
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.11, December 2012

26

Using Bloom Filter Array (BFA) to Speed up the Lookup

in Distributed Storage System

Myat Pwint Phyu

University of Computer Studies, Yangon

Ni Lar Thein
University of Computer Studies, Yangon

ABSTRACT

Today’s storage systems have a major issue for the long-term

storage of massive amounts of unstructured data. The

reliability and availability of that fortune of data become

important factors. So, distributed storage system is essential

for many large-scale organizations. It is challenging that how

to access the distributed data from a place. In this paper, a

structure of the Bloom filter array (BFA) is proposed to get

time and space efficiency in distributed storage system. The

proposed structure that can efficiently lookup the queries will

be discussed from the algorithm perspective and then evaluate

BFA through simulations.

Keywords

Unstructured data, large-scale distributed storage, replication,

availability, reliability, bloom filter

1. INTRODUCTION
Nowadays, organizations have struggled under heavy burden

of its data. On the other hand, as storage system grows larger

and more complex, many file systems have emerged focusing

on specialized requirements such as data sharing, remote file

access, distributed file access, parallel files access, high

performance computing, archiving etc.

The boost of massive amount of data in storage system results

in large bandwidth and high latencies demands to provide

fault tolerant continuous access in distributed storage system.

Many research communities have attempted to solve these

availability and reliability issues by various ways.

Nevertheless, how to lookup the massive amount of data is a

common consideration in many different techniques.

For looking up data in P2P, the method based on the

distributed hash table (DHT) is actively researched [9, 11, 12,

14]. In the method with DHT, the load of the network is

smaller than that of pure P2P to which the query is flood.

Moreover, the load of the server can be widely distributed in

the method compared with hybrid P2P. But there is a problem

of costing for maintenance.

On the other hand, the method of looking up data by using the

Bloom filter is researched so far [1, 5, 8, 13]. The resource on

the distributed systems can be efficiently looked up by

forwarding the query using the Bloom filter.

In this paper, we will present a method to look up data in

distributed storage system without the need of query

forwarding. Array structure of the Bloom filter is used to

decide whether a specific attribute value belongs to a given

set.

The rest of this paper is organized as follows. Section 2 shows

the related works of the system. Section 3 explains some

theory backgrounds and Section 4 introduces the proposed

system with the algorithm analysis. The performance

evaluation through simulation is presented in Section 5.Then

we conclude the paper with future work in Section 6.

2. RELATED WORK
There are many researches and proposed methods for solving

the query of a specific content to the distributed systems. One

of the methods to change the direction where the query is

forwarded with the Bloom filter of the networked site is the

attenuated Bloom filter [13]. In the attenuated Bloom filter,

each node manages a table of the Bloom filters. The node can

know the hops from the node to the target node in the network

by exchanging the table of Bloom filters with the adjacent

node. And it can forward the query to the adequate adjacent

node. However, this method cannot fix the upper bound of the

number of query forwarding. Chord algorithm [14] which is

the one of the DHT is used for the method of the query

forwarding in the Bloom filter [15]. And another research

proposed the management method of the Bloom filter with B-

tree structure for information retrieval [16]. It showed that the

number of Bloom filters can be less than that of the Bloom

filter with fixed ring structure and there is the speed

improvement of the query processing of each node. But in the

previous methods, there is the network limitation such as

bandwidth and latency because the query must hop between

nodes. In this paper, the proposed BFA method does not need

to consider the barrier of the network.

Bloom filter, as a space efficient data structure, can support

query (membership) operations with)1(O time complexity

since a query operation needs to probe constant-scale bits in

Bloom filters. Standard Bloom filters [2] have inspired many

extensions and variants, such as the compressed Bloom filters

[10], the space-code Bloom filters [7], the spectral Bloom

filters [17], distributed Bloom filter [19] and the beyond

Bloom filters [3]. The counting Bloom filters [5] are used to

support the deletion operation and represent a set that changes

over time. Multi-Dimension Dynamic Bloom Filters

(MDDBF) [1] supports representation and membership

queries based on the multi-attribute dimension. A novel

Parallel Bloom Filters (PBF) and an additional hash table [18]

can maintain multiple attributes of items and verify the

dependency of multiple attributes, thereby significantly

decreasing false positive rates. Whenever space is a concern, a

Bloom filter can be an excellent alternative to storing a

complete explicit list.

3. BLOOM FILTER
Bloom Filters (BFs) provide space-efficient storage of sets at

the cost of a probability of false positives on membership

queries. A Bloom filter is traditionally implemented by a

single array of M bits, where M is the filter size. On filter

creation all bits are reset to zeroes. A filter is also

parameterized by a constant k that defines the number of hash

functions used to activate and test bits on the filter. Each hash

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.11, December 2012

27

function should output one index in M . When inserting an

element e on the filter, the bits in the k indexes

)(),...,(),(21 eheheh k
are set.

Fig 1: Standard Bloom filter structure

 Bloom Filter is a bit array of M bits for representing a set

},...,,{ 21 naaaS  of n items. All bits in the array are

initially set to 0. Then, a Bloom filter uses q independent

hash functions },...,{ 1 qhh to map the set to the bit address

space  M,...,1 . For each item a , the bits of)(ahi
 are set to

1. To check whether an item a is a member of S , we need to

check whether all)(ahi
 are set to 1. If not, a is not in the

set S . If so, a is regarded as a member of S with a false

positive probability, which suggests that set S contains an

item a although it in fact does not. Generally, the false

positive is acceptable if it is sufficiently small. The time

complexity of a standard bloom filter is a fixed constant)1(O ,

completely independent of the number of items in the set. Use

of Bloom filters have a strong space advantage over other data

structures for representing sets, such as self-balancing binary

search trees, tries, hash tables or simple arrays or linked listed

of the entries. Most of these require storing at least the data

item themselves, which can require anywhere from a small

number of bits to arbitrary number of bits.

4. THE PROPOSED SYSTEM
As an ongoing research, a system to replicate data in large-

scale distributed storage system is being developed for space

efficiency and reliability guarantee. A client will operate by

sending the fingerprints of a file to a randomly selected

storage node as an agent server. In the server, the fingerprints

are checked to see if it is in the cache. If so, there will be

existing segments. If it is not, a Bloom filter is checked to

determine whether the fingerprint is likely to exist in the

storage volume. If it is a hit, the corresponding list of

fingerprints is loaded into the cache. And then return response

of which segments have already existed and their associated

reliability levels and then the system is going to do the rest of

the flow. The detail system flow is omitted in this paper and

the performance of the Bloom filter lookup is only

emphasized.

 A simple data structure called bloom filter is used to

get a fast lookup on each node. When a request comes, Bloom

filter array (BFA) starts to return the hit/ miss response. Each

node has a bloom filter maintaining fingerprints of locally

stored chunks and the bloom filters of other nodes as an array.

Figure 2 shows the structural representation of Bloom filter

array.

Fig 2: Structural representation of BFA

4.1 BFA Query

Fig 3: Lookup algorithm in BFA

 As shown in Figure 3, a query to a Bloom filter

array is encoded as a fingerprint with k independent hash

functions. In the BFA, there are n Bloom filters and the bit

positions of the queried fingerprint are compared with those

of each Bloom filter. If all matches are non-zeros, it can be

said that the query is presented in the Bloom filter array.

4.2. Algorithm Analysis
 The efficiency of a Bloom filter depends on some key

parameters. The more the number of hash functions (k) and

the size of filter (M) are used, the more the computation and

the space and the lower the false positive rate will be got.

Moreover, if the Bloom filter array is arranged by the access

frequency, the operations on the BFA can be done in)(nO as

a worse case. Although there are many variant kinds of

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.11, December 2012

28

bloom filter [10, 7, 16, 17, 3, 6] to get better performance, the

most basic one is used for simplicity.

5. PERFORMANCE EVALUATION
In this section, the BFA is simulated by using the large

amount of random data and the performance is measured in

terms of query accuracy and the memory overhead.

Fig 4: False positive probability of BFA using 10 hash

functions

 The false positive performance depends on the bit

per elements ratio)/(nm and the optimal number of hash

functions is determined by 2ln)/(nmk  . Figure 4 shows

that the accuracy of BFA is proportionally high depending on

the bit per element ratio and the space used by PBA is linear

to the number of items to get a specified false positive

probability.

6. Conclusion and Future Work
In this paper, the efficient way to retrieve required data from

distributed storage system is presented. The Bloom filter array

approach is introduced to improve lookup efficiency. The

proposed system is evaluated with various workloads and

showed that the system can save time and space utilization in

the distributed storage system using BFA. In this paper, the

simulation using Bloom filter array to retrieve the specific

facts in distributed storage system is only demonstrated at this

time. The system is still in progress and the complete system

integrating with this BFA approach will be presented at

future.

7. REFERENCES
[1] A. Broder, M. Mitzenmacher, Network Applications of

Bloom Filters: A Survey, Internet Mathematics, 2002,

pp.636-646.

[2] B. Bloom, Space/time trade-offs in hash coding with

allowable errors, Communications of the ACM, vol. 13,

1970.

[3] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh,

and G. Varghese, Beyond Bloom filters: From

approximate membership checks to approximate state

machines, SIGCOMM, 2006.

[4] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh,

and G. Varghese, “An Improved Construction for

Counting Bloom Filters,” in 14th Annual European

Symposium on Algorithms, LNCS 4168, 2006, pp. 684–

695.

[5] S. Czerwinski, B. Y. Zhao, T. Hodes, A. D. Joseph, and

R. Katz, An Architecture for a Secure Service Discovery

Service, In Proceedings of the Fifth Annual ACM/IEEE

International Conference on Mobile Computing and

Networking (MobiCom ’99), pp. 24—35. New York:

ACM Press, 1999.

[6] D. Guo, J. Wu, H. Chen, and X. Luo, Theory and

network application of dynamic Bloom filters,

INFOCOM, 2006.

[7] A. Kumar, J. Xu, and E. W. Zegura, Efficient and

scalable query routing for unstructured peer-to-peer

networks, INFOCOM, 2005.

[8] J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D. Geels,

R. Gummadi, S. Rhea, W. Weimer, C. Wells, H.

Weatherspoon, and B. Zhao, OceanStore: An

Architecture for Global-Scale Persistent Storage, ACM

SIGPLAN Notices 35:11 (2000), 190—201.

[9] P. Maymounkov and D. M. Kademlia, A Peer-to-peer

Information Systems Based on the XOR Metric, In

Proceedings of the IPTPS 2002, Boston, March 2002.

[10] M. Mitzenmacher, Compressed Bloom filters,

IEEE/ACM Trans. on Networking, vol. 10, no. 5, pp.

604–612, 2002.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.

Shenker, A Scalable Content Addressable Network, In

Proceedings of the ACM SIGCOMM 2001 Technical

Conference, San Diego, CA, USA, August 2001.

 [12] A. Rowstron and P. Druschel, Pastry: Scalable,

distributed object location and routing for large-scale

peer-to-peer systems, In IFIP/ACM International

Conference on Distributed Systems Platforms

(Middleware), pages 329-350, November 2001.

[13] S. C. Rhea and J. Kubiatowicz, Probabilistic Location

and Routing, In Proceedings of the 21st Annual Joint

Conference of the IEEE Computer and Communications

Societies (INFOCOM), Volume 3, pp. 1248—1257. Los

Alamitos, CA: IEEE Computer Society, 2002.

[14] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.

Balakrishnan, Chord: A Scalable Peer-to-peer Lookup

Service for Internet Applications, In Proceedings of the

ACM SIGCOMM 2001, San Diego, CA, USA, August

2001.

[15] K. Sato, N. Matsumoto and N. Yoshida, Multi Keyword

Search for DHT P2P Networks, IPSJ/IEICE Forum on

Information Technology (FIT)2006, (2006).

[16] F.Sato, Evaluation of the Structured Bloom Filter, In

Proceedings of CISIS ’10 of the 2010 International

Conference on Complex Intelligent and Software

Intensive Systems, pp. 313-320.

[17] C. Saar and M. Yossi, Spectral Bloom filters, SIGMOD,

2003.

[18] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood,

Fast Hash Table Lookup Using Extended Bloom Filter:

An Aid to Network Processing, Proc. ACM SIGCOMM,

2005.

[19] Y. Zhang, D. Li, L. Chen, and X. Lu, Collaborative

Search in Large-scale Unstructured Peer-to-Peer

Networks, ICPP, 2007.

