can improve the performance even by only a few models (e.g., five), and a
large amount of models bring further improvement steadily, even not significantly.

As in the evaluation of CRFs, Tables XVI, XVII, and XVIII are a basic group of the
experimental results on LSTM-based RNN. Tables XIX, XX, and XXI are LSTM-based
RNN-version of Tables VIII, IX, and X, which present the experimental results on large
tokens in ALT data. Tables XXII, XXIII, and XXIV are LSTM-based RNN-version of
Tables XI, XII, and XIII, which present the experimental results on CICLING data. All
the tables are graphed in two figures: one is the comparison with the performance of
CRF's (Figs. 23, 24, 25, 29, 30, and 31 for Tables XIX, XX, XXI, XXII, XXIII, and XXIV,
respectively) and another shows the effect of ensemble (Figs. 26, 27, 28, 32, 33, and 34
for Tables XIX, XX, XXI, XXII, XXIII, and XXIV, respectively). From the further two
groups of experiments, we can observe the same phenomena that LSTM-based RNN
performs better in joint tokenization and POS tagging than in pure tokenization, even
on relatively small training data. The effect of RNN is more obvious than CRFs on
processing large tokens on ALT data. As discussed, low order n-gram features cannot
catch enough local information while high order n-gram features cause the sparseness.
This dilemma can thus be alleviated by the strength of RNN which provides more ef-
ficient feature representation. The LSTM-based RNN also outperform CRFs on joint
tokenization and POS tagging CICLING data, which indicates RNN can take advan-
tage of relatively complex and inconsistent features more efficiently than CRF's do.

The final group of experiments is the two-path process using LSTM-based RNN to
generate large tokens from the results of small tokens on ALT data. Because we have
found that to generate small tokens from results of large tokens is neither natural nor
efficient by the experiments of CRFs, we did not experiment this way any more. The
results are illustrated in Table XXV (graphed in Figs. 35 and 37) for syllable-based pro-
cessing and in Table XXVI (graphed in Figs. 36 and 38) for token-based processing. In
the token-based processing, we tried larger dimensions of different layers in RNN than
the syllable-based processing, while no better result was reached. The results in Table
XXVI is still based on the exact network structure illustrated in Fig. 5. In training
the models for ensemble, one iteration without Viterbi searching plus three iterations
with Viterbi searching was applied for syllable-based processing and five iterations
with Viterbi searching for token-based processing. The performance is acceptable and
slightly lower than that of CRFs. The ensemble effect is not obvious as well in the ex-
periments of two-path processing. As the methodology of NN-based approach is rooted
in an ultimate joint model for end-to-end processing, we consider the efficiency of RNN
cannot be developed well in such a two-path processing.

33 As the 4-IBES never reaches better results, they are omitted in tables, but only illustrated in figures.
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Table V. Performance of CRFs on tokenizing small tokens on ALT data. (Fig.6)

training data size

sixteenth eighth quarter half all
feat.-tag | acc. f-s. | acec. f-s. | acc. f-s. | acc. f-s. | acc. f-s.
2-1IBES 91.1% .901 92.6% 918 93.6% .928 94.3% .936 94.9% .943
3-1IBES 91.1% .901 92.5% 916 93.4% 927 94.4% .938 95.1% .944
4-1BES 90.5% .895 92.1% 912 93.1% .924 94.2% .935 94.9% .943
2-1E 94.1% .880 94.9% .894 95.6% 907 96.0% 916 96.3% .922
3-1IE 94.4% .886 95.4% .905 96.1% 918 96.6% .928 96.9% 1935
4-1E 94.2% .882 95.1% .900 95.9% 915 96.5% 927 96.9% 935
2-1IB 94.4% .886 95.2% .900 95.9% 913 96.2% .920 96.7% 1929
3-1IB 94.6% .890 95.5% .907 96.2% 921 96.7% .931 97.0% 937
4-1B 94.2% .882 95.3% .902 96.0% 917 96.7% .930 97.0% 937

Table VI. Performance of CRFs on joint tokenization and POS-tagging small tokens on ALT data. (Fig.7)

training data size

sixteenth eighth quarter half all

feat.-tag | acc. f-s. | acec. f-s. | acc. f-s. | acec. f-s. | acec. f-s.

2-1IBES 89.5% .896 91.2% 912 92.4% .924 93.3% .934 93.9% .940
3-IBES 88.8% .889 90.9% .909 92.2% 922 93.2% .932 93.9% .940
4-1BES 87.8% 879 90.2% .902 91.8% 918 93.0% .930 93.7% 938
2-1E 91.5% .885 92.8% .902 93.9% 916 94.4% .924 94.9% 931
3-IE 91.3% .882 92.9% .904 94.0% 919 94.7% .929 95.3% .937
4-1E 90.5% 871 92.3% .896 93.6% 914 94.6% 927 95.2% 936
2-1B 91.3% .885 92.7% .903 93.9% 918 94.4% .925 94.8% 932
3-1IB 91.1% .883 92.8% .905 93.9% .920 94.6% .929 95.0% 935
4-1B 90.4% 874 92.2% .898 93.5% 914 94.5% .929 95.0% 936

Table VII. Effects of POS tags in the tokenization performance of CRFs on small tokens on ALT data. (Fig.8)

training data size
sixteenth eighth quarter half all
feat.-tag |fpos —pos | +pos —pos | +pos —pos | +pos —pos | +pos —pos
2-IBES .908 901 922 918 .932 1928 .942 .936 .947 1943
3-IBES 901 901 919 .916 931 927 .940 .938 1946 944
4-IBES .893 .895 913 912 927 924 .938 .935 .945 .943
2-1IE .896 .880 911 .894 924 907 931 .916 1938 922
3-IE .894 .886 914 .905 927 918 .936 .928 943 935
4-1E .885 .882 .907 .900 .922 915 934 927 1943 1935
2-1IB .896 .886 912 .900 1926 913 .933 .920 1939 929
3-1IB .896 .890 915 .907 1928 921 .937 .931 1942 937
4-1IB .887 .882 .909 .902 923 917 .937 .930 942 937

Table VIII. Performance of CRFs on tokenizing large tokens on ALT data. (Fig.9)

training data size

sixteenth eighth quarter half all

feat.-tag | acc. f-s. | acec. f-s. | acc. f-s. | acec. f-s. | acc. f-s.

2-1IBES 91.9% .882 93.3% .900 94.2% 913 95.0% .924 95.5% 932
3-1IBES 91.9% .880 93.4% 901 94.3% 914 95.0% 925 95.6% .933
4-1BES 91.2% .870 92.8% .892 93.9% 1909 94.9% 1923 95.4% 1930
2-1IE 94.2% .843 95.1% .865 95.7% .879 96.1% .890 96.4% .897
3-1IE 94.9% .860 95.8% .883 96.4% .900 96.9% 913 97.3% 1922
4-1E 94.6% .853 95.6% .879 96.3% .897 96.9% 912 97.2% 1921
2-1B 95.0% .864 95.8% .882 96.4% .898 96.7% .906 97.0% 914
3-1IB 95.1% .868 96.0% .888 96.6% 1905 97.1% 918 97.4% 1925
4-1B 94.7% .857 95.7% .882 96.5% 902 97.1% 916 97.4% 925
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Table IX. Performance of CRFs on joint tokenization and POS-tagging large tokens on ALT data. (Fig.10)

training data size

sixteenth eighth quarter half all
feat.-tag | acc. f-s. | acc. fs. | acec. f-s. | acc. fs. | acec. f-s.
2-IBES 89.7% 872 91.4% .893 92.8% 911 93.7% 922 94.3% .929
3-IBES 89.2% .866 91.1% .889 92.6% 907 93.5% .919 94.3% .929
4-1BES 88.2% .854 90.5% .882 92.2% 1902 93.2% 916 94.2% 927
2-1E 91.6% .852 92.8% 874 93.8% 891 94.7% .906 95.1% 913
3-1E 91.7% .856 93.2% .881 94.3% 901 95.1% 914 95.5% 924
4-1E 91.0% .846 92.8% 875 94.0% .896 94.9% 912 95.6% 1923
2-1B 91.4% .860 92.6% .880 94.0% 901 94.6% 913 95.1% 919
3-1IB 91.2% .859 92.8% .884 94.0% 1903 94.7% .915 95.3% 1923
4-1IB 90.5% .848 92.3% .876 93.7% .899 94.5% 912 95.4% 924

Table X. Effects of POS tags in the tokenization performance of CRFs on large tokens on ALT data. (Fig.11)

training data size

sixteenth eighth quarter half all
feat.-tag | +pos —pos | +pos —pos | +pos —pos | +pos —pos | +pos —pos
2-IBES .883 .882 .903 .900 919 913 .930 .924 937 932
3-IBES .879 .880 .900 .901 916 914 .928 .925 936 .933
4-1IBES .868 .870 .893 .892 911 1909 .924 .923 934 .930
2-1E .862 .843 .883 .865 .900 .879 913 .890 921 .897
3-1IE .869 .860 .891 .883 910 1900 923 913 931 922
4-1E .859 .853 887 .879 1905 897 .920 912 1930 921
2-1B 871 864 890 882 .909 898 921 906 927 914
3-18 872 868 895 888 | 912 905 923 918 | 930 925
4-18 863 857 | 888 882 908 902 921 916 | 931 925
Table XI. Performance of CRFs on tokenizing CICLING data. (Fig.12)
training data size
eighth quarter half all
feat.-tag acc. f-s. | acc. f-s. | acc. f-s. | acc. f-s.
2-1BES 91.0% 902 92.8% 922 94.5% -939 95.5% 950
3-IBES 90.7% 898 92.6% 919 94.4% 938 95.6% .951
4-TBES 90.0% 892 92.1% 914 93.8% 932 95.2% 947
2-1E 93.9% 878 95.4% 905 96.1% 920 96.8% 933
3-1E 94.3% 887 95.5% .909 96.5% 927 97.3% 943
4-1E 93.8% 876 95.2% .903 96.2% 923 97.1% .940
2-18B 94.2% 882 95.4% 905 96.4% 926 97.0% 937
3-1B 94.1% 882 95.5% 908 96.6% 928 97.3% 943
4-18B 93.7% 875 95.1% .900 96.3% 923 97.2% 940
Table XII. Performance of CRFs on joint tokenization and POS-tagging CICLING data. (Fig.13)
training data size
eighth quarter half all
feat.-tag acc. f-s. | acc. f-s. | acc. f-s. | acc. f-s.
2-IBES 87.5% .876 90.2% .902 92.0% .920 93.4% 934
3-IBES 86.0% .861 89.2% .892 91.5% 915 93.4% 933
4-1IBES 84.2% .844 87.7% 878 90.6% .906 92.9% 928
2-1IE 89.0% .860 91.3% .890 92.9% .909 94.2% 924
3-1E 88.3% .852 91.0% .886 92.8% .908 94.4% 927
4-1E 86.9% .837 90.0% 874 92.1% 901 93.8% 921
2-1IB 89.1% .862 91.3% .889 93.0% .909 94.4% 1926
3-1IB 88.3% .853 91.0% .886 92.9% .910 94.4% 1929
4-1IB 86.8% .837 89.8% 872 92.0% .901 94.0% 923
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Table XIII. Effects of POS tags in the tokenization performance of CRFs on CICLING data. (Fig.14)

training data size
eighth quarter half all
feat.-tag +pos —pos \ +pos —pos \ +pos —pos \ +pos —pos
2-IBES .906 .902 927 922 .942 .939 .951 .950
3-IBES .893 .898 .920 919 937 .938 .952 951
4-IBES .879 .892 .907 914 930 .932 947 947
2-1E .888 .878 913 .905 .929 .920 .942 .933
3-1E .882 .887 912 .909 .929 927 .946 .943
4-1E .870 .876 .903 .903 925 .923 .940 940
2-1IB .890 .882 914 .905 931 .926 .944 937
3-1IB .884 .882 912 .908 932 .928 947 .943
4-1B 871 .875 .900 .900 .924 .923 .943 940

Table XIV. Performance of CRFs on joint tokenizing and POS-tagging large tokens based on the tokenizing and
POS-tagging results of small tokens on ALT data. (Fig.15)

training data size
sixteenth eighth quarter half all
feat.-tag acc. f-s. | acec. f-s. | acec. f-s. | acec. f-s. | acc. f-s.

2-SYL.S->L [98.4% 877 98.6% .895 98.9% 912 99.0% .924 99.1% .930
3-SYL.S->L | 98.2% .867 98.5% .892 98.8% .909 99.0% .920 99.1% .930
4-SYL.S->L | 98.0% .854 98.4% .883 98.7% 903 98.9% 917 99.1% .928

2-TOK.S->L | 97.6% .874 98.2% .895 98.6% 911 98.7% 923 98.9% .931
3-TOK.S->L | 97.2% .865 97.9% .890 98.6% .908 98.7% 919 98.9% .930
4-TOK.S->L | 96.7% .850 97.5% .879 98.2% 901 98.6% 916 98.8% 927

2-SYL->L 89.7% 872 91.4% .893 92.8% 911 93.7% .922 94.3% .929
3-SYL->L 89.2% .866 91.1% .889 92.6% 907 93.5% 919 94.3% 929
4-SYL->L 88.2% .854 90.5% .882 92.2% 1902 93.2% 916 94.2% 927

Table XV. Performance of CRFs on joint tokenizing and POS-tagging small tokens based on the tokenizing and
POS-tagging results of large tokens on ALT data. (Fig.16)

training data size
sixteenth eighth quarter half all
feat.-tag acc. f-s. | acec. f-s. | acec. f-s. | acec. f-s. | acc. f-s.

2-SYL.L->S [97.5% .889 97.8% .908 98.1% 1922 98.3% .932 98.5% .939
3-SYL.L->S | 97.1% .881 97.7% .902 98.0% 918 98.3% .930 98.5% .939
4-SYL.L->S | 96.5% .867 97.4% .894 97.9% 912 98.2% .926 98.5% .936
2-SYL->S 89.5% .896 91.2% 912 92.4% .924 93.3% .934 93.9% .940

3-SYL->S 88.8% .889 90.9% .909 92.2% .922 93.2% .932 93.9% .940
4-SYL->S 87.8% .879 90.2% .902 91.8% 918 93.0% .930 93.7% .938
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Table XVI. Performance of LSTM networks on tokenizing small tokens on ALT data. (Figs.17 and 20)

training data size

sixteenth eighth quarter half all

feat.-tag acc. f-s. | ace. f-s. | ace. f-s. | ace. f-s. | ace. f-s.

ENS.-5 88.9% 877 91.4% .905 93.1% 923 94.2% .935 94.8% 942
ENS.-10 89.0% .879 91.4% .905 93.2% 924 94.3% .936 94.9% .943
ENS.-20 89.2% .881 91.6% 907 93.4% .926 94.4% 937 95.0% .943
ENS.-50 89.2% .881 91.6% 907 93.4% 926 94.4% 937 95.0% .944
ENS.-100 89.2% .881 91.6% 907 93.4% .926 94.4% 937 95.1% .944
BEST 0100 | 88.5% .873 90.8% .898 92.6% 917 93.7% .929 94.4% .938
WORST@100 | 86.4% .852 90.0% .889 91.9% 910 93.1% .924 93.9% 932
2-1BES 91.1%  .901 | 92.6% .918 | 93.6%  .928 | 94.3%  .936 | 94.9%  .943
3-IBES 91.1%  .901 | 925%  .916 | 93.4%  .927 | 94.4%  .938 | 95.1%  .944

Table XVII. Performance of LSTM networks on joint tokenizing and POS-tagging small tokens on ALT data.
(Figs.18 and 21)

training data size

sixteenth eighth quarter half all

feat.-tag acc. f-s. acc. f-s. acc. f-s. acc. f-s. acc. f-s.

ENS.-5 88.5% 887 90.5% 905 92.0% 921 93.0% 1930 93.7% .938
ENS.-10 88.9% .890 90.7% .908 92.1% 922 93.3% 933 93.7% 938
ENS.-20 89.2% .893 91.0% 910 92.3% 924 93.3% 934 93.8% 1939
ENS.-50 89.2% .893 91.0% 911 92.4% 924 93.4% .935 93.9% 1939
ENS.-100 89.2% .894 91.0% 910 92.4% .925 93.3% .934 93.9% .940
BEST @100 | 87.5% 876 89.4% .894 91.1% 912 92.2% 923 93.1% 931
WORST@100 | 86.4% .867 88.6% .887 90.3% .904 91.7% 917 92.6% 1928
2-1BES 89.5%  .896 | 91.2%  .912 | 92.4% 924 | 93.3%  .934 | 93.9%  .940
3-1IBES 88.8% .889 90.9% 1909 92.2% 1922 93.2% 932 93.9% .940

Table XVIII. Effects of POS tags in the tokenization performance of LSTM networks on small tokens on ALT data.
(Figs.19 and 22)

training data size

sixteenth eighth quarter half all
feat-tag |fpos —pos | +pos —pos | +pos —pos | +pos —pos | +pos —pos
ENS.-5 .899 877 916 905 1930 923 939 935 945 942
ENS.-10 902 879 918 .905 931 924 941 .936 .945 .943
ENS.-20 905 .881 .920 907 933 .926 .942 937 .946 .943
ENS.-50 904 .881 .920 907 933 .926 .942 937 .946 944
ENS.-100 905 .881 1920 907 .934 .926 .942 937 947 944
BEST @100 | .890 873 907 .898 923 917 932 929 939 938
WORST@100 | .883 .852 901 .889 916 910 927 924 937 932
2-1IBES .908 901 .922 918 932 928 .942 936 .947 .943
3-IBES 901 901 919 916 931 927 .940 .938 .946 944
Table XIX. Performance of LSTM networks on tokenizing large tokens on ALT data. (Figs.23 and 26)
training data size
sixteenth eighth quarter half all
feat.-tag | acc. fs. | acc. f-s. | acc. f-s. | acc. f-s. | acc. f-s.
ENS.-5 90.6% .862 92.2% .884 93.7% .905 94.9% 924 95.6% .933
ENS.-10 90.8% .865 92.3% .886 93.8% .908 95.1% 925 95.6% 933
ENS.-20 90.9% .866 92.5% .888 93.9% 1909 95.1% .926 95.7% .934
ENS.-50 90.9% .867 92.6% .889 94.0% 910 95.1% .926 95.7% .935
ENS.-100 90.9% .867 92.6% .889 94.0% 910 95.1% .926 95.7% .935
BEST @100 | 90.0% .854 91.8% .879 93.2% .899 94.4% 915 95.1% 926
WORST@100 | 88.8% .837 90.9% .865 92.7% .892 93.7% 907 94.6% 919
2-IBES 91.9% .882 93.3% .900 94.2% 913 95.0% .924 95.5% 932
3-IBES 91.9% .880 93.4% .901 94.3% 914 95.0% .925 95.6% 933
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Table XX. Performance of LSTM networks on joint tokenizing and POS-tagging large tokens on ALT data. (Figs.24
and 27)

training data size

sixteenth eighth quarter half all
feat.-tag acc. f-s. | acc. f-s. | acc. f-s. | acc. f-s. | acc. f-s.
ENS.-5 89.2% .866 91.1% .890 92.6% 907 93.6% 1920 94.1% 926

ENS.-10 89.4% .870 91.4% .893 92.7% .909 93.8% 922 94.2% .928
ENS.-20 89.6% .872 91.4% .894 92.8% 910 93.9% 923 94.3% .928
ENS.-50 89.8% .874 91.6% .896 92.9% 911 93.9% .924 94.4% .930
ENS.-100 |89.8% .875 91.6% .896 93.0% 912 93.9% .924 94.4% .930
BEST @100 |88.0% .852 90.0% .875 91.8% .898 92.9% 911 93.7% .920
WORST@100 | 86.6% .836 89.3% .867 90.9% .887 92.2% .902 93.0% 913

2-IBES 89.7% 872 91.4% .893 92.8% 911 93.7% 1922 94.3% .929
3-IBES 89.2% .866 91.1% .889 92.6% .907 93.5% 919 94.3% .929

Table XXI. Effects of POS tags in the tokenization performance of LSTM networks on small tokens on ALT data.
(Figs.25 and 28)

training data size

sixteenth eighth quarter half all
feat.-tag |fpos —pos | +tpos —pos | +pos —pos | +pos —pos | +pos —pos
ENS.-5 .878 .862 .900 .884 916 905 929 .924 934 933
ENS.-10 .882 .865 903 .886 918 .908 1930 925 935 933
ENS.-20 .883 .866 904 .888 1920 1909 931 1926 935 934
ENS.-50 .885 .867 .905 .889 1920 910 .932 1926 937 1935
ENS.-100 .886 .867 .905 .889 921 910 .932 926 937 935
BEST @100 | .867 .854 .887 .879 909 .899 921 915 1928 1926
WORST@100 | .853 837 879 .865 .898 .892 912 907 922 919
2-TBES 883 882 | .903  .900 | .919 913 | .930  .924 | .937  .932
3-IBES 879 .880 .900 901 916 914 928 925 .936 933

Table XXII. Performance of LSTM networks on tokenizing CICLING data. (Figs.29 and 32)
training data size

eighth quarter half all
feat.-tag acc. f-s. | acc. f-s. | acc. f-s. | acc. f-s.
ENS.-5 87.6% .866 91.1% .902 93.5% .928 94.8% .942
ENS.-10 87.9% .868 91.3% -905 93.6% .929 95.0% .944
ENS.-20 88.3% 872 91.5% .906 93.7% .931 95.1% .946
ENS.-50 88.6% .875 91.6% .908 93.8% .932 95.2% .947
ENS.-100 88.6% .875 91.6% -908 93.8% .932 95.2% .947
BEST @100 87.3% .861 90.5% .896 92.7% .920 94.3% .937
WORST@100 84.9% -838 88.7% .876 91.8% 911 93.4% .928
2-1BES 91.0% 902 92.8% 922 94.5% 939 95.5% 950
3-1IBES 90.7% .898 92.6% 919 94.4% -938 95.6% .951

Table XXIIl. Performance of LSTM networks on joint tokenizing and POS-tagging CICLING data. (Figs.30 and 33)
training data size

eighth quarter half all
feat.-tag acc. f-s. | acc. f-s. | acc. f-s. | acc. f-s.
ENS.-5 85.7% .859 89.3% .895 91.3% 912 93.1% .930
ENS.-10 86.4% .866 89.8% .899 91.6% .916 93.4% .933
ENS.-20 86.8% .870 90.0% .901 92.0% .920 93.4% .933
ENS.-50 87.2% 874 90.2% .902 92.2% .922 93.5% .934
ENS.-100 87.1% .873 90.1% .902 92.2% .922 93.6% .935
BEST @100 84.5% .848 87.8% .879 90.2% .902 91.9% 918
WORST@100 83.3% .834 86.4% .865 89.2% .892 91.0% 909
2-IBES 87.5% .876 90.2% .902 92.0% .920 93.4% 934
3-1IBES 86.0% .861 89.2% .892 91.5% 915 93.4% .933
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Table XXIV. Effects of POS tags in the tokenization performance of LSTM networks on CICLING data. (Figs.31
and 34)

training data size
eighth quarter half all
feat.-tag +pos —pos | +pos —pos | +pos —pos | +pos —pos
ENS.-5 .889 .866 .922 902 .936 .928 .950 942
ENS.-10 .896 .868 925 1905 .938 929 951 944
ENS.-20 .900 872 927 .906 941 931 .950 .946
ENS.-50 .904 875 927 .908 .943 932 .952 947
ENS.-100 .903 .875 .926 .908 .943 932 .953 .947
BEST @100 .885 .861 .909 .896 .926 .920 .941 937
WORST@100 871 .838 .899 .876 .920 911 .934 .928
2-1BES .906 902 927 922 0942 939 951 950
3-IBES .893 .898 .920 919 .937 1938 .952 951

Table XXV. Performance of LSTM networks on joint tokenizing and POS-tagging large tokens based on the tok-
enizing and POS-tagging results of small tokens on ALT data, syllable-wisely. (Figs.35 and 37)

training data size

sixteenth eighth quarter half all
feat.-tag acc. f-s. | acec. f-s. | acec. f-s. | acec. f-s. | acec. f-s.
ENS.-5 96.8% .870 97.9% .892 98.3% 910 98.6% .922 99.0% 928
ENS.-10 96.9% 872 98.0% .894 98.5% 911 98.7% .922 99.0% 1928
ENS.-20 97.1% .873 98.0% .894 98.6% 911 98.7% .922 99.1% 1928
ENS.-50 97.2% 873 98.0% .894 98.6% 911 98.7% .922 99.1% .928

ENS.-100 97.2% .873 98.0% .894 98.5% 911 98.8% 923 99.1% .928
BEST @100 |96.3% .868 97.4% .890 98.1% .908 98.6% 921 98.9% 927
WORST@100 | 94.4% .857 96.7% .883 97.6% .904 98.2% 918 98.6% .925
2-SYL.S->L [98.4% 877 98.6% .895 98.9% 912 99.0% .924 99.1% .930
3-SYL.S->L | 98.2% .867 98.5% .892 98.8% .909 99.0% .920 99.1% .930

Table XXVI. Performance of LSTM networks on joint tokenizing and POS-tagging large tokens based on the
tokenizing and POS-tagging results of small tokens on ALT data, small token-wisely. (Figs.36 and 38)

training data size

sixteenth eighth quarter half all
feat.-tag acc. fs. | ace. f-s. | acc. f-s. | ace. fs. | ace. f-s.
ENS.-5 97.7% .873 98.2% .893 98.5% 910 98.7% .922 98.9% 929
ENS.-10 97.7% 872 98.3% .893 98.6% 911 98.8% .922 98.9% 928
ENS.-20 97.8% .873 98.2% .893 98.6% 911 98.8% .923 98.9% 928
ENS.-50 97.8% .873 98.2% .893 98.6% 911 98.8% .923 98.9% 928

ENS.-100 97.8% .874 98.2% .893 98.6% 911 98.8% .923 98.9% .928
BEST @100 |97.6% 873 98.1% .892 98.4% .910 98.7% 922 98.9% .928
WORST@100 | 95.3% .858 96.6% .882 97.8% .905 98.3% 919 98.6% .926

2-TOK.S->L [ 97.6% 874 98.2% .895 98.6% 911 98.7% .923 98.9% .931
3-TOK.S->L | 97.2% .865 97.9% .890 98.6% .908 98.7% 919 98.9% .930

6. DISCUSSION

In Sections 4 and 5, we have presented detailed experimental results to illustrate the
performance and characteristics of different approaches in the task of Burmese mor-
phological analysis, based on the data prepared in this study. Besides those differences
brought by different techniques and experimental settings, the training data size is ac-
tually the most important factor affecting the performance. From an intuitive glimpse
of the figures, it can be observed that the temporary annotated data around twenty
thousand sentences have not yet reached the upper bound of the capacity of available
machine learning approaches. The ALT data contain around 0.66 M small tokens and
0.50 M large tokens; the CICLING data have a smaller number only around 0.19 M.
Referring to several popular Chinese word segmentation datasets presented in Emer-
son [2005], we can find the scale on words (tokens) is from 1.10 M (Peking University
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corpus) to 5.45 M (Academia Sinica corpus), i.e., there is one order of magnitude differ-
ence in the quantity, despite the ALT Burmese data have more abundant information
than only tokenization. A more comparable corpus is The Balanced Corpus of Contem-
porary Written Japanese,?* which contains two-layer well-designed annotation [Ogura
et al. 2011], has over one hundred million words. However, such a huge corpus is based
on more than thirty years of NLP development on Japanese community. For the re-
search community of Burmese processing, The ALT Burmese data prepared in this
study provided a solid basis for further and development in coming years.

Based on the temporary Burmese data, we conducted experiments of CRFs and
LSTM-based RNN. Although RNN achieved better performance than CRFs by a small
margin in some cases, we consider the traditional CRFs are still a more proper ap-
proach than RNN in the temporary Burmese morphological analysis, considering 1)
the quantity of the temporary training data, 2) the interpretability of the model, and
3) the requirement of computing resources. The empiricism rooted methodology of NN-
based approaches can offer efficient end-to-end solutions, where the human designed
features are largely (if not completely) substituted by huge amount of data and strong
ability of computing resource. However, the processing of Burmese is still at an early
stage where more experiments and investigation are required. As a matured technique,
CRF's can be implemented, applied, and maintained more feasibly than NNs. CRFs can
also be extend to a semi-supervised learning interface [Fujii et al. 2017] to make use
of large amount unlabeled data, which accommodates the temporary case of Burmese.

In this study, the morphological analysis of Burmese is totally syllable-based. Con-
sidering the characteristics of Burmese, further sub-syllabic structures can be figured
out [Ding et al. 2017], which are largely related to phonology rather than morphol-
ogy. We have tried some sub-syllabic features in CRFs, and added the character em-
bedding to NN-based approaches, but no attempt led to better performance. Specific
sub-syllabic features may offer certain information of etymology, while they hardly af-
fect the precision in automatic process.?> As mentioned, the Burmese syllables can be
compared with Chinese characters, which are relatively independent writing units, we
consider the syllable should be the nature and standard unit in processing Burmese,
independent from specific machine learning approaches.

7. CONCLUSION AND FUTURE WORK

This study focuses on Burmese morphological analysis, from annotated corpus prepa-
ration to experiment based investigation. Our annotated corpus of twenty thousand
Burmese sentences has been released under a CC BY-NC-SA license for research com-
munity. We conducted experiments by standard sequence labeling approach of CRFs
and a state-of-the-art LSTM-based RNN approach. Attributed to this study, Burmese
should no longer be referred to as a low-resourced or under-studied language, in terms
of morphological analysis.

We have two clear directions in future work. Regarding to the Burmese process-
ing, we are preparing the final treebank of Burmese, established on the morphologi-
cally annotated sentences prepared in this study. As a typical head-final languages as
Japanese, we are ready to apply parsing techniques on Japanese to Burmese. As to
the scope of NLP on low-resourced languages in Asia, the next language on our sched-
ule is Khmer. The related experiences on developing data and techniques of Burmese
processing can help us annotate and process Khmer more efficiently.

34nttp://pj.ninjal.ac. jp/corpus_center/bcewj/en/

35Taking English as an example, a word beginning with wh- is likely to have a Germanic origin, while rh-
can strongly indicate the word is borrowed from Greek. However, such clues do not directly contribute to
identify morphological or syntactic roles of specific words.
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(comparison of the effect of ensemble in LSTM)
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Fig. 31. F-scores of +pos in Table XXIV
(comparison of LSTM (ens.-100) and CRF's)
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Fig. 32. F-scores in Table XXII
(comparison of the effect of ensemble in LSTM)
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Fig. 33. F-scores in Table XXIII
(comparison of the effect of ensemble in LSTM)
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Fig. 34. F-scores of +pos in Table XXIV
(comparison of the effect of ensemble in LSTM)
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Fig. 37. F-scores in Table XXVI
(comparison of LSTM (ens.-100) and CRF's)
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Fig. 38. F-scores in Table XXVI
(comparison of the effect of ensemble in LSTM)
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