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Abstract 
Nowadays, many applications need high reliability 

pipeline architecture to get faster process and reliable 

data within short time. Kafka has emerged as one of the 

important components of real-time processing pipelines in 

combination with Storm. This paper focuses to develop 

the real-time big data analytics pipeline architecture for 

reliability. Real-time data pipelines can be implemented 

in many ways and it will look different for every business. 

To develop the pipeline architecture, we create real time 

big data pipeline by using Apache Kafka and Apache 

Storm. Kafka and Storm naturally complement each other 

and their powerful cooperation enables real-time 

streaming analytics for fast-moving big data. Then, the 

experiment will be conducted how the processing time 

decreases with the same messages on the different 

partitions. 

 

Keywords- Messaging, Real-time processing, Apache 

Kafka, Apache Storm  

 

1. Introduction 
 

In the present big data era, the very first challenge is to 

collect the data as it is a huge amount of data and the 

second challenge is to analyze it. This analysis typically 

includes User behavior data, Application performance 

tracing, Activity data in the form of logs and Event 

messages. Processing or analyzing the huge amount of 

data is a challenging task. It requires a new infrastructure 

and a new way of thinking about the way business and IT 

industry works. Today, organizations have a huge amount 

of data and at the same time, they have the need to derive 

value from it.Considering the huge volume and the 

incredible rate at which data is being collected, the need 

arises for an efficient analytic system which processes this 

data and provides value in real time. 

Real-time processing is a fast and prompt data 

processing technology that combines data capturing, data 

processing and data exportation together. Real-time 

analytics is an iterative process involving multiple tools 

and systems. It consists of dynamic analysis and 

reporting, based on data entered into a system less than 

one minute before the actual time of use [1].In contrast to 

traditional data analytical systems that collect and 

periodically process huge –static –volumes of data, 

streaming analytics systems avoid putting data at rest and 

process it as it becomes available, thus minimizing the 

time a single data item spends in the processing 

pipeline[2].The main purpose of Big Data real-time 

processing is to realize an entire system that can process 

such mesh data in a short time[4]. Real-time information 

is continuously getting generated by applications 

(business, social, or any other type), and this information 

needs easy ways to be reliably and quickly routed to 

multiple types of receivers. Most of the time, applications 

that are producing information and applications that are 

consuming this information are well apart and 

inaccessible to each other. This, at times, leads to 

redevelopment of information producers or consumers to 

provide an integration point between them. Therefore, a 

mechanism is required for seamless integration of 

information of producers and consumers to avoid any 

kind of rewriting of an application at each end.  

Real-time usage of these multiple sets of data 

collected from production systems has become a 

challenge because of the volume of data collected and 

processed. Kafka has high throughput, built-in 

partitioning, replication, and fault-tolerance, which makes 

it a good solution for large scale message processing 

applications [8]. In this paper, we propose to develop real 

time big data analytics pipeline architecture by using 

Apache Kafka and Apache Storm.  

The remainder of this paper is organized as follows: 

section 2 reviews the related work of this paper. Section 3 

presents the proposed system architecture. In Section 4, 

we describe the architecture of Kafka, the zookeeper 

which needs to run Kafka. The process of Apache Storm 

shows in Section 5. Section 6 describes the framework of 

our system and testing results for this proposed system. 

Then, Ring Election Algorithm is intended to enhance the 

pipeline architecture in the future. Section 7 describes 

conclusion and future work. 

  

2. Related Work 
 

Khin Me Me Thein [1] has proposed to provide the 

secure big data pipeline architecture for the scalability and 

security.The author used Sticky policies and AES 

Algorithm for secure big data pipeline for real time 

streaming applications. 

Steffen FriedWolfram Wingerath, FelixGessert,rich, 

and Norbert Ritter [2] have also proposed qualitative 

comparison of the most popular distributed stream 
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processing systems.The author gives an overview over the 

state of stream processors for low-latency Big Data 

analytics and conduct a qualitative comparison of the 

most popular contenders, namely Storm and its 

abstraction layer Trident, Samza and Spark Streaming. In 

their paper, Streaming processing system is high 

availability, fault-tolerance and horizontal scalability. 

Mohit Maske, Dr. Prakash Prasad, International 

Journal of Advanced [3] intends to ensure the practical 

and high effiency in simulation system that is established 

and shown acceptable performance in various expressions 

using data sheet. It proved that data analysis system for 

stream and real time processing based on storm can be 

used in various computing environment.   

Wenjie Yang, Xingang Liu and Lan Zhang [4] have 

also proposed to ensure the practical applicability and 

high efficiency, to establish and shows acceptable 

performance in simulation. In their paper, an entire 

system RabbitMQ, NoSQL and JSP are proposed based 

on Storm, which is a novel distribution real-time 

computing system. The paper organized a big data real-

time processing system based on Strom and other tools, 

and according to the simulation experiment, the system 

can be easily applied in practical situation. 

Martin Kleppmann [5] explains the reasoning behind 

the design of Kafka and Samza, which allow complex 

applications to be built by composing a small number of 

simple primitives – replicated logs and stream operators. 

We draw parallels between the design of Kafka and 

Samza, batch processing pipelines, database architecture 

and design philosophy of UNIX. 

P Beaulah Soundarabai, ThriveniJ, K R Venugopal, L 

M Patnaik [6] describes the process of ring Election 

Algorithm and presents a modified version of ring 

algorithm. Their paper involves substantial modifications 

of the existing ring election algorithm and the comparison 

of message complexity with the original algorithm. 

Simulation results show that our algorithm minimizes the 

number of messages being exchanged in electing the 

coordinator. Each of Election Algorithms gives better 

performance in terms of time and messages. 

Seema Balhara, Kavita Khanna[7] has proposed to 

maintain coordination between the nodes and leader node 

have to be selected. Their paper contains the information 

about the various existing leader election mechanisms 

which is used for selecting the leader in different problem. 

The author discusses about several election algorithm in 

Distributed system. 

 Jiangyong Cai, Zhengping Jin[12] has proposed a 

real-time processing scheme for the self-health data from 

a variety of wearable devices by using storm. Their 

designs a framework using Apache Storm, distributed 

framework for handling stream data, and making 

decisions without any delay. Their framework has 

improved more efficient than the old method of using 

regular task with DB cluster. 

3. Proposed System Architecture 
 

In this section, we focus on the design and architecture 

of big data real-time pipeline as our proposed system 

architecture in Figure 1. 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Proposed System Architecture 

 

The processes of proposed system architecture are as 

follows: 

1. In Apache Kafka, Producer send messages to 

consumers. Brokers can divide messages in many 

partitions.  

2. Each partition is optionally replicated across a 

configurable number of servers for fault tolerance. Each 

partition available on either of the servers acts as the 

leader and has zero or more servers acting as followers. 

3. If one of the followers fails, the system can choose 

follower in-sync replicas (ISR) list. If the leader fails, the 

system can elect leader randomly in processing. 

4. Kafka is a high-performance publisher-subscriber-

based messaging system .Kafka spout is available for 

integrating Storm with Kafka clusters. 

5. The Kafka spout is a regular spout implementation that 

reads the data from a Kafka cluster. Kafka has emerged as 

one of the important components of real-time processing 

pipelines in combination with Storm. 

6. Kafka can act as a buffer or feeder for messages that 

need to be processed by Storm. Kafka can also be used as 

the output sink for results emitted from the Storm 

topologies. By constructing real time pipeline 

architecture, two processes can run concurrently. When a 

process is running in storm, another process can run in 

Kafka. So, real time message processes faster and faster. 

It can process high performance in message parsing 

system. 
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4. Apache Kafka architecture  
 

Kafka[8] is an open source, distributed publish 

subscribe messaging system, mainly designed with the 

following characteristics: 

Persistent messaging: To derive the real value from big 

data, any kind of information loss cannot be afforded. 

Apache Kafka is designed with O (1) disk structures that 

provide constant-time performance even with very large 

volumes of stored messages, which is in order of TB. 

High throughput: Keeping big data in mind, Kafka is 

designed to work on commodity hardware and to support 

millions of messages per second. 

Distributed: Apache Kafka explicitly supports messages 

partitioning over Kafka servers and distributing 

consumption over a cluster of consumer machines while 

maintaining per-partition ordering semantics. 

Multiple client support: Apache Kafka system supports 

easy integration of clients from different platforms such 

as Java, .NET, PHP, Ruby, and Python. 

Real time: Messages produced by the producer threads 

should be immediately visible to consumer threads; this 

feature is critical to event-based systems such as Complex 

Event Processing (CEP) systems .Kafka which provides a 

real-time publish-subscribe solution for overcoming the 

challenges of consuming the real-time and batch data 

volumes that may grow in order of magnitude to be larger 

than the real data. 

 

Table 1. Characteristics of Kafka 
Feature Description 

Scalability 

 

Distributed system scales easily with no 

downtime 

 

Durability 

 

Persists messages on disk, and provides 

intra-cluster replication 

Reliability 

 

Replicates data, supports multiple 

subscribers, and automatically balances 

consumers in case of failure 

Performance 

 

High throughput for both publishing and 

subscribing, with  disk structures that 

provide constant performance even with 

many terabytes of stored messages  

 

Apache Kafka is a real time, fault tolerant, scalable 

messaging system for moving data in real time. Kafka 

maintains feeds of messages in categories called topics. 

We’ll call processes that publish messages to a Kafka 

topic are producers. And we’ll call processes that 

subscribe to topics and process the feed of published 

messages are consumers.Kafka is run as a cluster 

comprised of one or more servers each of which is called 

a broker. Producers send messages over the network to 

the Kafka cluster which in turn serves them up to 

consumers. A producer publishes messages to a Kafka 

topic. Kafka topic is also considered as a message 

category or feed name to which messages are published. 

Kafka topics are created on a Kafka broker acting as a 

Kafka server. Processes that subscribe to topics and 

process the feed of published messages are called 

consumers. Brokers and consumers use Zookeeper to get 

the state information and to track message offsets, 

respectively. In figure 2, single node-multiple broker 

architecture is shown with a topic having four partitions.  

There are five components of the Kafka cluster: 

Zookeeper, Broker, Topic, Producer, and Consumer. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. A single node-multiple broker architecture 
 

All the message partitions are assigned a unique 

sequential number called the offset, which is used to 

identify each message within the partition. Each partition 

is optionally replicated across a configurable number of 

servers for fault tolerance.  Each partition available on 

either of the servers acts as the leader and has zero or 

more servers acting as followers. Here the leader is 

responsible for handling all read and write requests for the 

partition while the followers asynchronously replicate 

data from the leader. Kafka dynamically maintains a set 

of in-sync replicas (ISR) that is caught-up to the leader 

and always persist the latest ISR set to Zookeeper. In a 

Kafka cluster, each server plays a dual role; it acts as a 

leader for some of its partitions and also a follower for 

other partitions. If any of the follower in-sync replicas 

fail, the leader drops the failed follower from its ISR list. 

After the configured timeout period and writes will 

continue on the remaining replicas in ISRs. Whenever the 

failed follower comes back, it truncates its log to the last 

checkpoint and then starts to catch up with all messages 

from the leader, starting from the checkpoint. As soon as 

the follower becomes fully synced with the leader,the 

 leader adds it back to the current ISR list. 

If the leader fails, the process of choosing the new lead 

replica involves all the followers' ISRs registering 

themselves with Zookeeper. The very first registered 

replica becomes the new lead replica and its log end offset 

(LEO) becomes the offset of the last committed. The rest 

of the registered replicas become the followers of the 

newly elected leader. The system occurs the problem in 
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leader Election because Kafka dynamically maintains a 

set of in-sync replicas. So the replica is not reliable in 

processing. Figure 3 explain replication in Kafka: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.Replication in Kafka 

 

4.1. Zookeeper 
 

Zookeeper [10] is a centralized service for maintaining 

configuration information, naming, providing distributed 

synchronization, and providing group services. Zookeeper 

is also a high-performance coordination service for 

distributed applications. Each time they are implemented 

there is a lot of work that goes into fixing the bugs and 

race conditions that are inevitable. Because of the 

difficulty of implementing these kinds of services, 

applications initially usually skimp on them, which make 

them brittle in the presence of change and difficult to 

manage. When it works correctly, different 

implementations of these services lead to management 

complexity when the applications are deployed. The 

service itself is distributed and highly reliable. 

Kafka uses Zookeeper for the following tasks: 

Detecting the addition and the removal of brokers and 
consumers. Triggering a rebalance process in each 

consumer when the above events happen, and 

Maintaining the consumption relationship and keeping 

track of the consumed offset of each partition. 

Specifically, when each broker or consumer starts up, it 

stores its information in a broker or consumer registry in 

Zookeeper. The broker registry contains the broker’s host 

name and port, and the set of topics and the partitions 

stored on it. 
 

5. Apache Storm 
 

Storm [9] is also an open source, distributed, reliable, 

and fault-tolerant system for processing streams of large 

volumes of data in real-time. It supports many use cases, 

such as real-time analytics, online machine learning, 

continuous computation, and the Extract Transformation 

Load (ETL) paradigm. Storm can be used for the 

following use cases: 

Stream processing: Storm is used to process a stream of 

data and update a variety of databases in real time. This 

processing occurs in real time and the processing speed 

needs to match the input data speed. 

Continuous computation: Storm can do continuous 

computation on data streams and stream the results into 

clients in real time. This might require processing each 

message as it comes or creates small batches over a little 

time. An example of continuous computation is streaming 

trending topics on Twitter into browsers. 

Distributed RPC: Storm can parallelize an intense query 

so that you can compute it in real time. 

Real-time analytics: Storm can analyze and respond to 

data that comes from different data sources as they 

happen in real time. A Storm cluster follows a master-

slave model where the master and slave processes are 

coordinated through Zookeeper. The Storm Cluster is 

made up of a main node and several working nodes [4]. 

 

5.1. Nimbus  

 
The Nimbus node is the master in a Storm cluster. A 

daemon process called “Nimbus” is running on main 

node, in order to allocate codes, arrange tasks and detect 

errors. 

 

5.2. Supervisor 
 

Supervisor nodes are the worker nodes in a Storm 

cluster. Each working node has a daemon process called 

“Supervisor” to monitor, start and stop working process. 
The coordination work between Nimbus and Supervisor is 

handled by “Zookeeper” as shown in Fig 4. Zookeeper is 

the subproject of Hadoop, and it aims at coordinate works 

in large-scale distribution system. The Storm Cluster is 

similar with Hadoop, where Nimbus corresponds to Job 

Tracker, and Supervisors correspond to Task Trackers. 

 

 

 

 

 

 

 

 

 

Figure 4. Storm Cluster’s Architecture 

 

In Storm terminology, [9] a topology is an abstraction 

that defines the graph of the computation. A topology can 

be represented by a direct acyclic graph, where each node 

does some kind of processing and forwards it to the next 

node(s) in the flow. The followings are the components of 

a Storm topology: 
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Stream: A stream is an unbounded sequence of tuples 

that can be processed in parallel by Storm. Each stream 

can be processed by a single or multiple types of bolts. 

Spout: A spout is the source of tuples in a Storm 

topology. Spout is the input stream source which can read 

from external data source. [12] For example, by reading 

from a log file or listening for new messages in a queue 

and publishing them-emitting, in Storm terminology-into 

streams. 

Bolt: The spout passes the data to a component called 

bolt. Bolts [12] are processor units which can process any 

number of streams and produce output streams. A bolt is 

responsible for transforming a stream. Each bolt in the 

topology should be doing a simple transformation of the 

tuples, and many such bolts can coordinate with each 

other to exhibit a complex transformation. There is an 

example of one topology in Figure 5.   

 
 

 
 
 
 
 
 
 
 

Figure 5. Storm Topology 

 

6. Experimental Setup and Results 
 

The experimental set up is performed by using two 

open source frameworks Apache Kafka 0.8.1.1 and 

Apache Storm 0.9.3 as the main pipeline architecture. 

JAVA/jre 1.4 is running on underlying pipeline 

architecture. The Apache Marven 3.11 is used as in 

Kafka-Storm integration. 

The processes of overall pipeline architecture are as 

follows: 

1. Start zookeeper server for processing.  

2. Start Kafka local server to define broker_id, port and 

log dir.  

3. Create topic to show a successful creation message.  

4. Producer publishes them as a message to the Kafka 

cluster. 

5. The consumer consumes messages. 

6. Get some message in our Apache Kafka cluster.  

7. Execute by using command to verify whether topic 

   created. 

8. Recall producer and write messages again.  

9. Get some messages and run Kafka-Storm integration 

pipeline. 

 

Table 2 shows testing data in pipeline architecture 

which is one broker and five partitions using text 

messages. The purpose of our experiment is to show the 

comparison of the processing time on the same messages 

with different partitions. We tested four different numbers 

of messages; they were 18, 22, 24 and 29 messages with 

five partitions. It shows the faster processing time on 

various messages and partitions. 
 

Table 2. Testing Data in pipeline 

 
 Number of messages with processing time 

No. of 

partitions 

18 

Msg 

22 

Msg 

24 

Msg 

29 

Msg 

1 1.7 

sec 

1.9 

sec 

2 

sec 

2.4 

sec 

2 0.9 

sec 

1.1 

sec 

1.4 

sec 

1.5 

sec 

3 0.6 

sec 

0.7 

sec 

0.8 

sec 

0.9 

sec 

4 0.4 

sec 

0.5 

sec 

0.6 

sec 

0.7 

sec 

5 0.2 

sec 

0.3 

sec 

0.4 

sec 

0.5 

sec 

Msg=Messages 

Sec=seconds 

 

 
 

Figure 6.Testing Result of different numbers of 

messages per partition in pipeline Architecture 

 

Figure 6 shows the process of pipeline by testing on 

various partitions. According to the experiment, 

processing time decreases with more partitions are used 

and the comparison of number of partitions based on 

various amount of messages. So, this pipeline architecture 

effects on parallel processing in real time.  

 

6.1 Ring Election Algorithm 
 

In the future, we intend to propose ring election 

Algorithm in replication process. In Kafka framework, we 

face any problem in leader Election in processing. In 

processing, if one of the followers fails, the system can 

choose follower in-sync replicas (ISR) list. If the leader 
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fails, the system can elect leader by replacing ring 

election Algorithm in processing. By using Ring Election 

Algorithm, we can get more reliable data in Kafka-storm 

pipeline architecture. 

The goal of Ring Election Algorithm is to choose and 

declare one and only process as the leader even if all 

processes participate in the election. And at the end of the 

election, all the processes should agree upon the new 

leader process with the largest process identifier without 

any confusion. Ring Election Algorithm can elect new 

leader without wasting of time and number of messages 

which are exchanged. Depending on a network topology, 

many algorithms have been presented for electing leader 

in distributed systems. The Ring Election Algorithm is 

based on the ring topology with the processes ordered 

logically and each process knows its successor in a 

unidirectional way, either clockwise or anticlockwise. The 

process of Ring Election Algorithm [10] describes in 

Figures 7. 

 
Step 1   Step 2 

Figure 7. Processes of Ring Election 

 

Step 1.A process is a leader as it has highest id number. 

When a leader process fails, it starts leader election. It 

sends message with its id to next node in the ring. The 

next process passes the message on adding its own id to 

the message again and again.  

Step 2.When starting process receives the message back, 

it knows the message has gone around the ring, as its own 

id is in the list. Picking the highest id in the list, it starts 

the coordinator message as the leader around the ring. 

 

7. Conclusion 

 
In this paper we have implemented a real time 

framework using Apache Kafka and Apache strom.This 

pipeline has the reliability to deliver the streaming data. 

We use Apache Kafka and Apache Storm to develop high 

performance big data pipeline architecture for real time 

streaming applications. Using the proposed pipeline 

architecture, the completion time decrease although a 

number of messages increase. So, this factor is reliable for 

the proposed pipeline architecture. We emphasize to be 

reliable message in real time big data pipeline 

architecture. 

As future direction, we intend to propose Ring election 

Algorithm in replication process. By using Ring Election 

Algorithm, we can get more reliable data in Kafka-storm 

pipeline architecture. 
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