
 26

Optimum Checkpoint Interval for MapReduce Fault-Tolerance

Naychi Nway Nway, Julia Myint

University of Information Technology, Yangon, Myanmar

naychinwaynway@uit.edu.mm,juliamyint@uit.edu.mm

Abstract
MapReduce is the efficient framework for parallel

processing of distributed big data in cluster environment.

In such a cluster, task failures can impact on performance

of applications. Although MapReduce automatically

reschedules the failed tasks, it takes long completion time

because it starts from scratch. The checkpointing

mechanism is the valuable technique to avoid re-

execution of failed tasks in MapReduce. However,

defining incorrect checkpoint interval can still decrease

the performance of MapReduce applications and job

completion time. In this paper, the optimum checkpoint

interval is proposed to reduce MapReduce job completion

time when failures occur. The proposed system defines

checkpoint interval that is based on five parameters:

expected job completion time without checkpointing,

checkpoint overhead time, rework time, down time and

restart time. Therefore, because of proposed checkpoint

interval, MapReduce does not need to re-execute the

failed tasks, so it reduces job completion time when

failures occur. The proposed system reduces job

completion time even though the number of failures

increases and the performance of this system can be

improved 4 times better than the original MapReduce.

Keywords- MapReduce, big data, task failures,

completion time, checkpoint interval

1. Introduction

Data-intensive applications process vast amounts of
data with special-purpose programs. Even though the
computations behind these applications are conceptually
simple, the size of input datasets requires them to be run
over thousands of computing nodes. For this, Google
developed the MapReduce framework, which allows non-
expert users to run complex tasks easily over very large
datasets on large clusters. The large datasets are often
messy, containing data inconsistencies and missing value
(bad records). This may, in turn, cause a task or even an
application to crash. Google reports 5 average worker
deaths per MapReduce job in March 2006 [8], and at least
one disk failure in every run of a 6 hour MapReduce job
with 4,000 machines [16].
 The impact of task failures can be considerable in
terms of performance [7]. In MapReduce process, after
map stages the intermediate data is produced and it is the

input for reduce stages. So, intermediate data is important
to be successful MapReduce process. Although
MapReduce can restart the process and produce
intermediate data again when task failures occur, it can
prolong job completion time.

Fault-tolerance is, in fact, an important aspect in large
clusters because the probabilities of task failures increase
with the growing of computing nodes. It allows a
computation in progress in spite of having individual
failures in system. Checkpoint saves the system state in
stable storage so it can reduce the amount of lost
computation. The performance of defining correct
checkpoint interval can reduce job completion time when
failures occur.

Therefore, in this paper, checkpoint-based fault-
tolerance with optimum checkpoint interval is proposed to
reduce the job completion time when task failures occur
in Hadoop MapReduce. The proposed system addresses
the surveys of related work in Section 2. Section 3
describes the basic flow and built-in fault-tolerance of
MapReduce. The checkpoint interval and implementation
of proposed system are described in Section 4 and 5.
Section 6 proposes the experimental results and finally,
the conclusion of this paper is presented in Section 7.

2. Related Work

MapReduce [1] is a parallel programming model
which is originally proposed by Google in 2004 to deal
with the rapidly increasing demand of processing mass
data concurrently. Through well-defined interfaces and
runtime support library, MapReduce can automatically
perform the large-scale computing tasks in parallel, hide
the underlying implementation details, and reduce the
difficulty of parallel programming, which makes
MapReduce become one of the most widely used parallel
programming models in the concurrent processing vast
amount of data. MapReduce considers task and worker
failures as characteristic rather than exception. As a result,
it comes with fault tolerance strategies. However,
applications can experience significant performance
downgrade in case of failures. According to a recent study
[11], a single failure on a Hadoop job could cause a 50%
increase in completion time.

RAFTing MapReduce presented in [9] tries to create
several kinds of checkpoint to handle different failures.
RAFT-LC is a local checkpointing algorithm that allows a

user
Text Box
1st International Conference on Advanced Information Technologies (ICAIT), Nov. 1 - 2, 2017, Yangon, Myanmar

user
Text Box
ISBN 978-99971-0-381-9 © 2017 ICAIT

user
Text Box
icait2017@uit.edu.mm

 27

map task to store progress metadata on local disk and later
restore based on this in case of failures. RAFTing
mappers push data to reducers instead of the opposite way
and make the intermediate data replicated without
bringing much overhead.

To prevent task failures in MapReduce, CROFT [13]
proposed a checkpoint and replication oriented fault
tolerant scheduling algorithm, which uses a checkpoint
based active replication method. It also creates a local
checkpoint file which is responsible for recording the
progress of the current task and a global index file which
is responsible for recording the characteristics of the
current execution.

In paper [14], the author introduced two checkpoint
algorithms to eliminate the costs of re-reading, re-
copying, and re-computing the partial processed data. It
makes an input checkpoint to record the location of
unprocessed input data, while the output checkpoint
consists of spilled files and their index information.
Young proposed a first-order model that defines the
optimal checkpoint interval in terms of checkpoint
overhead and mean time to interrupt (MTTI). Young’s
model does not consider failures during checkpointing
and recovery [12].

Given the checkpointing parameters such as
checkpoint latency and MTTI, Daly’s model [3] provides
a method for computing the optimal checkpoint which is
associated with the optimal execution time. The choice of
a checkpoint interval influences the number of checkpoint
operations performed during an application’s execution.
Checkpoints are created when the progress reaches 0.5
(or) 0.25 by calculation progress rate and estimated task
execution time [2]. When the checkpoints are created in
50% of execution time, the failed tasks before 50% cannot
be recovered. The checkpointing mechanism for 25% of
progress score can cause the network traffic.

To ensure that checkpoints can be used effectively, the
proposed system introduces optimum checkpoint interval
that aims to recover from task failures and to improve
performance as the main goal. Unlike original
MapReduce, the proposed system reschedules the failed
tasks without starting again. The experiments show that
the proposed system outperforms original MapReduce
with a 20% increasing of performance.

3. The MapReduce Framework

3.1. Execution Flow of MapReduce

MapReduce [5] adopted a two-stage and shared-
nothing design. In the first stage, the map stage,
MapReduce takes a list of key value pairs as input, and
applies a map function on each of the pair to generate
arbitrary number of intermediate key value pairs. In the
second stage, all the intermediate values associated with
the same keys are grouped together as a list, and a reduce
function takes each of the groups as input to generate

another arbitrary number of final output key value pairs.
The paradigm behind MapReduce is a quite simple
behavior because a map or reduce function call on a key
value pair shall depend neither on other pairs nor on the
processing order. This makes it easy to split the whole job
into smaller independent subtasks that can run in parallel.

The input data files of MapReduce are usually stored
on a DFS (distributed file system) such as HDFS, an
open-source implementation of GFS. The data files are
split into small pieces logically, every one of which will
be fed to a map task. Map tasks, also known as mappers,
parse raw input data splits into k1 v1 pairs, and invoke the
map function on every single pair, the generated k2 and
v2 pairs are written to a memory buffer. When the buffer
verges to overflow, the mapper flushes it to a local disk
file, which is called a spill. A mapper may create several
spill files, however, it will merge the spill files into a
single output file on local disk after all input records are
processed. There are usually several reduce tasks, or
reducers, key value pairs with the same key hash value go
to the same reducer. As a result, the single map output file
shall be logically spilt into R parts, each part will be fed
to a reducer. A reduce task can be summarized to 3 main
phases: shuffle, sort and reduce. During the shuffle phase,
reducers copy outputs from each mapper, and merge the
outputs into less amount of files in the sort phase. The
shuffle phase and sort phase often overlap in practice, but
the reduce phase shall not start until shuffle phase
finishes, which is limited by the MapReduce semantics.
The execution flow of MapReduce is shown in Figure. 1.

 Figure 1. Execution Flow of MapReduce

3.2. Fault-Tolerance in MapReduce

Hadoop has been built with some level of faults
tolerance [10]. MapReduce adopted a centralized design,
an instance of Hadoop MapReduce deployment basically
consists of a master and several slaves [4]. The master
keeps several data structures, like the state and the
identity of the worker machines [15]. Slaves execute the
task on master’s request, and each execution of a task is
called a task attempt. A task attempt periodically informs
the master about its latest status information [5]. Once the
master receives status report from a task attempt
indicating failure, or a task attempt fails to contact the
master for a certain amount of time, the task attempt is
considered to have failed and the master will schedule

input
files nodes

map
buffer

spill files

reduce

 reduce

HDFS

 28

another attempt for the same task. The new attempt will
recompute the whole input split of the task regardless of
the progress of last attempt. Task attempt failures may
result from bad records, such as invalid or inconsistent
field values, which is common in big data analysis. In the
worst case, the last record of an input split is corrupted
and it will result in a second task attempt processing the
exact same input and doubles the task execution time at
least. In Hadoop, the bad record will be skipped in a third
attempt, and apparently the delay caused by the single bad
record is too high and not tolerable.

While checkpointing is one of the most widely used
techniques in fault tolerance [12], a naïve implementation
of checkpointing in Hadoop may downgrade the
performance. Due to the fact that a MapReduce job often
processes vast amount of input data, the intermediate data
generated is usually also very large. Checkpointing
requires the intermediate data to be replicated among
several nodes, which involves huge amount of disk IO
and network IO, the two most critical resources in
MapReduce. Checkpointing strategy in MapReduce needs
to be carefully designed.

4. Checkpoint Interval

A checkpoint interval [3] is defined as the duration
between the establishments of two consecutive
checkpoints. That is, an interval begins when one
checkpoint is established, the interval ends when the next
checkpoint is established. Figure 2 shows how to define
checkpoint interval and T is the amount of useful
computation in each interval, C is checkpoint overhead
and L means the duration of time needed to save the
checkpoint [6].

Figure 2. Checkpoint Interval

5. Proposed System Design

The proposed system aims to minimize job completion

time due to failures in MapReduce by determining

checkpoint interval that is based on task failures. Before

calculating checkpoint interval, the system calculates the

expected job completion time [5] without checkpoint

using equation (1)

where 𝑇𝑐 means job completion time, 𝑇𝑛 means the

number of tasks, 𝑤 means the number of workers, 𝐽𝑡

means time to take JVM, 𝐷𝑠𝑖𝑧𝑒 means input data size and

𝐽𝑝 means processing size of JVM per second.

After that, based on job completion time, the system

calculates interval between checkpoint files that

minimizes the time lost when failures occur using

equation (2)

T = Completion Time + Overhead Time + Rework Time

+ Down Time + Restart Time (2)

Completion Time is defined as actual completion time

without checkpoints. Overhead Time is overhead for

writing checkpoint files, Rework Time is time lost due to

failures, Down Time is time lost when an application

cannot reach current running state and Restart Time is

time required before an application resumes to current

work. Completion Time will be 𝑇𝑐 and Overhead Time

will be 𝛽(𝐶(𝜏) − 1) where 𝐶(𝜏) is number of checkpoint

taken and one is subtracted because there is no need to

write checkpoint files in last segment. For Rework Time,

it will be described by
1

2
(𝜏 + 𝛽)𝑁(𝜏) where 𝑁(𝜏) is

expected number of interrupts. Down Time is used as

𝐷𝑁(𝜏) and finally, Restart Time is 𝑅𝑁(𝜏), the amount of

time required to restart times total number of failures. So,

the system constructs the formula as equation (3)

Next, system determines the number of interrupts

𝑁(𝜏) and numbers of checkpoints are calculated by

dividing completion time by checkpoint interval. The

expected number of interrupts can be calculated by the

product of numbers of checkpoints required to complete

calculation and the probability of each segment failing as

in equation (4)

Then, 𝑁(𝜏) is substituted in equation 3:

Using equation 5, the system finds the minima with

respect to 𝜏 that sets the derivation to zero.

Instead of expanding the exponential term, recast

equation 6 as follows:

C
T

C

L L-C

interval begins interval ends

(5)

𝑇 = 𝑇𝑐 + (𝐶(𝜏) − 1)𝛽 +
1

2
(𝜏 + 𝛽)𝑁(𝜏) + 𝐷𝑁(𝜏) + 𝑅𝑁(𝜏) (3)

𝑁(𝜏) =
𝑇𝑐

𝜏
(𝑒

𝜏+𝛽
𝑀 − 1) ≅

𝑇𝑐

𝜏
(

𝜏 + 𝛽

𝑀
)

 (4)

𝑇 = 𝑇𝑐 + (
𝑇𝑐

𝜏
− 1) 𝛽 + [

1

2
(𝜏 + 𝛽) + 𝐷 + 𝑅]

𝑇𝑐

𝜏
(

𝜏 + 𝛽

𝑀
)

𝑒
𝜏+𝛽

𝑀 [𝜏2 + (𝛽 + 2𝑅 + 2𝐷)𝜏 − (𝛽 + 2𝑅 +)𝑀] + 2𝑅𝑀 − 𝛽𝑀 = 0

𝜏 + 𝛽

𝑀
= 𝑙𝑛 [

(𝛽 − 2𝑅)𝑀

𝜏2 + (𝛽 + 2𝑅 + 2𝐷)𝜏 − (𝛽 + 2𝑅 + 2𝐷)𝑀
] = ln[𝑔(𝜏)]

(7)

 (1)

(6)

𝑇𝑐 = (
𝑇𝑛

𝑤
) ∗ (𝐽𝑡 +

𝐷𝑠𝑖𝑧𝑒

𝐽𝑝
)

 29

The system which calculates a Taylor series expansion

for natural logarithm of 𝑔(𝜏) is as follows:

 (8)

Reduce the equation 8 to quadratic form as in (9)

𝜏2 + 2𝐷𝜏 + (𝛽2 − 2𝛽(𝑅 + 𝑀) − 2𝐷𝑀) = 0 (9)

Finally, the value of 𝜏 which minimize equation 5 as

follows:

𝜏 = −𝛽 + √2𝛽(𝑅 + 𝑀) + 2𝐷𝑀 (10)

The proposed system defines checkpoint interval (𝜏)

after processing 50 seconds. After calculating checkpoint

interval, the system creates a checkpoint file in local disk

with three checkpoint information: taskID, a unique task

identifier and offset that specify the last byte of input data

processed by map tasks.

6. Experiment

 We analyze the performance of the proposed system in

this section. Experiments are designed to measure the job

completion time in the case of task failures. The

implementation of the proposed system is based on

Hadoop 2.7.1, Java 1.8 and Hadoop Distributed File

System (HDFS) with data size of 400MB, 500MB and

600MB. The jobs for experiments are word count over

user-submitted comments on StackOverflow.

Figure 3. Comparison of Completion Time of 10 Tasks

with Task Failure

Figure 3 shows the comparison of MapReduce job

completion time between original MapReduce and

proposed system with 400MB. The x-axis is the number

of task errors per 10 tasks and y-axis is the total

completion time. According to the experiment, if a

number of errors increase, the completion time of the job

will take 4 times less than the original Hadoop. When

failures occur, the proposed system reads checkpoint files

more frequently so it saves job completion time. The

experiment of Figure 4 with 500MB and Figure 5 with

600MB also show that the performance of proposed

system is better than original MapReduce when the

number of failures increases.

Figure 4. Comparison of Completion Time of 20 Tasks

with Task Failure

Figure 5. Comparison of Completion Time of 30 Tasks

with Task Failure

7. Conclusion

MapReduce is a popular programming model that

allows the user with simple APIs and is able to run big

data applications. MapReduce is also able to retry the

failure tasks but it performs poorly because of start from

scratch. Although the original MapReduce facilitates

fault-tolerance with re-executing of failed tasks, it can

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

Original MapReduce

Proposed System

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

Original MapReduce

Proposed System

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

Original MapReduce

Proposed System

T
im

e
 (

s
e
c
o

n
d

s
)

T
im

e
 (

s
e
c
o

n
d

s
)

Failed Count per 20 Tasks

Failed Count per 10 Tasks

T
im

e
 (

s
e
c
o

n
d

s
)

= (1 −
1

𝑔(𝜏)
) +

1

2
(1 −

1

𝑔(𝜏)
)

2

+
1

3
(1 −

1

𝑔(𝜏)
)

3

+ ⋯ (8)

𝜏 + 𝛽

𝑀
=

𝑔(𝜏) − 1

𝑔(𝜏)
 +

1

2
(

𝑔(𝜏) − 1

𝑔(𝜏)
)

2

+
1

3
(

𝑔(𝜏) − 1

𝑔(𝜏)
)

3

+ ⋯

Failed Count per 30 Tasks

 30

prolong job completion time when failures occur. The

proposed system presents checkpointing mechanism not

to re-execute failed tasks from start. In order not to delay

long job completion because of checkpointing, the

proposed system defines optimum checkpoint interval that

has the advantageous of reducing job completion time

when failures occur.

As future direction, we intend to propose a task

migration technique for slow tasks in MapReduce. The

main causes of slow tasks in MapReduce are (i) a slow

node and (ii) input data skew. Slow tasks in MapReduce

also threaten the job completion so we will combine

checkpointing and task migration techniques to solve the

problem of slow tasks in MapReduce.

8. References

[1] B.Cho, and I.Gupta, “Making cloud intermediate data

fault-tolerant”, ACM symposium on Cloud

Computing,2010.

[2] C.Lin, T.Chen, and Y. Cheng. “On Improving Fault

Tolerance for Heterogeneous Hadoop MapReduce

Clusters”, IEEE International Conference on Cloud

Computing and Big Data, 2014.

[3] D.John.“Future Generation Computer Systems”,

Volume 22, Issue 3, February 2006, pp. 303-312.

[4] H.Wang, H.Chen, and F.Hu. “ReCT: Improving

MapReduce Performance under Failures with Resilient

Checkpoint Tactics”, IEEE International Conference on

Big Data,2014.

[5] H.Wang, H.Chen, and F.Hu, “BeTL: MapReduce

Checkpoint Tactics Beneath the Task Level”, IEEE

Transactions on Services Computing,2016.

[6] H.Nitin, “On Checkpoint Latency”, Technical

Report,1995.

[7] J.Dean and S Ghemawat, “MapReduce: Simplified

Data Processing on Large Clusters”, In 6th symposium on

Operating System Design and Implementation (OSDI),

San Francisco, December 2004.

[8] J.Dean, “Experiences with MapReduce: an

Abstraction for Large-Scale Computation”, In Keynote I:

PACT 2006.

[9] J.Quiane Ruiz, C. Pinkel, J. Schad, and J. Dittrich,

“RAFTing MapReduce :Fast Recovery on the RAFT”,

IEEE International Conference on Data Engineering,

2011.

[10] P. Costa, M. Pasin, “Byzantine Fault-Tolerant

MapReduce: Faults are Not Just Crashes”, IEEE

International Conference on Cloud Computing

Technology and Science, 2011.

[11] Q.Zheng. “Improving MapReduce Fault Tolerance in

the Cloud”, IEEE International Symposium on Parallel &

Distributed Processsing and Phd Forum(IPDPSW), 2010.

[12] W. Yong, “A first order approximation to the

optimum checkpoint interval”, Communication of the

ACM, 1974.

[13] W. Wei, Y. Liu, and Y. Zhang, “ Checkpoint and

Replication Oriented Fault Tolerant Mechanism for

MapReduce”, IEEE International Conference on Data

Engineering .,2011.

[14] Y.Wang, W.Lu, R.Lou, B. Wei, “Journal of Grid

Computing”,Volume 13,Issue 4, December 2015,

pp. 587-604.

[15] M.Bunjamin, I.Shadi, P. Maria, A. Gabriel,

“Resource Management for Big Data Platforms”,

Springer, 2016.

[16] Sorting 1PB with MapReduce: http:// googleblog.

blogspot.com/2008/11/sorting-1pb-with-mapreduce.html.

