
 

 146 

Automatic Adjustment of Read Consistency Level of Distributed Key-value 

Storage by a Replica Selection Approach 
 

Thazin Nwe1, Tin Tin Yee1, Myat Pwint Phyu1, Ei Chaw Htoon2, Junya Nakamura3 

University of Information Technology, Myanmar1, Computer University (Kyaing Tone), Myanmar2 

Toyohashi University of Technology, Japan3 

{thazin.nwe,tintinyee, myatpwintphyu}@uit.edu.mm1, eichawhtoon@uit.edu.mm2, junya@imc.tut.ac.jp3 

 

 

Abstract 
In distributed key-value storage systems, Apache 

Cassandra is known for its scalability and fault 

tolerance. In such systems, Cassandra is a peer-to-peer 

architecture which any user can connect to any node in 

any data center and can read and write data anywhere. 

Most of the systems usually select a fixed number of 

replicas for read/write requests in key-value storage. 

When the more replicas a read request chooses, it may 

increase the response time and reduce the system 

performance. In this paper, a consistent replica 

selection approach is proposed to automatically select 

number of consistent replicas by defining the read and 

write consistency level. This approach searches the 

nearest replicas and selects the consistent replicas 

depending on the current time, nearest arrival time, 

read/write latency and version for each read request. 

The proposed approach tends to achieve the read/write 

performance of client requests for key-value storage 

system by reducing the read/write execution time, 

latency cost and storage cost.   

 

Keywords- Consistent Replicas, Consistency Level, 

Key-value storage 

 

1. Introduction 
 

Replication is a widely used technology in 

distributed key-value storage systems to achieve data 

availability, durability, fault tolerance and recovery. In 

these systems, maintaining data consistency of 

replication becomes a significant challenge. Although 

many applications benefit from strong consistency, 

latency sensitive applications such as shopping carts on 

e-commerce websites chooses eventual consistency. 

Eventual consistency is a weak consistency that does not 

guarantee to return the last updated value [5]. Eventually 

consistent systems are high operation latencies and thus 

in bad performance. 

      Achieving high throughput and low latency of 

responses to client requests is a difficult problem for 

cloud services. To fix these issues, a replica selection 

process needs to include mechanisms for filtering and 

estimating the latency when processing requests. The 

replica selection process is inherently complicated.  

Therefore, this paper proposes a replica selection 

approach for read access in distributed key-value storage 

systems. A key-value store is a simple database that uses 

an associative array as the fundamental data model 

where each key is associated with one and only one 

value in a collection. This relationship is referred to as a 

key-value pair.  

This approach can determine the minimal number of 

replicas for reading request needs to contact in real time 

by defining the consistency levels (one, two, quorum, 

local quorum, etc.).  Depending on these consistency 

levels, the system can choose the nearest consistent 

replicas using replica selection algorithms. By using 

these algorithms, the system will improve the read/write 

execution time on defining the consistency levels and 

reduce the read/write latency cost on choosing the 

nearest consistent replicas. 

  

2. Related Works 
 

Geo-distributed storage systems tend to forward 

client’s requests towards the “close” replicas to 

minimize network delay and to provide the best 

performance. This task commonly occurs, e.g., in self 

organizing overlays. One of the primary tasks is to 

correctly compute or estimate the distance between the 

nodes; various systems has tackled this problem. 

Meridian et al. [4] is a decentralized, lightweight 

overlay network that can estimate the distance to a node 

in the network by performing a set of pings that are 

spaced logarithmically from the target. Kirill Bogdanov 

et al. [2] demonstrate the need for dynamic replica 

selection within a Geo-distributed environment in a 

public cloud. Second, they propose a novel technique of 

combining symbolic execution with lightweight 

modeling to generate a sequential set of latency inputs 

that can demonstrate weaknesses in replica selection 

algorithms. The sequential set of latency inputs is the 

consecutive latency that describes the network 

conditions. 

According to [6, 7], there are two traditional 

mechanisms that can generally be used as how to 

implement consistency management in large scale 

Asus User
Text Box
1st International Conference on Advanced Information Technologies (ICAIT), Nov. 1  - 2, 2017, Yangon, Myanmar

Asus User
Text Box
ISBN 978-99971-0-381-9 © 2017 ICAIT

Asus User
Text Box
icait2017@uit.edu.mm



 

 147 

systems: an optimistic mechanism which does not 

immediately propagates changes and therefore tolerates 

replica content divergence, and Pessimistic mechanism 

prevents conflicts by blocking or aborting operations as 

necessary. 

Harmony [1] is a system that can dynamically adjust 

replica consistency according to the application 

requirements. It proposes an estimation model to predict 

the stale read. By collecting read/write access frequency, 

network latency, most recent read/write access time and 

other information, it can predict the stale read ratio in 

real time and achieve the required consistency level with 

relatively good performance of elastically increase or 

decrease the number of replicas involved in each read 

request. Harmony uses a White box model, which 

decides the replicas numbers of each request by using 

mathematical formula derivation. To compute the 

number of replicas to be involved in a read operation 

necessary, this model finds the stale read rate smaller or 

equal to the defined threshold value. However, since 

there are so many factors that can impact the result and 

lots of those factors change in real time, such white box 

analysis may not get precise results. Besides, Harmony 

assumes the request access pattern meets Poisson 

process, however, different application’ access patterns 

are different, which means Harmony has its usage 

limitation.  

In most systems, it defines the rate of stale read that 

can be tolerated, and then try to improve system 

performance as much as possible while still not exceed 

such stale read rate. However ZHU, Y et al. [8] takes 

another mechanism, the longest response time is defined 

that it can tolerate and try to enhance the consistency 

level as much as possible within this time. The 

read/write access is broken into 6 steps: reception, 

transmission, coordination, execution, compaction and 

acquisition, and each of which can further break into 

smaller steps. Then a linear regression is used to predict 

the execution time and latency of the next request for 

each step. When a request comes, it maximizes the 

number of steps this request covers within the tolerated 

time, thus achieves the maximize consistency. However, 

the stale read rate of this system is unpredictable.  

P.Bailis et al. [3] introduces Probabilistically 

Bounded Staleness (PBS) consistency. PBS describes 

two ways to estimate the staleness of data: version based 

and time based. Firstly, a closed-form solution is 

derived for version based data staleness. Then it models 

time based staleness and applies it in Dynamo style 

systems [11]. PBS uses Monte Carlo simulation to 

describe the time based data staleness. The paper is 

inspired by PBS and uses the same Monte Carlo 

simulation to estimate the minimal replica number a 

read request needs to contact in order to get a specific 

fresh data rate. An adaptive replica selection algorithm 

[9] determines minimal number of replicas for each read 

request needs to select in order to achieve a specific 

consistency level by estimating the time interval 

between current read request and nearest write request. 

However, this algorithm doesn’t consider the version 

based staleness. W.golab et.al [10], proposed the 

methods of quantifying the consistency in eventually 

consistent storage systems. That paper described the 

comparisons of the staleness methods for the stale read 

problems and issues of Probability of Bounded Staleness 

(PBS) that does not consider workloads where writes 

overlap in time with reads. 

 

3. Read/Write consistency level of 

Cassandra 
 

   Cassandra offers tunable data consistency across a 

database cluster. This means a developer or 

administrator can decide exactly how strong (e.g., all 

nodes must respond) or eventual (e.g., just one node 

responds, with others being updated eventually).  

This tunable data consistency is supported across 

single or multiple data centers, and a developer or 

administrator has many different consistency options 

from which to choose. Moreover, consistency can be 

handled on a per operation basis, meaning a developer 

can decide how strong or eventual consistency should be 

per SELECT, INSERT, UPDATE, and DELETE 

operation.  

Cassandra provides automatic data distribution 

across all nodes that participate in a “ring” or database 

cluster. There is nothing programmatic that a developer 

or administrator needs to do or code to distribute data 

across a cluster. The data is transparently partitioned 

across all nodes in either a randomized or ordered 

fashion, with random being the default. Cassandra also 

provides built-in and customizable replication, which 

stores redundant copies of data across nodes that 

participate in a Cassandra ring. This means that if any 

node in a cluster goes down, one or more copies of that 

node’s data are available on other machines in the 

cluster.  

Unlike complicated replication schemes in various 

RDBMSs or other NoSQL databases, replication in 

Cassandra is extremely easy to configure. A developer 

or administrator simply indicates how many data copies 

are desired, and Cassandra takes care of the rest. 

Replication options are also provided that allow for data 

to be automatically stored in different physical racks 

(thus ensuring extra safety in case of a full rack 



 

 148 

hardware failure), multiple data centers, and cloud 

platforms [14]. 

Data consistency is the synchronization of data on all 

its replicas in the cluster. The number of replicas that 

need to acknowledge the write request to the client 

application is determined by write consistency level and 

the number of replicas that must respond read request 

before returning data to the client application is 

specified on the reading consistency level. Consistency 

levels can be set globally or on a per-operation basis. 

Few of the most used consistency levels are stated 

below: 

• ONE 

A response from one of the replica nodes is 

sufficient. 

• Quorum 

A response from a quorum of replicas from any data 

center. The quorum value is found from the replication 

factor by using the formula. Quorum = (Replication 

Factor/2). 

• All 

All nodes play equal roles; with node communicative 

with each other equally. There is no master node so 

there is no single point of failure and all the data has 

copies in other nodes which secures the data stored. It is 

capable of handling large amounts of data and thousands 

of concurrent users or operations per second across 

multiple data centers. 

 

4. Proposed System 
 

In this architecture, a client writes a file to the 

replicas as the write consistency level. On Cassandra, 

the read and write consistency levels (e.g., one, two, 

quorum, local quorum; etc.) can be defined. In a cluster 

with a replication factor of three, and the read/ write the 

consistency level of quorum, the two of the three 

replicas have to respond to read/write requests. 

Consistency level describes the behavior seen by the 

client. Writing and reading at quorum level allows 

strong consistency.  

 
Figure1. Consistent Replica Selection Architecture 

for reading request in key-value storage 

 

Erasure coding (EC) is a method of data protection 

in which data is broken into fragments and encoded with 

redundant data pieces and stored across a set of different 

locations or storage media. The goal of erasure coding is 

to enable data that become corrupted at some point in 

the disk storage process to be reconstructed by using 

information about the data that's stored elsewhere in the 

array.  

In figure1, the write requests are incoming to the 

coordinator node. The coordinator node performs the 

erasure-encoding that divides the data block into m 

fragments and encode them into n fragments. For 

example, the incoming data is 5MB; it is split into same 

size for each MB. And two more 1MB parity pieces are 

added for redundancy. Therefore, the original block is 

divided into five fragments and then stored on five 

separate Cassandra key-value storage nodes and two 

redundant nodes. In this case, the proposed system 

writes totally 7*7 (write consistency level * fragments) 

into a cluster. The fragments created are saved by 

consistent hashing [12] on different quorum nodes. The 

acknowledgement of successful writes is sent to the 

coordinator node.  

Secondly, when the client reads a file, it sends a read 

request to the coordinator Node. The Coordinator Node 

collects the list of DataNodes that it can retrieve data by 

using the replica selection algorithm described in the 

next section. When sufficient fragments have been 

obtained, the Coordinator Node decodes the data and 

supplies it to the read application request. In this case 

http://searchstorage.techtarget.com/definition/redundant


 

 149 

where a client reads from the cluster the file with the 

read consistency level of five. Therefore, the coordinator 

of the read request retrieves 5*5 (read consistency level 

*fragments) from data nodes. If two of five nodes fail, 

the data cannot be lost. 

 

5. Algorithm Definition 
 

The replica selection algorithm has two parts. It 

includes (i) searching nearest replica and (ii) selecting 

consistent replica. In algorithm_1, the coordinator node 

sends the request message to each replica and latencies 

of different replicas are listed in the read latency map. 

And it chooses the lowest latency of replica from this 

map.   

In algorithm_2, the replica selection algorithm in the 

coordinator node chooses the consistent replica from 

nearest replicas. 

1. Input: Replicas  RF= { RF1, RF2,….RFn}  

2. Output: Nearest Replica NR 

3. Set latencyCost= MAX_VALUE; 

4. Set lowestLC []=null; //Initialize return 

lowest latency replica 

5. For each r in RF // RF=Replicas 

6. Begin 

7. Set latencyCost=getLatencyCost(RFr, job); 

8. If(latencyCost<=MAX_VALUE)Then// 

MAX_VALUE =threshold values 

9. MAX_VALUE =latencyCost; 

10. lowestLC.add (RFr); 

11. End 

12. End for 

13. Return lowest LC //nearest replica NR 

Algorithm 1: Search nearest Replica 

 

Search nearest Replica part executes in two stages. 

First, all replicas are sorted based on their physical 

location, so that all replicas in the same rack and then 

the same datacenter as the source are at the top of the 

list. Second, the latencies are computed from the local 

node (originator of the query) to all other nodes. If the 

latency cost is greater than a threshold of the closest 

node, then all replicas are sorted based on their latency 

costs. Finally, the top replicas from the list are chosen. 

Firstly, total numbers of replica are listed as input 

(line1). The threshold value is set at the latency cost of 

line3. In line8, the coordinate node contacts every other 

replica with request messages. The round trip time it 

takes from the request until the reply is passed through 

Ttotal =RTTrequsest/2 Tprocessing+RTTreply/2.  Ttotal is used to 

get the latency cost of computing data nodes in 

algorithm1. These costs are used when the local node 

needs to forward client requests to other replicas. 

And then total times taken from different replicas are 

listed in latencyCost (line8). Finally algorithm1 returns 

the list of lowest latency cost of the replicas in lowestLC 

as output to client. (line14).  

  

1. Input: Nearest Replica NR= 

{NR1,NR2,…NRn}  

2. Output: Consistent Replicas 

3. For each Nearest Replica NRi  

4. Begin 

5. Set RCL=2//ConsistencyLevel.QUORUM 

6. Set noOfConsitentRead=0 

7. While(noOfConsistentRead<=RCL) 

8. If(stalerate<=maxStalteRate)Then 

9. consistentRead.add(NRi) 

10.   noOfConsistentRead++; 

11.   Return consistentRead; 

12. End for 

13. End 

Algorithm 2: A Consistent Replica Selection  

 

In algorithm_2, the set of the nearest replicas is 

collected as input that comes from output of 

algorithm_1 by computing latency costs. And then 

algorithm_2 sets the read consistency level (RC) that the 

client will need the most up-to-date information. 

Read/Write latencies of different replicas are listed in 

history file on the coordinator node. 

This algorithm determines the number of consistent 

replica nodes, one read request should select in real-

time, according to calculate arrival times of nearest 

update request and the processing order of read request 

and write request in different replicas. 

 For computing stale rate of algorithm_2, a quorum 

system obeys PBS k-staleness consistency if with 

probability 1-psk; at least one value in any read quorum 

has been committed within k versions of the latest 

committed version when the read. 

                                      (1) 

In eq. 1, When N=3, R=W=1, this means that the 

probability of returning a version within 2 versions  

is            , within 3 versions is                , within 5 

versions is > 0.868, and within 10 versions is >         .     
0.5̅ 0.703̅̅ ̅̅ ̅ 

0.98̅̅ ̅̅ ̅̅  



 

 150 

When N=3, R=1, W=2 (or, equivalently, R=2, W=1), 

these probabilities increase: k=1 -> 0.6, k=2 -> 0.8, and 

k=5     > 0.995. 

A quorum system obeys PBS (k,t)-staleness 

consistency  if, with probability 1 - pskt, at least one 

value in any read quorum will be within k versions of 

the latest committed version when the read begins, 

provided the read begins t units of time after the 

previous k versions commit. A quorum system obeys 

PBS k-staleness consistency with probability 1 –psk 

where psk is the probability of non-intersection with one 

of the last k independent quorums. 

         
(2) 

The above equation makes several assumptions. 

Reads occur instantly and writes commit immediately 

after W replicas have the version. T-staleness in real 

systems depends on write latency and propagation 

speeds.  

 

6. Analysis of read/writes execution time 
 

The read/write execution time of consistency level is 

tested by using Cassandra cluster on VMware Ubuntu 

14.04 LTS i386. The processor is Intel(R) Core(TM) i7-

4770 CPU @ 3.40 GHz. Installed memory (RAM) is 

4.00GB as shown in table1. 

 

Table1. Hardware Specification and Virtual 

Environment 

 

The staff data from Ministry of Higher Education is 

used on Cassandra cluster. Staff information is 

described by Unicode in “staff.csv”.  

When importing data from the csv to Cassandra, java 

hector code truncate the input csv data with a comma 

(",") line by line. And then the output csv data are 

exported on Cassandra. 

Figure2 shows Cassandra supports Unicode, but, 

Hbase does not support it.  Therefore, staff data can be 

tested on Cassandra cluster. Unicode is the international 

accepted standard by the World Wide Web Consortium, 

the main international standards organization for the 

World Wide Web. And it also makes that it is extremely 

easy to translate the Wikipedia's interface. And Unicode 

fonts support 11 languages that use the Myanmar script: 

Burmese, 2 liturgical languages: Pali and Sanskrit, 8 

minority languages: Mon, Shan, Kayah, four Karen 

languages and Rumai Palaung [13]. It was officially 

released by Myanmar Natural Language Processing 

(NLP) Research Center joining existing Myanmar 

Unicode 5.1. 

 

 
Figure2. Unicode on Cassandra Cluster 

 
Ubuntu 14.04 LTS is installed on three servers and 

one client by Cassandra clusters. There are 203 rows 

and 40 columns from csv file are inserted into one of 

Cassandra servers and replicate it interconnected other 

servers. And Replication Factor (RF), Read Consistency 

Level (RCL) and Write Consistency Level (WCL) are 

defined by changing the consistency level (one, two and 

quorum) and tested by Java hector code. Write 

execution time of servers and read time of the client 

according to consistency level are shown in figure3. 

According to this figure, the read/write execution time 

of consistency level (quorum) is better than consistency 

level (one and all). 

 

Figure3. Read/Writes execution time of consistency 

level (one, two and quorum) 

 

7. Conclusion 
 

The paper presents the performance of the 

consistency level (one, all and quorum) for read/write 

requests in Cassandra key-value data storage. In 

defining these consistency levels, a replica selection 

Operating System 

VMware Ubuntu 14.04 LTS 

i386 

RAM 4.00GB 

Hard-disk 195GB 

Processor 

Intel(R) Core(TM) i7-4770 

CPU @ 3.40 GHz 

Cassandra version: 1.0.6 

0

20

40

60

80

100

120

140

160

180

200

CL_1 CL_QUORUM CL_ALL

E
x
ec

u
ti

o
n
 t

im
e 

(m
se

c)

Consistency Level

Write Time

Read Time



 

 151 

approach is proposed for choosing the consistent 

replicas in different clusters by searching the nearest 

replica and selecting the consistent replica. For a 

specific application, its read/write access pattern, 

network latency and system load always change 

dynamically. Therefore, at different time, to reach the 

same consistency level, the impact on system 

performance is different. In this approach, the arrival 

time of read/writes request latencies, timestamp and 

versions are used to choose the consistent replicas near 

the clients. And this approach can determine the 

minimal number of replicas for reading request needs to 

contact in real time and thus improve the system 

performance as a result of reduced read/write execution 

time, latency cost and disk storage cost. 

 

8. Future Work 
 

In the future, the proposed algorithms will be 

validated on Cassandra clusters. And predicted t-

visibility and latency will be compared with measured 

values and will compute the stale read rate for consistent 

replicas by adding more nodes and more dataset size on 

Cassandra and MongoDB distributed key-value data 

storage. And read/writes execution time, latency cost 

and storage cost of the system will be compared with the 

existing system. 

 

9. References 
 
[1] H. Chihoub, S. Ibrahim, G. Antoniu and M. S. Perez, 

"Harmony: Towards Automated Self-Adaptive Consistency in 

Cloud Storage", IEEE International Conference on Cluster 

Computing, September 24-28; Beijing, China , 2012. 

 

[2] K. Bogdanov, M. Pe´on-Quir´os, Gerald Q. Maguire 

Jr.Dejan Kosti´c, “The Nearest Replica Can Be Farther Than 

You Think", ACM 978-1-4503-3651-2/15/08, 2015. 

 

[3] P. Bailis, S. Venkataraman, J. M. Hellerstein, M. Franklin 

and I. Stoica. "Probabilistically Bounded Staleness for 

Practical Partial Quorums", Proceedings of the VLDB 

Endowment. 5, 8 , 2012.  

 

[4] B. Wong, A. Slivkins, SIRER and E. G. Meridian, "A 

lightweight network location service without virtual 

coordinates", in ACM SIGCOMM Computer Communication 

Review, vol. 35, ACM, pp. 85–96, 2005. 

 

[5] W. Vogels, "Eventually consistent", CACM, 52:40–44, 

2009. 

 

[6] Y. Saito and H. M. Levy, "Optimistic replication for 

internet data services", in International Symposium on 

Distributed Computing, pages 297–314, 2000. 

 

[7] Y. Saito and M. Shapir, " Optimistic replication",  ACM 

Comput. Surv., 37(1):42–81, 2005. 

 

[8] Y. Zhu and J. Wang. Malleable, "Flow for Time-Bounded 

Replica Consistency Control", OSDI Poster, October 8-10; 

Hollywood, USA , 2012. 

[9] Z.Ye and Weijian, "An Adaptive Replica Selection 

Algorithm for Quorum based Distributed Storage System", 

International Journal of Grid and Distributed Computing 

Vol.9, No.5,2016. 

 

[10] W.golab, Muntasir R. Rahman. et.al, "Eventually 

Consistent: Not What You Were Expecting?", Volume 12 

Issue 

1, January2014CM. 

 

[11] G. DeCandia, D. Hastorun, M.Jampani, G.Kakulapati, 

A.Lakshman, A.Pilchin, S.Sivasubramanian, P.Vosshall 

and W.Vogels, “Dynamo: Amazon’s Highly Available Key-

value Store”, ACM 978-1-59593-591-5/07/0010, 2007. 

 

 [12] P. Garefalakis , P. Papadopoulos, I. Manousakis, and 

K.Magoutis, “Strengthening Consistency in the Cassandra 

Distributed Key-Value Store”, International Federation for 

Information Processing 2013. 

 

[13] https://wikivisually.com/wiki/Burmese_ (language) 

 

[14] A. Basith, “Introuduction to Apache Cassandra”, April 

22, 2017. 

 

 

 

 

 




