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Abstract 

 The Kalman filter is a set of mathematical equations that provides an 

efficient computational (recursive) means to estimate the state of a 

process. Computational Kalman equations can be described with the 

process of serial C and parallel OpenMP/C program. Parallel 

implementation of Kalman filter has been suggested to improve the 

execution time. Single Program Multiple Data ( SPMD ) and Work 

Sharing methods of Open Multi-Processing (OpenMP) are applied to 

the computation of parallel Kalman filter. An evaluation of parallel 

algorithm on eight different shared-memory multi-core architectures 

has been performed. Shared memory implementation programs are 

compiled and executed on Windows Compute Cluster Server 2003 with 

Microsoft Visual Studio 2008.   

 Keywords:   Kalman filter, OpenMP, Parallel Kalman Filter 

 

Introduction 

The Kalman filter is named after Kalman R.E, who in 1960 

published his famous paper describing a recursive solution to discrete-data 

linear filtering problem [1]. A Kalman filter is a linear estimator. It is used 

to estimate the state of a linear dynamic system by using measurements 

linearly related to the state of the system but corrupted with noise.  It is a 

recursive data processing algorithm or a software tool that does not require 

all previous data to be kept in memory. All previous “history” is in fact 

captured in the most recent estimate of the state of the system. This is an 

important characteristic when it comes to implementing this type of 

algorithm in computers. Finally this type of filter is optimal; it calculates the 

best possible estimate (minimum variance) for the state of the system. 

Kalman was able to prove useful dual properties of estimation and control 

for these systems. Kalman filtering shows how the incoming raw 

measurements of signal should be processed to produce the best parameter 

estimates as a function of time[6]. 

The applications of the Kalman Filtering in real world are diverse. 

An example application would are diverse. An example application would 

be providing accurate, continuously updated information about the position 

and velocity of an object given only a sequence of observations about its 
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position, each of which includes somr error. The Kalman filter exploits the 

dynamics of target, which govern its time evolution, to remove the effects 

of the noise and get a good estimate of the location of the target at the 

present time(filtering), at a future time (prediction), or at a time in the past  

(interpolation or smoothing)[2]. 

 Parallel processing offers speed-up or higher and reliable 

performance at affordable prices to the implementation of Kalman Fiter[4]. 

The basic logic in parallel processing is to divide an unmanageable large 

task into smaller tasks, which are more manageable. The divided smaller 

tasks could then be run on multiple processors. In some case multiple 

processors solve a large problem faster than a single high-speed processor 

[6]. 

 

Mathematical Equations of Kalman Filter 

Kalman filter addresses the general problem of trying to estimate the 

state xn of a discrete-time controlled process that is governed by the 

linear stochastic difference equation 

x k+1 = Axk + Buk + wk                                                                                          (1)          

with a measurement y m that is  yk=  Hxk + vk                (2) 

A, B, and H are matrices. 

 k is the time index. 

 x is called the state of the system. 

 u is a known input to the system. 

 y is the measured output. 

w is the process noise. 

 v is the measurement noise. 

The vector x contains all of the information about the present state of the 

system, but x cannot be measured directly.  

y = f(x) 

Then the noise covariance matrices p(w) and p(v) are defined as:  

Process noise covariance:  p(w)≈  N(0,Q)                      (3) 

Measurement noise covariance: p(v) ≈ N(0,R)                (4) 

In practice, the process noise covariance Q and measurement noise 

covariance R matrices might change with each time step or measurement. Q 

and  R are assumed as constant. The n n matrix A relates the state at the 

previous time step to the state at the current step, in the absence of either a 

driving function or process noise. The n 1 matrix B relates the optional 
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control input u l to the state x. The m n matrix H in the measurement 

equation relates the state to the measurement y k . 

The Kalman filter process has two steps: the prediction step, where 

the next state of the system is predicted given the previous measurements, 

and the update step, where the current state of the system is estimated given 

the measurement at that time step. The steps translate to equations as 

follows: 

Prediction 

Xk
-
 = Ak-1 X k-1 + Bk Uk                 (5) 

 Pk
-
 = Ak-1 Pk-1 Ak-1

T
  +  Q k-1        (6) 

Update Equation 

vk =Yk - Hk  Xk

-
                    (7) 

Sk = Hk Pk

- 
Hk

T
 + Rk                              (8) 

Kk=Pk
- 
Hk

T 
Sk

-1                                        
(9) 

Xk = Xk

-
 + Kk Vk                                   (10) 

Pk = Pk

-
 - Kk Sk Kk

T                      
      (11) 

where  

Vk is the innovation or the measurement residual on time step k. 

Sk  is the measurement prediction covariance on time step k. 

Kk is the filter gain, which tells how much the predictions should be 

corrected on time step k. 

 

Computational Kalman Equation  

Making Sense of the Raw Data 
By tracking both the current angular velocity (gyroscope) and the 

current linear acceleration (accelerometer) of the system measured relative 

to the moving system, it is possible to determine the linear acceleration of 

the system in its inertial reference frame. 

Accelerometer Data 
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Figure (1) Accelerometers  

Accelerometers measure the linear acceleration of a system in the 

inertial reference frame, but in directions that can only be measured relative 

to the moving system, since the accelerometers are fixed to the system and 

rotate with the system, but are not aware of their own orientation. In other 

words, an accelerometer measures the acceleration and gravity it 

experiences. Acceleration is the rate of change velocity, and velocity is the 

rate of change of the position [3]. 

Acceleration data can be converted – via some integration – into 

distance (with some error, which Kalman Filtering will take care of). 

Starting with the definition of instantaneous acceleration, a = dv/dt, which 

are rewritten as dv = a dt, 

Taking the definite integral of both sides: 

  
giving 

 
Next, with the definition of instantaneous velocity,  

 

which can be rewritten as     

again, taking  the definite integral of both sides, and sub in for v0. 

 
giving, 
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This double integration yields the Mechanical Physics Basic Kinematic 

Equations: 

 

 
The accelerometer reads only changes in acceleration, for position (x) in 

terms of only  x and a: 

 
 yields: 

 
Finally, working with ever-changing accelerations, current samples of 

acceleration are referred with the constant, “K,” and modify Kinematic 

Equations: 

     v(K) = v(K- 1) + a(K)t 

     s(K) =  s(K- 1)+ ½ a(K)t 

 

Accelerometer Error 

An important thing to note about getting position from an 

accelerometer is that the error in position "integrates," meaning that if the 

noise or error in the accelerometer follows a normal distribution 

(overestimates and underestimates equally) then the position estimate 

should be reasonable. If however, the accelerometer is biased (tends to 

overestimate more than underestimate, or vice versa) then the error in your 

position estimate will grow exponentially. On top of this, ANY error is kept 

in your calculation through the iterative integration, so calculating position 

the accelerometer can have large errors. There are several error sources that 

cause an accelerometer output to deviate from its correct value. They are 

configuration (or misalignment) errors and the accelerometer errors 

embedded in the device itself. The configuration errors of an accelerometer 

are the location and orientation errors of the accelerometer. The error 

sources of a MEMS accelerometer are: scale factor error, bias, and 

noise[3].  

 

Fixing the error associated with integrating  
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One way to eke out better information from accelerometers is to use a 

complicated form of time dependent probability theory. This is known as 

Kalman Filtering. Kalman Filtering is commonly used in the navigation 

systems of airplanes, where knowing the location accurately, and precisely 

if possible, is important. 

Gyroscope Data 

                 
Figure(2)  Gyroscopes   

Gyroscopes measure the angular velocity of the system in its inertial 

reference frame. By using the original orientation of the system in the 

inertial reference frame as the initial condition and integrating the angular 

velocity, the system's current orientation is known at all times. 

Gyroscopic data can be converted – via some integration – into 

angular attitude, or orientation (with some error, which Kalman Filtering 

will take care of).  Starting with the definition of instantaneous velocity, the 

time rate of change of distance and velocity is found as, dx = vx dt  with x 

being the position on the x-axis and vx being the velocity along the x-axis. 

The same definition holds for angular motion. While velocity is the speed at 

which the position changes, angular velocity, ω, is nothing more than the 

rate at which the angle is changing, so 

, 

Finally, knowing that the inverse of a derivative is an integral, we alter our 

equalities into: 

, 

In other words, integrating the gyroscope data, gives us the attitude angle, 

and since data from gyroscopes measure changes in degree of rotation as 

proportionally conditioned changes in voltage:  

 
So with that knowledge, individual gyroscopes can be characterized simply 

by collecting ω vs. V data [3]. 
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Summary of Kalman Equation  

Kalman filtering is an iterative filter that requires two things. These 

two inputs consist of the gyroscope and accelerometer data.  

             xk+1  =  A. xk + B.uk 

 

 

 

These are some formulas using matrix algebra and statistics. They are listed 

as follows: 

u =measurement1 
Read the value of the last measurement from the 

gyroscope 

x = A · x + B ·u Update the state x of our model 

y =measurement2 

Read the value of the second measurement/real 

value. Here this will be the angle calculated from 

the accelerometer. 

Inn = y – C · x 

Calculate the difference between the second value 

and the value predicted by the model. This is called 

the innovation 

s = C · P · C’ +Sz Calculate the covariance 

K = A · P · C’ · 

inv(_s_) 
Calculate the Kalman gain 

x = x + K · Inn Correct the prediction of the state 

P = A · P · A’ –

K · C · P · A’ +Sw 
Calculate the covariance of the prediction error 

 

Computational Kalman Equation with C programming 

Sample data were gathered from the SparkFun IMU 5 Degrees of 

Freedom. The first data is the rate from the gyro (degrees/sec) and the 

second data is the accelerometer pitch attitude from horizontal in degrees. 
    float gyro_input;    float accel_input; 
    float kalman_output; 
    double sample_data[SAMPLE_COUNT][2] = {{0.016088, 1.668337},...} 
    

// Update the State Estimation and compute the Kalman Gain. 
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// The estimated angle is returned. 
   float kalman_update(float gyro_rate, float accel_angle) 
  { 

  // Inputs. 
    float u = gyro_rate;    float y = accel_angle; 

 // Output. 
    static float x_00 = 0.0;    static float x_10 = 0.0; 

 // Persistant states. 
    static float P_00 = 0.001;     static float P_01 = 0.003;     
    static float P_10 = 0.003;     static float P_11 = 0.003; 

 // Constants.   

 

 // These are the delta in seconds between samples. 
     const float A_01 = -0.019968;     const float B_00 = 0.019968; 

 

 // Data read from 512 samples of the accelerometer had a variance of 

0.07701688. 
   const float Sz = 0.07701688; 

 // Data read from 512 samples of the gyroscope had a variance of 

0.00025556. 
     const float Sw_00 = 0.001;     const float Sw_01 = 0.003; 
      const float Sw_10 = 0.003;     const float Sw_11 = 0.003; 

// Temp. 
    float s_00;     float inn_00;     float K_00;     float K_10;     float AP_00;     float 
AP_01; 
    float AP_10;     float AP_11;     float APAT_00;     float APAT_01;     float 
APAT_10; 
    float APAT_11;     float KCPAT_00;     float KCPAT_01;     float KCPAT_10; 
    float KCPAT_11; 

// Update the state estimate by extrapolating current state estimate with 

input u. 

//  x = A * x + B * u 
 x_00 += (A_01 * x_10) + (B_00 * u); 

// Compute the innovation -- error between measured value and state. 

// inn = y - c * x 
    inn_00 = y - x_00; 

// Compute the covariance of the innovation. 

// s = C * P * C' + Sz 
   s_00 = P_00 + Sz; 

 // Compute AP matrix for use below. 

 // AP = A * P 
     AP_00 = P_00 + A_01 * P_10;      AP_01 = P_01 + A_01 * P_11; 
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AP_10 = P_10;                               AP_11 = P_11; 

// Compute the kalman gain matrix. 

// K = A * P * C' * inv(s) 
   K_00 = AP_00 / s_00;    K_10 = AP_10 / s_00; 

 // Update the state estimate. 

 // x = x + K * inn 
    x_00 += K_00 * inn_00; 
    x_10 += K_10 * inn_00; 

// Compute the new covariance of the estimation error. 

 // P = A * P * A' - K * C * P * A' + Sw 
    APAT_00 = AP_00 + (AP_01 * A_01);     APAT_01 = AP_01;  
    APAT_10 = AP_10 + (AP_11 * A_01);     APAT_11 = AP_11; 

KCPAT_00 = (K_00 * P_00) + (K_00 * P_01) * A_01;      KCPAT_01 = (K_00 * 
P_01);           KCPAT_10 = (K_10 * P_00) + (K_10 * P_01) * A_01; 

    KCPAT_11 = (K_10 * P_01); 
    P_00 = APAT_00 - KCPAT_00 + Sw_00;      P_01 = APAT_01 - KCPAT_01 + 
Sw_01; 
    P_10 = APAT_10 - KCPAT_10 + Sw_10;      P_11 = APAT_11 - KCPAT_11 + 
Sw_11; 

// Return the estimate. 
    return x_00; 

} 

 

Parallel Programming Models 

There are several parallel programming models in common use 

 Threads  

 Shared Memory (without threads) 

 Distributed Memory / Message Passing  

 Data Parallel  

 Hybrid  

 Single Program Multiple Data (SPMD)  

 Multiple Program Multiple Data (MPMD) 

               Threads ( OpenMP), Single Program Multiple Data (SPMD) and 

Work-Sharing  are  applied in this paper.  

 

 OpenMP Programming Model 

OpenMP runs on a shared memory architecture. OpenMP is based 

upon the existence of multiple threads in the shared memory programming 

paradigm. A shared memory process consists of multiple threads. OpenMP 

is an explicit (not optimically) programming model, offering the 

programmer full control over parallelization. OpenMP uses the fork-join 
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model of parallel execution as shown in Figure (3). All OpenMP programs 

begin a single process: the master thread. The master executes sequentially 

until the first parallel region construct is encountered. 

 FORK: the master thread then creates a team of parallel threads. 

The statements in the program that are enclosed by the parallel 

region construct are then executed in parallel among the various 

team threads. 

 JOIN: When the team threads complete the statements in the 

parallel region construct, they synchronize and terminate, leaving 

only the master threads[7].  

 
Figure(3) Fork-Join Model 

Single Program Multiple Data (SPMD) 

SPMD is actually a "high level" programming model that can be 

built upon any combination of the previously mentioned parallel 

programming models. All tasks execute their copy of the same program 

simultaneously. This program can be threads, message passing, data parallel 

or hybrid. All tasks may use different data. SPMD programs usually have 

the necessary logic programmed into them to allow different tasks to branch 

or conditionally execute only those parts of the program they are designed 

to execute as shown in figure. That is, tasks do not necessarily have to 

execute the entire program - perhaps only a portion of it[8]. Figure (4) 

shows a SPMD model. 

 
Figure (4) SPMD Model 

Work-Sharing Constructs 

A work sharing construct distribute the execution of the associated 

statement among the members of the team that encounter it. The work 
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sharing directives do not launch new threads, and there is no implied barrier 

on entry to a work sharing construct. The sequence of work sharing 

constructs and barrier directives encountered must be the same for every 

thread in a team. OpenMP defines the following work sharing constructs, 

and these are described in the sections that follow: for directive, sections 

directive and single directive[8]. Process of Work Sharing Construct is 

shown in Figure (5). 

 
Figure(5) Process of Work Sharing Construct 

 

Code segment of Kalman filter for SPMD 

The following directive #pragma omp parallel defines a 

parallel region , which is a region of the program that is to be executed by 

multiple threads in parallel. This is the fundamental construct that starts 

parallel execution. 
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int main(int argc, char **argv) 
{ 
    int i; 
   double wtime; 
   omp_set_num_threads(NUM_THREADS); 
   wtime = omp_get_wtime ( );  
   #pragma omp parallel 
   { 
       int id=omp_get_thread_num(); 
 
       int nthreads=omp_get_num_threads(); 
       for (i = id; i < SAMPLE_COUNT;i=i+nthreads) 
       
{ 

          // Get the gyro and accelerometer input. 
          gyro_input = sample_data[i][0]; 
          accel_input = sample_data[i][1]; 
          // Update the Kalman filter and get the output. 
          kalman_output = kalman_update(gyro_input, 
accel_input); 
       } 
    } 
    wtime = omp_get_wtime ( ) - wtime 
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Code Segment of Kalman Filter for Work Sharing         

OpenMP defines for directive to use work sharing construct. 

Combined parallel work sharing constructs are shortcuts for specifying a 

parallel region that contains only one work sharing construct. The parallel 

for directive is a shortcut for a parallel region that contains only a single for 

directive. The syntax of the parallel for directive is #pragma omp for. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Results and Discussion 

By analyzing the computing data at Table (1) and Figure (6), the 

number of threads is increased and the executing time for SPMD and work 

sharing go dropped. The result using Work Sharing method and the SPMD 

(Simple Program Multiple Data) method are nearly the same. In Figure (7) 

and Table (2), the execution for OpenMP (parallel computing) is faster than 

the execution for serial computing. The parallel computing has better 

performance than serial computing. The parallel Kalman filter really needs 

to filter the noise quickly. Parallel computing has shorter time span than the 

serial computing. Parallel computing is suitable for handling the large 

amount of data.   

int main(int argc, char **argv ) 
             {  int i; 

double wtime; 
omp_set_num_threads(NUM_THREADS); 
wtime = omp_get_wtime ( );  
#pragma omp parallel 
{   
   int id=omp_get_thread_num(); 
 
   #pragma omp for  
   for (i = 0; i < SAMPLE_COUNT;i++) 

                 {  
// Get the gyro and accelerometer input. 

 gyro_input = sample_data[i][0]; 
 accel_input = sample_data[i][1]; 

          // Update the Kalman filter and get the output. 
kalman_output = kalman_update(gyro_input, accel_input); 

   } 
               } 
               wtime = omp_get_wtime ( ) - wtime; 

 } 
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Computation(1) 

Table (1)The relation between number of threads and execution time for 

SPMD and work sharing  

  No. of  

Threads 

Execution 

time for 

SPMD                                                

Execution 

time for 

work 

sharing 

   2 0.000045 0.000046 

4 0.000043 0.000045 

6 0.000042 0.000043 

8 0.000028 0.000029 

         
 

Figure (6)  Dependence of  execution 

time on    a number of threads              

 

Computation(2) 

Table (2) Comparison between the execution time  for Serial and OpenMP 

programs 

 
 

Figure (7) Comparison between execution time 

taken by Serial and OpenMP program 

   

 

 

 

Program 

Execution 

 time (s) 

    Serial 0.15 

OpenMP 0.000054 
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Computation(3) 

Table (3) The relation between no. of threads and execution time for 

SPMDand work sharing for Dell sever.  

 

 
Figure(8)The relation of No. of  Thread  and          

Execution    time    

Computation(4) 

Table(4)  The relation data of number of thread and  speed up 

 

 
Figure(9) The relation graph of  number of 

CPUs  and SpeedUp  

 

 The data of Table (3) and the graph of Figure (8) describe the relation    

between number of threads and execution time for SPMD and Work sharing 
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No. of Threads 

 No. of Thread  Vs Speed Up 
No. of 

Threads 

Speed 

Up 

1 2777.8 

2 109.65 

3 112.21 

4 128.09 

5 158.56 

6 185.18 

7 215.51 

8 235.47 
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Dell
®
 PowerEdge 2900 server computer, 8G RAM. The result using SPMD 

method is better performance than Work Sharing method when using Dell
®
 

PowerEdge 2900 server computer, 8G RAM. The data of Table (4) and the 

graph of Figure (9) describe the relation    between number of threads and 

execution time for SPMD. The computation (1),(2)and (3) are used  same 

program and same data but the computer specification is different.  The 

computation (1) is used Core i7 computer and 2G memory. The 

computation (2), (3) and (4) is used Dell
®
 PowerEdge 2900 server 

computer, 8G RAM. When analyzing the computation (1),(2), (3) and (4)  

the execution time depends on    specification of computer such as number 

of processors, memory  capacity,  and hard disk capacity .  For parallel 

computing,   the execution time depends on amount of data.   If the amount 

of data is small amount, serial computing is faster than parallel computing. 

If the amount of data is extremely large, the parallel computing is better 

performance than serial computing. 

  

Conclusion 

            Efficient parallelization of the Kalman filter has been carried out on 

a shared-memory multi-core architecture. The parallelization is achieved by 

re-ordering the Kalman filter (KF) equations so that the data dependencies 

are broken and allowed for a well parallelized program implementation. The 

result exhibits linear speed-up in number of cores. The increased speed of 

parallel processing holds special advantages for real-time systems. A 

parallel system increases reliability through simple redundancy. In many 

cases, these new changes will require more computing power. When the 

capabilities of a single processor are exceeded, the entire system must be 

replaced. This often requires major changes to the software. With a parallel 

system, increased capability can be added with additional processors. 

Parallel systems can be constructed from relatively cheap, mass-produced 

processors. The relatively slow step times in these processors minimizes 

heat dissipation and transmission delay problems. In general, parallel 

systems can claim a price/performance advantage over traditional systems. 
OpenMP is a widely accepted programming model for shared memory 

systems.  Kalman filter is a software tool and it is best filtering and applied 

in many fields. The implementation of Kalman filter using MPI will be 

researched in future. 
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