

Title

Parallel OpenMP/C++ Programming for the Kalman Filter

All Authors

Myint Myint Thein

Publication Type

Local Publication

Publisher

(Journal name,

issue no., page no

etc.)

Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

Abstract

The Kalman filter is a set of mathematical equations that provides an

efficient computational (recursive) means to estimate the state of a

process. Computational Kalman equations can be described with the

process of serial C and parallel OpenMP/C program. Parallel

implementation of Kalman filter has been suggested to improve the

execution time. Single Program Multiple Data (SPMD) and Work

Sharing methods of Open Multi-Processing (OpenMP) are applied to the

computation of parallel Kalman filter. An evaluation of parallel

algorithm on eight different shared-memory multi-core architectures has

been performed. Shared memory implementation programs are compiled

and executed on Windows Compute Cluster Server 2003 with Microsoft

Visual Studio 2008.

Keywords
Kalman filter, OpenMP, Parallel Kalman Filter

Citation

Issue Date

2014

Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

Parallel OpenMP/C++ Programming for the Kalman Filter
Myint Myint Thein

1

Abstract

 The Kalman filter is a set of mathematical equations that provides an

efficient computational (recursive) means to estimate the state of a

process. Computational Kalman equations can be described with the

process of serial C and parallel OpenMP/C program. Parallel

implementation of Kalman filter has been suggested to improve the

execution time. Single Program Multiple Data (SPMD) and Work

Sharing methods of Open Multi-Processing (OpenMP) are applied to

the computation of parallel Kalman filter. An evaluation of parallel

algorithm on eight different shared-memory multi-core architectures

has been performed. Shared memory implementation programs are

compiled and executed on Windows Compute Cluster Server 2003 with

Microsoft Visual Studio 2008.

 Keywords: Kalman filter, OpenMP, Parallel Kalman Filter

Introduction

The Kalman filter is named after Kalman R.E, who in 1960

published his famous paper describing a recursive solution to discrete-data

linear filtering problem [1]. A Kalman filter is a linear estimator. It is used

to estimate the state of a linear dynamic system by using measurements

linearly related to the state of the system but corrupted with noise. It is a

recursive data processing algorithm or a software tool that does not require

all previous data to be kept in memory. All previous “history” is in fact

captured in the most recent estimate of the state of the system. This is an

important characteristic when it comes to implementing this type of

algorithm in computers. Finally this type of filter is optimal; it calculates the

best possible estimate (minimum variance) for the state of the system.

Kalman was able to prove useful dual properties of estimation and control

for these systems. Kalman filtering shows how the incoming raw

measurements of signal should be processed to produce the best parameter

estimates as a function of time[6].

The applications of the Kalman Filtering in real world are diverse.

An example application would are diverse. An example application would

be providing accurate, continuously updated information about the position

and velocity of an object given only a sequence of observations about its

1
Lecturer(Head), Department of Computer Studies, Dagon University

 Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

position, each of which includes somr error. The Kalman filter exploits the

dynamics of target, which govern its time evolution, to remove the effects

of the noise and get a good estimate of the location of the target at the

present time(filtering), at a future time (prediction), or at a time in the past

(interpolation or smoothing)[2].

 Parallel processing offers speed-up or higher and reliable

performance at affordable prices to the implementation of Kalman Fiter[4].

The basic logic in parallel processing is to divide an unmanageable large

task into smaller tasks, which are more manageable. The divided smaller

tasks could then be run on multiple processors. In some case multiple

processors solve a large problem faster than a single high-speed processor

[6].

Mathematical Equations of Kalman Filter

Kalman filter addresses the general problem of trying to estimate the

state xn of a discrete-time controlled process that is governed by the

linear stochastic difference equation

x k+1 = Axk + Buk + wk (1)

with a measurement y m that is yk= Hxk + vk (2)

A, B, and H are matrices.

 k is the time index.

 x is called the state of the system.

 u is a known input to the system.

 y is the measured output.

w is the process noise.

 v is the measurement noise.

The vector x contains all of the information about the present state of the

system, but x cannot be measured directly.

y = f(x)

Then the noise covariance matrices p(w) and p(v) are defined as:

Process noise covariance: p(w)≈ N(0,Q) (3)

Measurement noise covariance: p(v) ≈ N(0,R) (4)

In practice, the process noise covariance Q and measurement noise

covariance R matrices might change with each time step or measurement. Q

and R are assumed as constant. The n n matrix A relates the state at the

previous time step to the state at the current step, in the absence of either a

driving function or process noise. The n 1 matrix B relates the optional

Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

control input u l to the state x. The m n matrix H in the measurement

equation relates the state to the measurement y k .

The Kalman filter process has two steps: the prediction step, where

the next state of the system is predicted given the previous measurements,

and the update step, where the current state of the system is estimated given

the measurement at that time step. The steps translate to equations as

follows:

Prediction

Xk
-
 = Ak-1 X k-1 + Bk Uk (5)

 Pk
-
 = Ak-1 Pk-1 Ak-1

T
 + Q k-1 (6)

Update Equation

vk =Yk - Hk Xk

-
 (7)

Sk = Hk Pk

-
Hk

T
 + Rk (8)

Kk=Pk
-
Hk

T
Sk

-1
(9)

Xk = Xk

-
 + Kk Vk (10)

Pk = Pk

-
 - Kk Sk Kk

T
 (11)

where

Vk is the innovation or the measurement residual on time step k.

Sk is the measurement prediction covariance on time step k.

Kk is the filter gain, which tells how much the predictions should be

corrected on time step k.

Computational Kalman Equation

Making Sense of the Raw Data
By tracking both the current angular velocity (gyroscope) and the

current linear acceleration (accelerometer) of the system measured relative

to the moving system, it is possible to determine the linear acceleration of

the system in its inertial reference frame.

Accelerometer Data

 Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

Figure (1) Accelerometers

Accelerometers measure the linear acceleration of a system in the

inertial reference frame, but in directions that can only be measured relative

to the moving system, since the accelerometers are fixed to the system and

rotate with the system, but are not aware of their own orientation. In other

words, an accelerometer measures the acceleration and gravity it

experiences. Acceleration is the rate of change velocity, and velocity is the

rate of change of the position [3].

Acceleration data can be converted – via some integration – into

distance (with some error, which Kalman Filtering will take care of).

Starting with the definition of instantaneous acceleration, a = dv/dt, which

are rewritten as dv = a dt,

Taking the definite integral of both sides:

giving

Next, with the definition of instantaneous velocity,

which can be rewritten as

again, taking the definite integral of both sides, and sub in for v0.

giving,

Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

This double integration yields the Mechanical Physics Basic Kinematic

Equations:

The accelerometer reads only changes in acceleration, for position (x) in

terms of only x and a:

 yields:

Finally, working with ever-changing accelerations, current samples of

acceleration are referred with the constant, “K,” and modify Kinematic

Equations:

 v(K) = v(K- 1) + a(K)t

 s(K) = s(K- 1)+ ½ a(K)t

Accelerometer Error

An important thing to note about getting position from an

accelerometer is that the error in position "integrates," meaning that if the

noise or error in the accelerometer follows a normal distribution

(overestimates and underestimates equally) then the position estimate

should be reasonable. If however, the accelerometer is biased (tends to

overestimate more than underestimate, or vice versa) then the error in your

position estimate will grow exponentially. On top of this, ANY error is kept

in your calculation through the iterative integration, so calculating position

the accelerometer can have large errors. There are several error sources that

cause an accelerometer output to deviate from its correct value. They are

configuration (or misalignment) errors and the accelerometer errors

embedded in the device itself. The configuration errors of an accelerometer

are the location and orientation errors of the accelerometer. The error

sources of a MEMS accelerometer are: scale factor error, bias, and

noise[3].

Fixing the error associated with integrating

 Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

One way to eke out better information from accelerometers is to use a

complicated form of time dependent probability theory. This is known as

Kalman Filtering. Kalman Filtering is commonly used in the navigation

systems of airplanes, where knowing the location accurately, and precisely

if possible, is important.

Gyroscope Data

Figure(2) Gyroscopes

Gyroscopes measure the angular velocity of the system in its inertial

reference frame. By using the original orientation of the system in the

inertial reference frame as the initial condition and integrating the angular

velocity, the system's current orientation is known at all times.

Gyroscopic data can be converted – via some integration – into

angular attitude, or orientation (with some error, which Kalman Filtering

will take care of). Starting with the definition of instantaneous velocity, the

time rate of change of distance and velocity is found as, dx = vx dt with x

being the position on the x-axis and vx being the velocity along the x-axis.

The same definition holds for angular motion. While velocity is the speed at

which the position changes, angular velocity, ω, is nothing more than the

rate at which the angle is changing, so

,

Finally, knowing that the inverse of a derivative is an integral, we alter our

equalities into:

,

In other words, integrating the gyroscope data, gives us the attitude angle,

and since data from gyroscopes measure changes in degree of rotation as

proportionally conditioned changes in voltage:

So with that knowledge, individual gyroscopes can be characterized simply

by collecting ω vs. V data [3].

Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

Summary of Kalman Equation

Kalman filtering is an iterative filter that requires two things. These

two inputs consist of the gyroscope and accelerometer data.

 xk+1 = A. xk + B.uk

These are some formulas using matrix algebra and statistics. They are listed

as follows:

u =measurement1
Read the value of the last measurement from the

gyroscope

x = A · x + B ·u Update the state x of our model

y =measurement2

Read the value of the second measurement/real

value. Here this will be the angle calculated from

the accelerometer.

Inn = y – C · x

Calculate the difference between the second value

and the value predicted by the model. This is called

the innovation

s = C · P · C’ +Sz Calculate the covariance

K = A · P · C’ ·

inv(_s_)
Calculate the Kalman gain

x = x + K · Inn Correct the prediction of the state

P = A · P · A’ –

K · C · P · A’ +Sw
Calculate the covariance of the prediction error

Computational Kalman Equation with C programming

Sample data were gathered from the SparkFun IMU 5 Degrees of

Freedom. The first data is the rate from the gyro (degrees/sec) and the

second data is the accelerometer pitch attitude from horizontal in degrees.
 float gyro_input; float accel_input;
 float kalman_output;
 double sample_data[SAMPLE_COUNT][2] = {{0.016088, 1.668337},...}

// Update the State Estimation and compute the Kalman Gain.

 Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

// The estimated angle is returned.
 float kalman_update(float gyro_rate, float accel_angle)
 {

 // Inputs.
 float u = gyro_rate; float y = accel_angle;

 // Output.
 static float x_00 = 0.0; static float x_10 = 0.0;

 // Persistant states.
 static float P_00 = 0.001; static float P_01 = 0.003;
 static float P_10 = 0.003; static float P_11 = 0.003;

 // Constants.

 // These are the delta in seconds between samples.
 const float A_01 = -0.019968; const float B_00 = 0.019968;

 // Data read from 512 samples of the accelerometer had a variance of

0.07701688.
 const float Sz = 0.07701688;

 // Data read from 512 samples of the gyroscope had a variance of

0.00025556.
 const float Sw_00 = 0.001; const float Sw_01 = 0.003;
 const float Sw_10 = 0.003; const float Sw_11 = 0.003;

// Temp.
 float s_00; float inn_00; float K_00; float K_10; float AP_00; float
AP_01;
 float AP_10; float AP_11; float APAT_00; float APAT_01; float
APAT_10;
 float APAT_11; float KCPAT_00; float KCPAT_01; float KCPAT_10;
 float KCPAT_11;

// Update the state estimate by extrapolating current state estimate with

input u.

// x = A * x + B * u
 x_00 += (A_01 * x_10) + (B_00 * u);

// Compute the innovation -- error between measured value and state.

// inn = y - c * x
 inn_00 = y - x_00;

// Compute the covariance of the innovation.

// s = C * P * C' + Sz
 s_00 = P_00 + Sz;

 // Compute AP matrix for use below.

 // AP = A * P
 AP_00 = P_00 + A_01 * P_10; AP_01 = P_01 + A_01 * P_11;

Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

AP_10 = P_10; AP_11 = P_11;

// Compute the kalman gain matrix.

// K = A * P * C' * inv(s)
 K_00 = AP_00 / s_00; K_10 = AP_10 / s_00;

 // Update the state estimate.

 // x = x + K * inn
 x_00 += K_00 * inn_00;
 x_10 += K_10 * inn_00;

// Compute the new covariance of the estimation error.

 // P = A * P * A' - K * C * P * A' + Sw
 APAT_00 = AP_00 + (AP_01 * A_01); APAT_01 = AP_01;
 APAT_10 = AP_10 + (AP_11 * A_01); APAT_11 = AP_11;

KCPAT_00 = (K_00 * P_00) + (K_00 * P_01) * A_01; KCPAT_01 = (K_00 *
P_01); KCPAT_10 = (K_10 * P_00) + (K_10 * P_01) * A_01;

 KCPAT_11 = (K_10 * P_01);
 P_00 = APAT_00 - KCPAT_00 + Sw_00; P_01 = APAT_01 - KCPAT_01 +
Sw_01;
 P_10 = APAT_10 - KCPAT_10 + Sw_10; P_11 = APAT_11 - KCPAT_11 +
Sw_11;

// Return the estimate.
 return x_00;

}

Parallel Programming Models

There are several parallel programming models in common use

 Threads

 Shared Memory (without threads)

 Distributed Memory / Message Passing

 Data Parallel

 Hybrid

 Single Program Multiple Data (SPMD)

 Multiple Program Multiple Data (MPMD)

 Threads (OpenMP), Single Program Multiple Data (SPMD) and

Work-Sharing are applied in this paper.

 OpenMP Programming Model

OpenMP runs on a shared memory architecture. OpenMP is based

upon the existence of multiple threads in the shared memory programming

paradigm. A shared memory process consists of multiple threads. OpenMP

is an explicit (not optimically) programming model, offering the

programmer full control over parallelization. OpenMP uses the fork-join

 Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

model of parallel execution as shown in Figure (3). All OpenMP programs

begin a single process: the master thread. The master executes sequentially

until the first parallel region construct is encountered.

 FORK: the master thread then creates a team of parallel threads.

The statements in the program that are enclosed by the parallel

region construct are then executed in parallel among the various

team threads.

 JOIN: When the team threads complete the statements in the

parallel region construct, they synchronize and terminate, leaving

only the master threads[7].

Figure(3) Fork-Join Model

Single Program Multiple Data (SPMD)

SPMD is actually a "high level" programming model that can be

built upon any combination of the previously mentioned parallel

programming models. All tasks execute their copy of the same program

simultaneously. This program can be threads, message passing, data parallel

or hybrid. All tasks may use different data. SPMD programs usually have

the necessary logic programmed into them to allow different tasks to branch

or conditionally execute only those parts of the program they are designed

to execute as shown in figure. That is, tasks do not necessarily have to

execute the entire program - perhaps only a portion of it[8]. Figure (4)

shows a SPMD model.

Figure (4) SPMD Model

Work-Sharing Constructs

A work sharing construct distribute the execution of the associated

statement among the members of the team that encounter it. The work

Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

sharing directives do not launch new threads, and there is no implied barrier

on entry to a work sharing construct. The sequence of work sharing

constructs and barrier directives encountered must be the same for every

thread in a team. OpenMP defines the following work sharing constructs,

and these are described in the sections that follow: for directive, sections

directive and single directive[8]. Process of Work Sharing Construct is

shown in Figure (5).

Figure(5) Process of Work Sharing Construct

Code segment of Kalman filter for SPMD

The following directive #pragma omp parallel defines a

parallel region , which is a region of the program that is to be executed by

multiple threads in parallel. This is the fundamental construct that starts

parallel execution.

 Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII.

int main(int argc, char **argv)
{
 int i;
 double wtime;
 omp_set_num_threads(NUM_THREADS);
 wtime = omp_get_wtime ();
 #pragma omp parallel
 {
 int id=omp_get_thread_num();

 int nthreads=omp_get_num_threads();
 for (i = id; i < SAMPLE_COUNT;i=i+nthreads)

{

 // Get the gyro and accelerometer input.
 gyro_input = sample_data[i][0];
 accel_input = sample_data[i][1];
 // Update the Kalman filter and get the output.
 kalman_output = kalman_update(gyro_input,
accel_input);
 }
 }
 wtime = omp_get_wtime () - wtime

 Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

Code Segment of Kalman Filter for Work Sharing

OpenMP defines for directive to use work sharing construct.

Combined parallel work sharing constructs are shortcuts for specifying a

parallel region that contains only one work sharing construct. The parallel

for directive is a shortcut for a parallel region that contains only a single for

directive. The syntax of the parallel for directive is #pragma omp for.

Results and Discussion

By analyzing the computing data at Table (1) and Figure (6), the

number of threads is increased and the executing time for SPMD and work

sharing go dropped. The result using Work Sharing method and the SPMD

(Simple Program Multiple Data) method are nearly the same. In Figure (7)

and Table (2), the execution for OpenMP (parallel computing) is faster than

the execution for serial computing. The parallel computing has better

performance than serial computing. The parallel Kalman filter really needs

to filter the noise quickly. Parallel computing has shorter time span than the

serial computing. Parallel computing is suitable for handling the large

amount of data.

int main(int argc, char **argv)
 { int i;

double wtime;
omp_set_num_threads(NUM_THREADS);
wtime = omp_get_wtime ();
#pragma omp parallel
{
 int id=omp_get_thread_num();

 #pragma omp for
 for (i = 0; i < SAMPLE_COUNT;i++)

 {
// Get the gyro and accelerometer input.

 gyro_input = sample_data[i][0];
 accel_input = sample_data[i][1];

 // Update the Kalman filter and get the output.
kalman_output = kalman_update(gyro_input, accel_input);

 }
 }
 wtime = omp_get_wtime () - wtime;

 }

Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

Computation(1)

Table (1)The relation between number of threads and execution time for

SPMD and work sharing

 No. of

Threads

Execution

time for

SPMD

Execution

time for

work

sharing

 2 0.000045 0.000046

4 0.000043 0.000045

6 0.000042 0.000043

8 0.000028 0.000029

Figure (6) Dependence of execution

time on a number of threads

Computation(2)

Table (2) Comparison between the execution time for Serial and OpenMP

programs

Figure (7) Comparison between execution time

taken by Serial and OpenMP program

Program

Execution

 time (s)

 Serial 0.15

OpenMP 0.000054

 Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

Computation(3)

Table (3) The relation between no. of threads and execution time for

SPMDand work sharing for Dell sever.

Figure(8)The relation of No. of Thread and

Execution time

Computation(4)

Table(4) The relation data of number of thread and speed up

Figure(9) The relation graph of number of

CPUs and SpeedUp

 The data of Table (3) and the graph of Figure (8) describe the relation

between number of threads and execution time for SPMD and Work sharing

0

50

100

150

200

250

1 2 3 4 5 6 7 8

 S
p

e
e

d
 U

p

No. of Threads

 No. of Thread Vs Speed Up
No. of

Threads

Speed

Up

1 2777.8

2 109.65

3 112.21

4 128.09

5 158.56

6 185.18

7 215.51

8 235.47

Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

Dell
®
 PowerEdge 2900 server computer, 8G RAM. The result using SPMD

method is better performance than Work Sharing method when using Dell
®

PowerEdge 2900 server computer, 8G RAM. The data of Table (4) and the

graph of Figure (9) describe the relation between number of threads and

execution time for SPMD. The computation (1),(2)and (3) are used same

program and same data but the computer specification is different. The

computation (1) is used Core i7 computer and 2G memory. The

computation (2), (3) and (4) is used Dell
®
 PowerEdge 2900 server

computer, 8G RAM. When analyzing the computation (1),(2), (3) and (4)

the execution time depends on specification of computer such as number

of processors, memory capacity, and hard disk capacity . For parallel

computing, the execution time depends on amount of data. If the amount

of data is small amount, serial computing is faster than parallel computing.

If the amount of data is extremely large, the parallel computing is better

performance than serial computing.

Conclusion

 Efficient parallelization of the Kalman filter has been carried out on

a shared-memory multi-core architecture. The parallelization is achieved by

re-ordering the Kalman filter (KF) equations so that the data dependencies

are broken and allowed for a well parallelized program implementation. The

result exhibits linear speed-up in number of cores. The increased speed of

parallel processing holds special advantages for real-time systems. A

parallel system increases reliability through simple redundancy. In many

cases, these new changes will require more computing power. When the

capabilities of a single processor are exceeded, the entire system must be

replaced. This often requires major changes to the software. With a parallel

system, increased capability can be added with additional processors.

Parallel systems can be constructed from relatively cheap, mass-produced

processors. The relatively slow step times in these processors minimizes

heat dissipation and transmission delay problems. In general, parallel

systems can claim a price/performance advantage over traditional systems.
OpenMP is a widely accepted programming model for shared memory

systems. Kalman filter is a software tool and it is best filtering and applied

in many fields. The implementation of Kalman filter using MPI will be

researched in future.

 Jour. Myan. Acad. Arts & Sc. 2014 Vol. XII. No.3

Acknowledgement

The author is deeply indebted to Dr Pho Kaung, Pro-rector/ Head,

Universities’ Research Center, University of Yangon for all his valuable

guidance.

References

Kalman. R. e. (1960). “a New Approach to Linear Filtering and Prediction

Problems,” Transcation of the SME- Journal of Basic

Engineering , pp. 35-45(March 1960).

Laaraiedh M, 2009 “Implementation of Kalman Filter with Python

Language”. IETR Labs, University of Rennes.

Landry, C., Papasideris, K., Sutter, B., and Wilson, A., 2008,

“Inertial Navigation Systems: The Physics behind Personnel

Tracking and the ExacTrak System”, P.W.L.S. Innovations.

 Lemanski, W. J., 1989, “Parallel ADA Implementation of a Multiple

model Kalman Filter Tracking System: A Software

Engineering approach”, Thesis, (Ohio: Air Force Institute of

Technology)

 Mohinder, S. G., Andrews , A. P., 2001, “Kalman Filtering : Theory and

Practice Using Matlab” (New York: John Wiley)

 Olivier Cadet, 2003 September, “Introduction to Kalman Filter and its Use

in Dynamic Positioning Systems”, Dynamic Positioning

Conference (Houston: Transocean Offshore Deepwater

Drilling Inc.)

www.openmp.org/wp/about-openmp.

www.computing.llnl.gov/ introduction to parallel computing.htm

http://www.openmp.org/wp/about-openmp
http://www.computing.llnl.gov/%20introduction

