

 140

Range Tree Based Indexing of Mobile Tracking System

Thu Thu Zan, Sabai Phyu

University of Computer Studies, Yangon

thuthuzan@ucsy.edu.mm, sabaiphyu@ucsy.edu.mm

Abstract

With advances in location-based services, indexing

the need for storing and processing continuously moving

data arises in a wide variety of applications. Some

traditional spatial index structures are not suitable for

storing these moving positions because of their

unbalance structure. Searching an unbalanced tree may

require traversing an arbitrary and unpredictable

number of nodes and pointers. Presorting before tree

structure is one of the ways of building a balanced two

dimensional tree. In this paper, we proposed Presort

Range tree that is suitable for moving objects with the

dynamic range query. Moreover, with extending mobile

technology, tracking the changing position of devices

becomes a new challenge. The current location of each

user would always be known at the server side whereas

it would create a problem. If the mobile movements are

small and frequent, at that time unnecessary updates

would be performed at the server. In this paper, we also

proposed Hybrid Update Algorithm to reduce the server

update cost greatly.

Keywords- Location Update Policies, Location Based

Service (LBS), Range Tree, Tracking, 2D Range Query

1. Introduction

Everyone who is in IT field says “Today is the age of

three things: Cloud Computing, Internet of Things, and

Mobile.” This word is true because there is no doubt that

businesses can reap huge benefits from them [2].

 In mobile technology, tracking moving objects are

one of the most common requirements for many

location management services. Since, the location of

moving object changes continuously but the database

location of the moving object cannot be updated

continuously; therefore, an updating strategy for moving

object is required.

In summary, in this paper we introduce the presort

range tree for dynamic attributes whose main

contributions are as follows.

i. Presort Range tree structure is proposed for moving

objects with the availability of dynamic range

query.

ii. Hybrid Update Algorithm is proposed that will help

to get the current position of moving mobiles at

client side and reduces the server update cost

greatly.

We explain how to incorporate dynamic attributes in

presort range tree and a model is added to deal with

overall system. Finally, we made a comparison that will

show the experimental result based on presort range tree

and without tree. Furthermore, an experimental result of

threshold value for proposed Hybrid Update algorithm is

made with simulation.

2. The Range Tree

A tree data structure is a powerful tool for

organizing data objects based on keys. It is equally

useful for organizing multiple mobile objects in terms of

hierarchical relationships. There is an assumption for

mobile locations that no two points have the same x-

coordinate and also y-coordinate. To construct spatial

tree structure, the first thing is preprocessing the data

into the data structure. Then, queries and updates on the

data structure are performed. Then, we treat range query

as 2 nested one-dimensional queries: [x1,x2] by

[y1,y2]. The first step is to ask for the points with x-

coordinates in the given range [x1,x2] => a set of

subtrees. Then, instead of all points in these subtrees,

only want those that fall in [y1,y2]. In figure, P(u) is the

set of points under u store those points in another tree

Y(u), keyed by the y-dimension.

Figure 1: Structure of a Range Tree and Circular

Range Searching

3. Location based services

Location based services (LBS) are services offered

through a mobile phone and take into account the

device’s geographical location.

Asus User
Text Box
1st International Conference on Advanced Information Technologies (ICAIT), Nov. 1 - 2, 2017, Yangon, Myanmar

Asus User
Text Box
ISBN 978-99971-0-381-9 © 2017 ICAIT

Asus User
Text Box
icait2017@uit.edu.mm

 141

LBS typically provide information or entertainment.

LBS largely depend on the mobile user’s location. These

services can be classified into two types: Pull and Push.

In a Pull type, the user has to actively request for

information. In a Push type of service, the user receives

information from the service provider without

requesting it at that instant [4].

3.1. Location Update Policies

Various location update strategies are available in

the mobile computing. They are divided into specific

strategies like (1) Distance Based Location Update (2)

Time Based Location Update (3) Movement Based

Location Update (4) Profile Based Location Update and

(5) Deviation Based Location Update [1].

3.2. Getting Mobile Location Framework

Figure 2: Getting location for Mobile Application

This system has to get current location as fast as it

can so it has a framework shown in figure2. It helps to

provide a more powerful location framework than usual.

This framework is intended to automatically handle

location provider's support, accurate location, and

update scheduling. It includes the following features.

(a) GPS features –> (GPS, AGPS):.

i. determines location using satellites.

ii. does not need any kind of internet or wireless

connection.

iii. depending on conditions, this provider may

take a while to return a location fix.

(b) Network provider –> (AGPS, CellID, WiFi

MACID):

i.determines location based on availability of cell

tower and WiFi access points.

ii.results are retrieved by means of a network

lookup.

(c) Cellular Network –> (CellID, WiFi

MACID):

i. a special location provider for receiving

locations without actually initiating a location fix.

ii. although if the GPS is not enabled this provider

might only return coarse fixes.

iii. is mapped to the specific set of hardware and

telecom provided capabilities

To shorten the time to first fix, or the initial

positioning or increase the precision in situations when

there is a low satellite visibility, the mobile network

should be used. The best way is to use the “network” or

“Cellular Network” provider first, and then fallback on

“gps”, and depending on the task, switch between

providers.

4. Related Works

There are a number of papers that describe about

moving objects' index tree structure and mobile update

policies. Most papers are focus on using one index

structure and one update policy. Some discuss

combination of index trees called hybrid tree structure

and comparison of using one index structure and it.

Dongseop Kwon, Sangjun Lee, Sukho Lee proposed a

novel R-tree based indexing technique called LUR-tree.

This technique updates the structure of the index only

when an object moves out of the corresponding MBR

(minimum bounding rectangle). If a new position of an

object is in the MBR, it changes only the position of the

object in the leaf node. [5]. So, it remove unnecessary

modification of the tree while updating the positions

because this technique updates the index structure only

when an object moves out of the corresponding MBR

(minimum bounding rectangle.

Christian S. Jensen, Dan Lin, Beng Chin Ooi

represented moving-object locations as vectors that are

time stamped based on their update time. By applying a

novel linearization technique to these values, it is

possible to index the resulting values using a single

B_

+tree that partitions values according to their

timestamp and otherwise preserves spatial proximity.

This scheme uses a new linearization technique that

exploits the volatility of the data values, i.e., moving-

object locations, being indexed. Algorithms are

provided for range and _NN queries on the current or

near-future positions of the indexed objects [4].

Yuni Xia, Sunil Prabhakar proposed a novel indexing

structure, namely the Q+Rtree that is a hybrid tree

structure which consists of both an R*tree and a

QuadTree. In Q+R tree, quasi-static objects are stored in

 142

an R*tree and fast-moving objects are stored in a

Quadtree. By handling different types of moving objects

separately, this index structure more accurately reflects

the reality and results in better performance. In their

work, no assumption is made about the future positions

of objects. It is not necessary for objects to move

according to well-behaved patterns and there are no

restrictions, like the maximum velocity, placed on

objects either [7].

Cheng, Pingzhi Fan, Xianfu Lei, and Rose Qingyang

Hu made a location update scheme in which update

occurs either when the movement threshold for MBLUs

is reached or when the time threshold for TBLUs is

reached. The movement counters and the periodic LU

timer reset when an LU occurs. They used convex

function of the movement threshold. That is, there is a

value of the movement threshold that can minimize the

signaling cost. They showed that the HMTBLU scheme

always has higher signaling cost than the MBLU

scheme [3].

Vicente Casares_Giner, Pablo Garcia-Escalle

proposed a location update scheme by combining two

dynamic strategies, movement based and the distance

based [6]. They showed that results obtained from these

analytical model show that, with little memory

requirements in the mobile terminal very good

performances can be obtained. However, it required that

after each movement, the mobile terminal has to search

the identity of the new visited cell in a cache memory.

5. Proposed Approach

This paper is integrated by two major components:

client side and server side. The overall system model is

built and hybrid update algorithm that will aid to get last

current location and reduce server update cost is

proposed at the client side. Presort range tree procedure

for moving objects is included in the server side.

5.1. System Model

A model, searchable model is built to incorporate

dynamic attributes in presort range tree and query

processing. This includes a server and a collection of

registered mobile objects. In order to keep the location

information up to date, these objects regularly send their

updated positions to the server. Unnecessary updates

wouldn’t be performed at the server because Hybrid

Update Algorithm is applied to the client side. The

require information query the server with range queries

like "which mobiles are currently located within a

disaster area?” To process such queries efficiently, the

server maintains an index tree that, in addition to

speeding up the query processing, is also able to absorb

all of the incoming updates.

Figure 3: Client-Server System Model

5.2. Hybrid Update Algorithm

The distance-based update scheme seems to be

simple location update strategy. In this scheme, each

mobile host has to track the distance it moved since its

last location update. When the distance exceeds the

threshold (HD), the mobile host transmits an update

message.

But it is complicated because of the variation of cell

sizes and the need to compute the distance a mobile has

moved.

The time based location update strategy is a simple

strategy for location update. Here the mobile base

station would update the location of user after a

particular time period say T. However, the main

drawback here would be sometimes if the user is

stationary at that time unnecessary updates would be

performed.

In this paper, hybrid location update algorithm is

proposed based on time and distance so that it can

significantly reduce location update overhead which

improves the efficiency of mobility support

mechanisms. The structure of mobile location update is

shown in figure.

 Figure 4: Mobile Location Update Structure

 143

The advantage of the proposed algorithm is that it

reduces location update traffic, with a minimum

increase in implementation complexity.

Algorithm: Hybrid Location Update

Input: Database of mobile locations contains the

locations of registered mobile with time

Output: current registered mobile location

1. i=0; dis_threshold; time_threshold; time_scheduler;

2. Read the current location (Lxi,Lyi,ti) and previous

location(Lxi-1,Lyi-1,ti-1) of registered mobile location

3. If the time_scheduler > time_threshold &&

 (Lxi-Lxi-1)2 +(Lyi-Lyi-1)2 > dis_threshold

4. 3.1. Update the database with current location (Lxi-1,

Lyi-1,ti-1) = current location (Lxi,Lyi,ti),i+1.

3.2. Total number of update=Total number of

update+1;

5. Else current location(Lxi,Lyi,ti) = previous location

(Lxi-1,Lyi-1,ti-1), i=i+1;

5.3. Proposed Presort Range Tree

The procedure of proposed presort range tree is the

following;

Input: Lats=Array of two dimensional points sort on

latitudes

Longs=Array of two dimensional points sort on

longitudes

Procedure PRTree (Lats, Longs)

1. If Lats.length==1 then return new

LeafNode(Lats[1]);

2. medium= [Lats.length/2];

3. Copy Lats[1….medium] to Lats L and

Lats[medium+1….. Lats.length] to LatsR ;

4. for i=1 to Longs.length do

5. if Longs[i].x <= Lats[medium].x then append

Longs[i] to LongsL ;

6. else append Longs[i] to LongsR ;

7. root= new Node((Lats[medium].x),One D

Range(Y));

8. root.left= PRTree(LatsL , LongsL);

9. root.right= PRTree(LatsR , LongsR);

10. return root;

5.3.1. Circular Range Search

After preprocessing of tree construction is done, the

structure allows searching circular range query for

mobile objects. To determines whether registered

mobiles are in service area or not so that this system has

to get bounding coordinates with center and service

distance: (centerLat, centerLong, bearing, distance).

bearingRadians = Radians(bearing);

lonRads = Radians(centerLong);

latRads = Radians(centerLat);

maxLatRads = asin((sin(latRads) * cos(distance / 6371)

+ cos(latRads)

sin(distance / 6371) * cos(bearingRadians)));

maxLonRads = lonRads + atan2((sin(bearingRadians) *

sin(distance / 6371) cos(latRads)),(cos(distance / 6371) -

sin(latRads) * sin(maxLatRads)));

5.3.2. Example: Calculating Presort Range

Tree with center and service distance

Firstly, sort the mobile locations by latitudes and

longitudes.

Then the Presort Range Tree is built and shows as the

following;

25.40319 98.11739

LEFT: 16.80958 96.12909

LEFT: 16.35099 96.44281

RIGHT: 16.77923 96.03917

RIGHT: 24.99183 96.53019

LEFT: 24.77906 96.3732

RIGHT: 25.38048 97.87883

RIGHT: 25.88635 98.12976

LEFT: 25.59866 98.37863

Sort by X

16.35099 96.44281

16.77923 96.03917

16.80958 96.12909

24.77906 96.3732

24.99183 96.53019

25.38048 97.87883

25.40319 98.11739

25.59866 98.37863

25.82991 97.72671

25.88635 98.12976

26.15312 98.27074

26.35797 96.71655

26.69478 96.2094

Sort by Y

16.77923 96.03917

16.80958 96.12909

26.69478 96.2094

24.77906 96.3732

16.35099 96.44281

24.99183 96.53019

26.35797 96.71655

25.82991 97.72671

25.38048 97.87883

25.40319 98.11739

25.88635 98.12976

26.15312 98.27074

25.59866 98.37863

 144

RIGHT: 25.82991 97.72671

RIGHT: 26.35797 96.71655

LEFT: 26.15312 98.27074

RIGHT: 26.69478 96.2094

The results of sample range search in centerLat,

centerLng, distance: 26.693, 96.208, 1000km that are

registered mobile locations to send notification as

follows:

node (25.40319, 98.11739)

RIGHT: node (24.99183, 96.53019)

LEFT: node (24.77906, 96.3732)

RIGHT: node (25.38048, 97.87883)

RIGHT: node (25.88635, 98.12976)

LEFT: node (25.59866, 98.37863)

RIGHT: node (25.82991, 97.72671)

RIGHT: node (26.35797, 96.71655)

LEFT: node (26.15312, 98.27074)

RIGHT: node (26.69478, 96.2094)

6. Simulation Results

The simulation considers an experimental result with

threshold value for proposed Hybrid Update algorithm.

These values inserted in the local database of the

moving object. Then compute the distance and if the

distance >= a specific threshold, an update occur.

In figure 6 that represent the actual and expected path

through 9 minute at threshold = 2 miles. This result

shows that central database needs to be update with

actual location only five times at point a, b, c, d and e.

Since the distance is greater than the value of threshold

instead of updating the database every time.

Figure 5.The actual and expected path at

(threshold=2 miles)

The next experiment has been performed on a 2.60

GHz ASUS PC, with Intel (R) Core (TM) i7 CPU and 4

GB memory. For this experiment, we use the most

popular testing framework in Java, JUnit. It is an open

source testing framework which is used to write and run

repeatable automated tests. The experiment was

performed for computing query and execution time for

range search, with number of data set points that are

organized in two dimensions. To construct spatial tree

structure, the first thing is preprocessing the data into

the data structure. Then, queries and updates on the data

structure are performed. It has been used to compare the

performance of both, Range tree and without Tree, for

data set points in a 2-dimentional space. The execution

time required by both approaches was different. Query

found by both approaches with the same points. Better

performance was achieved when the Range tree was

used for larger number of data sets for range search. The

more volumes of data tests, the less number of seconds

needs in Range tree.

Figure 6. Execution Time (Preprocessing time

+Query time) of Tree and Without Tree

7. Conclusion and Future Works

In this paper, the main service task is handling

mobile objects based on index tree structure. The system

maintains the moving mobile locations and circular

range query is available from the server. Therefore, the

system is done for monitoring of mobile objects, to be

able to efficiently locate and answer queries related to

the position of these objects in desire time. The system

will helps to be tradeoff frequency of update due to the

locations of mobile objects and reduce server update

cost. It also support range query with dynamic object

locations.

For future works, the proposed Hybrid Update approach

will be applied to other index structures (e.g. the quad

tree, the K-D-B tree). Moreover, this proposed system

can be used to storing other moving objects such as

temperature, vehicle location and so on. The results

obtained from the other index tree structure can be

compared to this paper's results.

8. References

[1] A.Kalpesh A, S.Priyanka, “Various Location Update

Strategies in Mobile Computing”, International Journal of

Computer Applications® (IJCA) (0975 – 8887) Proceedings

on National Conference on Emerging Trends in Information &

Communication Technology (NCETICT 2013)

[2] Rundle, M.Huffington, “future of technology whitepaper”,

UK, 2015.

 145

 [3] Cheng, Pingzhi Fan, Xianfu Lei, And Rose Qingyang Hu,"

Cost Analysis Of A Hybrid-Movement-Based And Time-

Based Location Update Scheme In Cellular Networks", IEEE

Transactions On Vehicular Technology, Vol. 64, No. 11,

November 2015.

[4] Christian S. Jensen,_ Dan Lin, Beng Chin Ooi, "Query and

Update Efficient B+-Tree Based Indexing of Moving Objects",

VLDB 04 Proceedings of the Thirtieth international

conference on Very large databases, Volume 30 pages 768-

779.

[5] Dongseop Kwon, Sangjun Lee Sukho Lee, "Indexing the

Current Positions of Moving Objects Using the Lazy Update

R-tree" Third International Conference on Mobile Data

Management, IEEE, 2002.

[6] Vicente Casares_Giner, Pablo Garcia-Escalle, "An Hybrid

Movement-Distance-Based Location Update strategy for

Mobility Tracking", CICYT (Spain) for financial support

under project number TIC2001-0956-C04-04.

[7] Yuni Xia Sunil Prabhakar, "Q+Rtree: Efficient Indexing

for Moving Object Databases", Eighth International

Conference on Database Systems for Advanced Applications

(DASFAA '03), March 26-28, 2003, Kyoto, Japan.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7801

