
Improving Read/Write Performance for Key-value Storage System by

Automatic Adjustment of Consistency Level

ThazinNwe, Tin Tin Yee, Ei Chaw Htoon

University of Information Technology, Myanmar

thazin.nwe@uit.edu.mm, tintinyee@uit.edu.mm, eichawhtoon@uit.edu.mm

Abstract

Distributed Key-value database is designed for

storing, retrieving, managing associative arrays and

data is replicated across different nodes for high

availability, and no single point of failure. In such

systems, Apache Cassandra is a peer-to-peer

architecture which any user can connect to any node

in any data center and can read and write data

anywhere. Most of the systems usually select a fixed

number of replicas of read/write requests in key-

value storage. When the more replicas a read

request chooses, it may increase the response time

and reduce the system performance. Therefore, the

encoded data is written to a Distributed Hash Table

(DHT) and the decoded data are retrieved by

automatically adjusting the read and write

consistency level. The proposed approach tends to

achieve the read/write performance of client requests

for key-value storage system by automatically select

the minimum number of consistent replicas of

defining the consistency level.

Keywords: Consistent Replicas, Consistency Level,

Key-value database, DHT

1. Introduction

Replication is a widely used technology in

distributed key-value storage systems to achieve data

availability, durability, fault tolerance and recovery.

In these systems, maintaining data consistency of

replication becomes a significant challenge. Although

many applications benefit from strong consistency,

latency sensitive applications such as shopping carts

on e-commerce websites choose eventual consistency

[6]. Eventual consistency is a weak consistency that

does not guarantee to return the last updated value

[8]. Eventually consistent systems are high operation

latencies and thus in bad performance. Achieving

high throughput and low latency of responses to

client requests is a difficult problem for cloud

services. To fix these issues, a consistent replica

selection process needs to include mechanisms for

filtering and estimating the latency when processing

requests. The replica selection process is inherently

complicated.

Therefore, this system proposes a consistent

replica selection approach to read/write access to

distributed key-value storage systems by encoding

and decoding data on Distriuted Hash Table (DHT).

This approach can determine the minimal number

of replicas for reading request needs to contact in

real time by defining the consistency level (one, two,

quorum, local quorum, etc.). Depending on these

consistency levels, the system can choose the nearest

consistent replicas using replica selection algorithms.

By using these algorithms, the system will improve

the read/write execution time of defining the

consistency levels and reduce the read/write latency

cost of choosing the nearest consistent replicas.

2. Related Works

Performance and reliability of quorum based

distributed key-value storage systems [1, 5] are

proposed in the literature. H. Chihoub et al. [3]

proposed an estimation model to predict the stale

read and the system adjusted replica consistency

according to the application requirements. Harmony

uses a White box model uses mathematical formula

derivation to choose the replicas numbers of each

request. To select the number of replicas to be

involved in a read operation necessary, this model

finds the stale read rate smaller or equal to the

defined threshold value. However, since there are so

many factors that can impact the result and lots of

those factors change in real time, such white box

analysis may not get precise result and the system did

not consider the performance of read/write

operations. Harmony assumes the request access

pattern meets Poisson process. However, Harmony

has usage limitation because different application

access patterns are different.

In most systems, it defines the rate of stale read

that can be tolerated, and then try to improve the

system performance as much as possible while still

not exceed such stale read rate. However ZHU Y et

al. [9] takes another mechanism, the longest response

time is defined that it can tolerate and try to enhance

the consistency level as much as possible within this

time. The read/write access is broken into 6 steps:

reception, transmission, coordination, execution,

compaction and acquisition, and each of which can

further break into smaller steps. Then a linear

regression is used to predict the execution time and

latency of the next request for each step. When a

request comes, it maximizes the number of steps this

request cover within the tolerated time, thus achieves

the maximize consistency. However, the stale read

rate of this system is unpredictable. Tlili et al. [7]

proposed that a master peer is assigned by the lookup

service of the DHT. The master node holds the last

update timestamp to avoid reading from a stale

replica. However, this system cannot get the precise

result of the consistent data and read/write execution

time will reduce compared with encoded data on

DHT.

There are two parts in the system. These are read

and write operations for automatic adjustment of the

Consistency Level of Distributed Key-value Storage

by a Replica Selection Approach. For the write

execution time, data is distributed among the nodes

in the cluster using Distributed Hash Tables (DHT)

that the atomic ring maintenance mechanism over

lookup consistency. DHT is mentioned in Section 5.

To get the consistent data into the read performance,

two algorithms are proposed to Section 4.

3. Proposed Architecture

Read and Write operations of the distributed

key_vlaue storage system to dynamically adjust the

consistency level are mentioned in this section. In the

write part of the system, Data is distributed among

the nodes in the cluster using Consistent Hashing

based Function. Consistent Hashing is a widely used

technology in distributed key-value storage system. It

is a good solution when the number of nodes changes

dynamically. And when the virtual node is combined,

the load balancing problem will also be solved.

Consistent hashing is the algorithm the helps to

figure out which node has the key. The algorithm

guarantees that a minimal number of keys need to be

remapped in case of a cluster sizes change.

Figure1. System Architecture

In figure 1, when the write requests are incoming

to the coordinator node. The coordinator node

performs the encoding input data is saved for the

Cassandra cluster by consistent hash on different

quorum nodes.

When the client reads a file, it sends a read

request for the coordinator Node. The Coordinator

Node collects the list of DataNodes that it can

retrieve data by using the replica selection algorithm

described in the next section. When sufficient

fragments have been obtained, the Coordinator Node

decodes the data and supplies it to the read

application request.

4. Algorithm Definition

The replica selection algorithm has two parts. It

includes (i) searching the nearest replica and (ii)

selecting consistent replicas. In algorithm_1, the

coordinator node sends the request message to each

replica and latencies of different replicas are listed in

the read latency map. And it chooses the lowest

latency of replicas of this map.

In algorithm_2, the replica selection algorithm in

the coordinator node chooses the consistent replica

of the nearest replicas.

1. Input: Replicas in DHT //Distributed Hash
Table

2. Output: Nearest Replica NR

3. Set latencyCost= MAX_VALUE;

4. Set lowestLC [] =null; //Initialize return lowest
latency replica

5. For each r in DHT

6. Begin

7. Set latencyCost=getLatencyCost (RFr, job);

8. If (latencyCost<=MAX_VALUE)

Then//MAX_VALUE =threshold values

9. MAX_VALUE =latencyCost;

10. LowestLC. add (RFr);

11. End

12. End for

13. Return lowest LC //nearest replica NR

Algorithm 1: Search the nearest Replica

Search the nearest Replica part executes in two

stages. First, all replicas are sorted based on their

physical location, so that all replicas of the same

rack and then the same data center as the source are

at the top of the list. Second, the latencies are

computed from the local node (originator of the

query) to all other nodes. If the latency cost is greater

than a threshold of the closest node, then all replicas

are sorted based on their latency costs. Finally, the

top replicas of the list are chosen.

Firstly, total numbers of replicas are listed as

input (line1). The threshold value is set at the latency

cost of line3. In line8, the coordinate node contacts

every other replica with request messages. The round

tripped to the time it takes from the request until the

reply is passed through the following equation.

Ttotal =RTTrequsest/2Tprocessing+RTTreply/2

Ttotal is used to get the latency cost of computing,

data nodes in algorithm1. These latency costs are

used when the local node needs to forward the client

request to other replicas.

And then total times taken from different replicas

are listed in latencyCost (line8). Finally algorithm1

returns the list of lowest latency cost of the replicas

of lowestLC as output to client. (line14).

1. Input: Nearest Replica NR= {NR1, NR2,…

NRn}

2. Output: Consistent Replicas

3. For each Nearest Replica NRi

4. Begin

5. Set RCL=2//ConsistencyLevel.QUORUM
6. Set noOfConsistentRead = 0

7. While (noOfConsistentRead <= RCL)

8. If(stalerate<=maxStalteRate) Then

9. consistentRead.add(NRi)

10. noOfConsistentRead++;

11. Return consistentRead;

12. End for

13. End

Algorithm 2: A Consistent Replica Selection

In algorithm_2, the set of the nearest replicas is

collected as input that comes from output of

algorithm1 by computing latency costs. And then

algorithm2 sets the read consistency level (RC) that

the client will need the most up-to-date information.

Read/Write latencies of different replicas are listed in

history file on the coordinator node.

This algorithm determines the number of

consistent replica nodes, one read request should

select in real-time, according to calculate arrival

times of nearest update request and the processing

order of read request and write request in different

replicas.

For computing stale rate of algorithm_2, In this

section, we will use PBS to simulate more cases of

replica number n, read consistency level r, and write

consistency level w to prove the conclusion. Bailis et

al proposed PBS to predict the consistency [2]. They

believed the quorum size impacts the consistency

significantly and given a formula to calculate the

probability of k-staleness [2].

5. Analysis of Read/Write execution time

The read/write execution time of consistency level

is tested by using a Cassandra cluster of VMware

Ubuntu 14.04 LTS i386. The processor is Intel (R)

Core (TM) i7-4770 CPU @ 3.40 GHz. Installed

memory (RAM) is 4.00GB.

The staff data onto Ministry of Higher Education

is used on Cassandra cluster. Staff information is

described by Unicode in “staff.csv”.

When importing data onto the csv to Cassandra,

Java hector code truncates the input csv data with a

comma (",") lined by line. And then the output csv

data are exported on Cassandra.

Cassandra supports Unicode, but Hbase does not

support it. Therefore, staff data can be tested for

Cassandra cluster. Unicode is the international

accepted standard of the World Wide Web

Consortium, the main international standards

organization for the World Wide Web. And it also

makes that it is extremely easy to translate the

Wikipedia's interface. And Unicode fonts support 11

languages that use the Myanmar script: Burmese, 2

liturgical languages: Pali and Sanskrit, 8 minority

languages: Mon, Shan, Kayah, four Karen languages

and Rumai Palaung [10]. It was officially released by

Myanmar Natural Language Processing (NLP)

Research Center joining existing Myanmar Unicode

5.1.

Ubuntu14.04 LTS is installed on three servers and

one client by Cassandra clusters. There are 203 rows

and 40 columns from csv file are inserted into

Cassandra clusters with Consistent Hashing DHT

(Distributed Hash Table).

DHT is one of the fundamental algorithms used in

distributed scalable systems. DHT deals with the

problem of locating data that are distributed among a

collection of machines. In the general case, a lookup

service may involve full-content searching or a

directory-services or structured database query

approach of finding data record that matches multiple

attributes. Lookup service similar to a hash table:

(key, value) pairs are stored in a DHT, and any

participating node can efficiently retrieve the value

associated with a given key. Responsibility for

maintaining the mapping from keys to values is

distributed among the nodes [4]. When the data is

written to other nodes, data is encoded and queries

can be parallel distributed to connected nodes by

using DHT table. And Replication Factor (RF), Read

Consistency Level (RCL) and Write Consistency

Level (WCL) are defined by changing the

consistency level (one, two and quorum: Replication

Factor/2+1) and tested by Java hector code. Write

execution time of servers and read time of the client

according to consistency level are shown in figure2

and figure 3. In figure 2, the encoded data by writing

execution time for distributed DHT nodes are better

than simple DHT. In figure 3, DHT is a widely

solution to search the nearest neighbor node that

transforms the data to obtain short code consisting of

a sequence bits.

Figure2. Write execution time

Figure3. Read execution time

6. Conclusion

The proposed system presents the performance of

the key-value data storage of staff data onto DHT by

adjusting the consistency level. In defining these

consistency levels, two algorithms are proposed to

choosing the consistent replicas of different clusters

by searching the nearest replica and selecting the

consistent replica. The proposed algorithms can

determine the minimal number of consistent replicas

of reading request needs to contact in real time and

thus improve the system performance as a result of

reduced read/write execution time.

7. Future Work

In the future, the proposed algorithms will be

validated on Cassandra clusters of OpenStack Cloud

Storage. And latency,bandwidth and throughput will

be compared with measured values and will compute

the stale read rate for consistent replicas by adding

more nodes and more dataset size on Cassandra

distributed key-value data storage. And the

probability of stale rate, read/write execution time,

latency cost and storage cost of the system will be

compared with existing systems.

References

[1] Agrawal, D., El Abbadi, A.: The generalized tree

quorum protocol: An efficient approach for managing

replicated data. ACM Trans. Database Syst. 17(4), 689.

[2] Bailis P, Venkataraman S, Franklin MJ, Hellerstein

JM, Stoica I. Probabilistically bounded staleness for

practical partial quorums. Proc VLDB Endowment.

2012;5(8):776–787.

[3] H. Chihoub, S. Ibrahim, G. Antoniu and M. S. Perez,

"Harmony: Towards Automated Self-Adaptive

Consistency in Cloud Storage", IEEE International

Conference on Cluster Computing, September 24-28;

Beijing, China , 2012.

[4] Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu

Sebe, and Heng Tao Shen, “A Survey on Learning to

Hash”, IEEE TRANSACTIONS ON PATTERN

ANALYSIS AND MACHINE INTELLIGENCE, VOL.

13, NO. 9, APRIL 2017.

[5] Malkhi, D., Reiter, M.: Byzantine quorum systems. pp.

569_578. STOC '97, ACM

(1997), http://doi.acm.org/10.1145/258533.258650.

[6] P. Garefalakis , P. Papadopoulos, I. Manousakis, and

K.Magoutis, “Strengthening Consistency in the Cassandra

Distributed Key-Value Store”, International Federation for

Information Processing 2013.

[7] Tlili, M., Akbarinia, R., Pacitti, E., Valduriez,

P.:Scalllable P2P reconciliation infrastructure for

collaborative text editing, Second International Conference

on Advances in Database Knowledge and Data

Applications (DBKDA), pp. 155_164, April 2010.

[8] W. Vogels, "Eventually consistent", CACM, 52:40–44,

2009.

 [9] Y. Zhu and J. Wang. Malleable, "Flow for Time-

Bounded Replica Consistency Control", OSDI Poster,

October 8-10; Hollywood, USA , 2012.

[10] https://wikivisually.com/wiki/Burmese_ (language)

