
 20

Analytics of Reliability for Real-Time Big Data Pipeline Architecture

Thandar Aung, Aung Htein Maw

University of Information Technology, Yangon, Myanmar

thandaraung@uit.edu.mm,ahmaw@uit.edu.mm

Abstract
Nowadays, many applications need high reliability

pipeline architecture to get faster process and reliable

data within short time. Kafka has emerged as one of the

important components of real-time processing pipelines in

combination with Storm. This paper focuses to develop

the real-time big data analytics pipeline architecture for

reliability. Real-time data pipelines can be implemented

in many ways and it will look different for every business.

To develop the pipeline architecture, we create real time

big data pipeline by using Apache Kafka and Apache

Storm. Kafka and Storm naturally complement each other

and their powerful cooperation enables real-time

streaming analytics for fast-moving big data. Then, the

experiment will be conducted how the processing time

decreases with the same messages on the different

partitions.

Keywords- Messaging, Real-time processing, Apache

Kafka, Apache Storm

1. Introduction

In the present big data era, the very first challenge is to

collect the data as it is a huge amount of data and the

second challenge is to analyze it. This analysis typically

includes User behavior data, Application performance

tracing, Activity data in the form of logs and Event

messages. Processing or analyzing the huge amount of

data is a challenging task. It requires a new infrastructure

and a new way of thinking about the way business and IT

industry works. Today, organizations have a huge amount

of data and at the same time, they have the need to derive

value from it.Considering the huge volume and the

incredible rate at which data is being collected, the need

arises for an efficient analytic system which processes this

data and provides value in real time.

Real-time processing is a fast and prompt data

processing technology that combines data capturing, data

processing and data exportation together. Real-time

analytics is an iterative process involving multiple tools

and systems. It consists of dynamic analysis and

reporting, based on data entered into a system less than

one minute before the actual time of use [1].In contrast to

traditional data analytical systems that collect and

periodically process huge –static –volumes of data,

streaming analytics systems avoid putting data at rest and

process it as it becomes available, thus minimizing the

time a single data item spends in the processing

pipeline[2].The main purpose of Big Data real-time

processing is to realize an entire system that can process

such mesh data in a short time[4]. Real-time information

is continuously getting generated by applications

(business, social, or any other type), and this information

needs easy ways to be reliably and quickly routed to

multiple types of receivers. Most of the time, applications

that are producing information and applications that are

consuming this information are well apart and

inaccessible to each other. This, at times, leads to

redevelopment of information producers or consumers to

provide an integration point between them. Therefore, a

mechanism is required for seamless integration of

information of producers and consumers to avoid any

kind of rewriting of an application at each end.

Real-time usage of these multiple sets of data

collected from production systems has become a

challenge because of the volume of data collected and

processed. Kafka has high throughput, built-in

partitioning, replication, and fault-tolerance, which makes

it a good solution for large scale message processing

applications [8]. In this paper, we propose to develop real

time big data analytics pipeline architecture by using

Apache Kafka and Apache Storm.

The remainder of this paper is organized as follows:

section 2 reviews the related work of this paper. Section 3

presents the proposed system architecture. In Section 4,

we describe the architecture of Kafka, the zookeeper

which needs to run Kafka. The process of Apache Storm

shows in Section 5. Section 6 describes the framework of

our system and testing results for this proposed system.

Then, Ring Election Algorithm is intended to enhance the

pipeline architecture in the future. Section 7 describes

conclusion and future work.

2. Related Work

Khin Me Me Thein [1] has proposed to provide the

secure big data pipeline architecture for the scalability and

security.The author used Sticky policies and AES

Algorithm for secure big data pipeline for real time

streaming applications.

Steffen FriedWolfram Wingerath, FelixGessert,rich,

and Norbert Ritter [2] have also proposed qualitative

comparison of the most popular distributed stream

user
Text Box
1st International Conference on Advanced Information Technologies (ICAIT), Nov. 1 - 2, 2017, Yangon, Myanmar

user
Text Box
ISBN 978-99971-0-381-9 © 2017 ICAIT

user
Text Box
icait2017@uit.edu.mm

 21

processing systems.The author gives an overview over the

state of stream processors for low-latency Big Data

analytics and conduct a qualitative comparison of the

most popular contenders, namely Storm and its

abstraction layer Trident, Samza and Spark Streaming. In

their paper, Streaming processing system is high

availability, fault-tolerance and horizontal scalability.

Mohit Maske, Dr. Prakash Prasad, International

Journal of Advanced [3] intends to ensure the practical

and high effiency in simulation system that is established

and shown acceptable performance in various expressions

using data sheet. It proved that data analysis system for

stream and real time processing based on storm can be

used in various computing environment.

Wenjie Yang, Xingang Liu and Lan Zhang [4] have

also proposed to ensure the practical applicability and

high efficiency, to establish and shows acceptable

performance in simulation. In their paper, an entire

system RabbitMQ, NoSQL and JSP are proposed based

on Storm, which is a novel distribution real-time

computing system. The paper organized a big data real-

time processing system based on Strom and other tools,

and according to the simulation experiment, the system

can be easily applied in practical situation.

Martin Kleppmann [5] explains the reasoning behind

the design of Kafka and Samza, which allow complex

applications to be built by composing a small number of

simple primitives – replicated logs and stream operators.

We draw parallels between the design of Kafka and

Samza, batch processing pipelines, database architecture

and design philosophy of UNIX.

P Beaulah Soundarabai, ThriveniJ, K R Venugopal, L

M Patnaik [6] describes the process of ring Election

Algorithm and presents a modified version of ring

algorithm. Their paper involves substantial modifications

of the existing ring election algorithm and the comparison

of message complexity with the original algorithm.

Simulation results show that our algorithm minimizes the

number of messages being exchanged in electing the

coordinator. Each of Election Algorithms gives better

performance in terms of time and messages.

Seema Balhara, Kavita Khanna[7] has proposed to

maintain coordination between the nodes and leader node

have to be selected. Their paper contains the information

about the various existing leader election mechanisms

which is used for selecting the leader in different problem.

The author discusses about several election algorithm in

Distributed system.

 Jiangyong Cai, Zhengping Jin[12] has proposed a

real-time processing scheme for the self-health data from

a variety of wearable devices by using storm. Their

designs a framework using Apache Storm, distributed

framework for handling stream data, and making

decisions without any delay. Their framework has

improved more efficient than the old method of using

regular task with DB cluster.

3. Proposed System Architecture

In this section, we focus on the design and architecture

of big data real-time pipeline as our proposed system

architecture in Figure 1.

Figure 1. Proposed System Architecture

The processes of proposed system architecture are as

follows:

1. In Apache Kafka, Producer send messages to

consumers. Brokers can divide messages in many

partitions.

2. Each partition is optionally replicated across a

configurable number of servers for fault tolerance. Each

partition available on either of the servers acts as the

leader and has zero or more servers acting as followers.

3. If one of the followers fails, the system can choose

follower in-sync replicas (ISR) list. If the leader fails, the

system can elect leader randomly in processing.

4. Kafka is a high-performance publisher-subscriber-

based messaging system .Kafka spout is available for

integrating Storm with Kafka clusters.

5. The Kafka spout is a regular spout implementation that

reads the data from a Kafka cluster. Kafka has emerged as

one of the important components of real-time processing

pipelines in combination with Storm.

6. Kafka can act as a buffer or feeder for messages that

need to be processed by Storm. Kafka can also be used as

the output sink for results emitted from the Storm

topologies. By constructing real time pipeline

architecture, two processes can run concurrently. When a

process is running in storm, another process can run in

Kafka. So, real time message processes faster and faster.

It can process high performance in message parsing

system.

6. Storm

DB Spout

Bolt

 Bolt

Bolt

5. Sent

Data

3. Zookeeper

2.

Broker

4. Kafka

Cluster

P

r

o

d

u

c

e

r

1.Sent

Data

 22

4. Apache Kafka architecture

Kafka[8] is an open source, distributed publish

subscribe messaging system, mainly designed with the

following characteristics:

Persistent messaging: To derive the real value from big

data, any kind of information loss cannot be afforded.

Apache Kafka is designed with O (1) disk structures that

provide constant-time performance even with very large

volumes of stored messages, which is in order of TB.

High throughput: Keeping big data in mind, Kafka is

designed to work on commodity hardware and to support

millions of messages per second.

Distributed: Apache Kafka explicitly supports messages

partitioning over Kafka servers and distributing

consumption over a cluster of consumer machines while

maintaining per-partition ordering semantics.

Multiple client support: Apache Kafka system supports

easy integration of clients from different platforms such

as Java, .NET, PHP, Ruby, and Python.

Real time: Messages produced by the producer threads

should be immediately visible to consumer threads; this

feature is critical to event-based systems such as Complex

Event Processing (CEP) systems .Kafka which provides a

real-time publish-subscribe solution for overcoming the

challenges of consuming the real-time and batch data

volumes that may grow in order of magnitude to be larger

than the real data.

Table 1. Characteristics of Kafka
Feature Description

Scalability

Distributed system scales easily with no

downtime

Durability

Persists messages on disk, and provides

intra-cluster replication

Reliability

Replicates data, supports multiple

subscribers, and automatically balances

consumers in case of failure

Performance

High throughput for both publishing and

subscribing, with disk structures that

provide constant performance even with

many terabytes of stored messages

Apache Kafka is a real time, fault tolerant, scalable

messaging system for moving data in real time. Kafka

maintains feeds of messages in categories called topics.

We’ll call processes that publish messages to a Kafka

topic are producers. And we’ll call processes that

subscribe to topics and process the feed of published

messages are consumers.Kafka is run as a cluster

comprised of one or more servers each of which is called

a broker. Producers send messages over the network to

the Kafka cluster which in turn serves them up to

consumers. A producer publishes messages to a Kafka

topic. Kafka topic is also considered as a message

category or feed name to which messages are published.

Kafka topics are created on a Kafka broker acting as a

Kafka server. Processes that subscribe to topics and

process the feed of published messages are called

consumers. Brokers and consumers use Zookeeper to get

the state information and to track message offsets,

respectively. In figure 2, single node-multiple broker

architecture is shown with a topic having four partitions.

There are five components of the Kafka cluster:

Zookeeper, Broker, Topic, Producer, and Consumer.

Figure 2. A single node-multiple broker architecture

All the message partitions are assigned a unique

sequential number called the offset, which is used to

identify each message within the partition. Each partition

is optionally replicated across a configurable number of

servers for fault tolerance. Each partition available on

either of the servers acts as the leader and has zero or

more servers acting as followers. Here the leader is

responsible for handling all read and write requests for the

partition while the followers asynchronously replicate

data from the leader. Kafka dynamically maintains a set

of in-sync replicas (ISR) that is caught-up to the leader

and always persist the latest ISR set to Zookeeper. In a

Kafka cluster, each server plays a dual role; it acts as a

leader for some of its partitions and also a follower for

other partitions. If any of the follower in-sync replicas

fail, the leader drops the failed follower from its ISR list.

After the configured timeout period and writes will

continue on the remaining replicas in ISRs. Whenever the

failed follower comes back, it truncates its log to the last

checkpoint and then starts to catch up with all messages

from the leader, starting from the checkpoint. As soon as

the follower becomes fully synced with the leader,the

 leader adds it back to the current ISR list.

If the leader fails, the process of choosing the new lead

replica involves all the followers' ISRs registering

themselves with Zookeeper. The very first registered

replica becomes the new lead replica and its log end offset

(LEO) becomes the offset of the last committed. The rest

of the registered replicas become the followers of the

newly elected leader. The system occurs the problem in

Zookeeper

Consumer

Message Message

Producer

Producer

Producer

Broker 1

Broker 2

Broker 3

Consumer

Consumer

 23

leader Election because Kafka dynamically maintains a

set of in-sync replicas. So the replica is not reliable in

processing. Figure 3 explain replication in Kafka:

Figure 3.Replication in Kafka

4.1. Zookeeper

Zookeeper [10] is a centralized service for maintaining

configuration information, naming, providing distributed

synchronization, and providing group services. Zookeeper

is also a high-performance coordination service for

distributed applications. Each time they are implemented

there is a lot of work that goes into fixing the bugs and

race conditions that are inevitable. Because of the

difficulty of implementing these kinds of services,

applications initially usually skimp on them, which make

them brittle in the presence of change and difficult to

manage. When it works correctly, different

implementations of these services lead to management

complexity when the applications are deployed. The

service itself is distributed and highly reliable.

Kafka uses Zookeeper for the following tasks:

Detecting the addition and the removal of brokers and
consumers. Triggering a rebalance process in each

consumer when the above events happen, and

Maintaining the consumption relationship and keeping

track of the consumed offset of each partition.

Specifically, when each broker or consumer starts up, it

stores its information in a broker or consumer registry in

Zookeeper. The broker registry contains the broker’s host

name and port, and the set of topics and the partitions

stored on it.

5. Apache Storm

Storm [9] is also an open source, distributed, reliable,

and fault-tolerant system for processing streams of large

volumes of data in real-time. It supports many use cases,

such as real-time analytics, online machine learning,

continuous computation, and the Extract Transformation

Load (ETL) paradigm. Storm can be used for the

following use cases:

Stream processing: Storm is used to process a stream of

data and update a variety of databases in real time. This

processing occurs in real time and the processing speed

needs to match the input data speed.

Continuous computation: Storm can do continuous

computation on data streams and stream the results into

clients in real time. This might require processing each

message as it comes or creates small batches over a little

time. An example of continuous computation is streaming

trending topics on Twitter into browsers.

Distributed RPC: Storm can parallelize an intense query

so that you can compute it in real time.

Real-time analytics: Storm can analyze and respond to

data that comes from different data sources as they

happen in real time. A Storm cluster follows a master-

slave model where the master and slave processes are

coordinated through Zookeeper. The Storm Cluster is

made up of a main node and several working nodes [4].

5.1. Nimbus

The Nimbus node is the master in a Storm cluster. A

daemon process called “Nimbus” is running on main

node, in order to allocate codes, arrange tasks and detect

errors.

5.2. Supervisor

Supervisor nodes are the worker nodes in a Storm

cluster. Each working node has a daemon process called

“Supervisor” to monitor, start and stop working process.
The coordination work between Nimbus and Supervisor is

handled by “Zookeeper” as shown in Fig 4. Zookeeper is

the subproject of Hadoop, and it aims at coordinate works

in large-scale distribution system. The Storm Cluster is

similar with Hadoop, where Nimbus corresponds to Job

Tracker, and Supervisors correspond to Task Trackers.

Figure 4. Storm Cluster’s Architecture

In Storm terminology, [9] a topology is an abstraction

that defines the graph of the computation. A topology can

be represented by a direct acyclic graph, where each node

does some kind of processing and forwards it to the next

node(s) in the flow. The followings are the components of

a Storm topology:

2

Comsumer

2

Broker

1

Broker

2

Broker 3

Broker

4

Message

2

Leader

Rep

Rep

Producer

1 2

3 4

Message

Kafka topic

with 4 partitions

Nimbus

Zookeeper

Zookeeper

Zookeeper

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

 24

Stream: A stream is an unbounded sequence of tuples

that can be processed in parallel by Storm. Each stream

can be processed by a single or multiple types of bolts.

Spout: A spout is the source of tuples in a Storm

topology. Spout is the input stream source which can read

from external data source. [12] For example, by reading

from a log file or listening for new messages in a queue

and publishing them-emitting, in Storm terminology-into

streams.

Bolt: The spout passes the data to a component called

bolt. Bolts [12] are processor units which can process any

number of streams and produce output streams. A bolt is

responsible for transforming a stream. Each bolt in the

topology should be doing a simple transformation of the

tuples, and many such bolts can coordinate with each

other to exhibit a complex transformation. There is an

example of one topology in Figure 5.

Figure 5. Storm Topology

6. Experimental Setup and Results

The experimental set up is performed by using two

open source frameworks Apache Kafka 0.8.1.1 and

Apache Storm 0.9.3 as the main pipeline architecture.

JAVA/jre 1.4 is running on underlying pipeline

architecture. The Apache Marven 3.11 is used as in

Kafka-Storm integration.

The processes of overall pipeline architecture are as

follows:

1. Start zookeeper server for processing.

2. Start Kafka local server to define broker_id, port and

log dir.

3. Create topic to show a successful creation message.

4. Producer publishes them as a message to the Kafka

cluster.

5. The consumer consumes messages.

6. Get some message in our Apache Kafka cluster.

7. Execute by using command to verify whether topic

 created.

8. Recall producer and write messages again.

9. Get some messages and run Kafka-Storm integration

pipeline.

Table 2 shows testing data in pipeline architecture

which is one broker and five partitions using text

messages. The purpose of our experiment is to show the

comparison of the processing time on the same messages

with different partitions. We tested four different numbers

of messages; they were 18, 22, 24 and 29 messages with

five partitions. It shows the faster processing time on

various messages and partitions.

Table 2. Testing Data in pipeline

 Number of messages with processing time

No. of

partitions

18

Msg

22

Msg

24

Msg

29

Msg

1 1.7

sec

1.9

sec

2

sec

2.4

sec

2 0.9

sec

1.1

sec

1.4

sec

1.5

sec

3 0.6

sec

0.7

sec

0.8

sec

0.9

sec

4 0.4

sec

0.5

sec

0.6

sec

0.7

sec

5 0.2

sec

0.3

sec

0.4

sec

0.5

sec

Msg=Messages

Sec=seconds

Figure 6.Testing Result of different numbers of

messages per partition in pipeline Architecture

Figure 6 shows the process of pipeline by testing on

various partitions. According to the experiment,

processing time decreases with more partitions are used

and the comparison of number of partitions based on

various amount of messages. So, this pipeline architecture

effects on parallel processing in real time.

6.1 Ring Election Algorithm

In the future, we intend to propose ring election

Algorithm in replication process. In Kafka framework, we

face any problem in leader Election in processing. In

processing, if one of the followers fails, the system can

choose follower in-sync replicas (ISR) list. If the leader

Bolt
Spout

Bolt

Spout

Bolt

Bolt

Bolt

Streams

 25

fails, the system can elect leader by replacing ring

election Algorithm in processing. By using Ring Election

Algorithm, we can get more reliable data in Kafka-storm

pipeline architecture.

The goal of Ring Election Algorithm is to choose and

declare one and only process as the leader even if all

processes participate in the election. And at the end of the

election, all the processes should agree upon the new

leader process with the largest process identifier without

any confusion. Ring Election Algorithm can elect new

leader without wasting of time and number of messages

which are exchanged. Depending on a network topology,

many algorithms have been presented for electing leader

in distributed systems. The Ring Election Algorithm is

based on the ring topology with the processes ordered

logically and each process knows its successor in a

unidirectional way, either clockwise or anticlockwise. The

process of Ring Election Algorithm [10] describes in

Figures 7.

Step 1 Step 2

Figure 7. Processes of Ring Election

Step 1.A process is a leader as it has highest id number.

When a leader process fails, it starts leader election. It

sends message with its id to next node in the ring. The

next process passes the message on adding its own id to

the message again and again.

Step 2.When starting process receives the message back,

it knows the message has gone around the ring, as its own

id is in the list. Picking the highest id in the list, it starts

the coordinator message as the leader around the ring.

7. Conclusion

In this paper we have implemented a real time

framework using Apache Kafka and Apache strom.This

pipeline has the reliability to deliver the streaming data.

We use Apache Kafka and Apache Storm to develop high

performance big data pipeline architecture for real time

streaming applications. Using the proposed pipeline

architecture, the completion time decrease although a

number of messages increase. So, this factor is reliable for

the proposed pipeline architecture. We emphasize to be

reliable message in real time big data pipeline

architecture.

As future direction, we intend to propose Ring election

Algorithm in replication process. By using Ring Election

Algorithm, we can get more reliable data in Kafka-storm

pipeline architecture.

 8. References

[1] Khin Me Me Thein, “Security of Real-time Big Data

Analytics Pipeline”, International Journal of Advances in

Electronics and Computer Sciences, Feb, 2017.

[2] Wolfram Wingerath*, FelixGessert, Steffen Friedrich, and

Norbert Ritter,“Real-time stream processing for big data”, May

2016.

[3] Mohit Maske, Dr. Prakash Prasad, “A Real Time Processing

and Streaming of Wireless Network Data using Storm ”,

International Journal of Advanced Research in Computer

Science and Software Engineering, January 2015.

[4] Wenjie Yang, Xingang Liu and Lan Zhang, “Big Data Real-

time Processing Based on Storm”, 12th IEEE International

Conference on Trust, Security and Privacy in Computing and

Communications, 2013.

[5] Martin Kleppmann, “Kafka, Semza and the Unix Philosophy

of Distributed Data” Bulletin of the IEEE computer Society

Technical Committee on Data Engineering.

[6] P Beulah Soundarabai, ThriveniJ, KR Venugopal, L M

Patnaik, “An Improved Leader Election Algorithm for

Distributed System”, International Journal of Next-Generation

Networks (IJNGN), March2013.

 [7]Seema Balhara, Kavita Khanna,”Leader Election Algorithms

in Distributed System”, International journal of Computer

Science and Mobile Computing, June 2014.

[8] Nishant Garg, “Apache Kafka”, PACKT Publishing UK,

2015.

[9] http://zookeeper.apache.org/.

[10]Tanenbaum Andrew, Tanenbaum-Distributed operating

system, Wikipedia, p-100, 1994

[11] Shay Kutten, Shlomo Moran, Leader election, Wikipedia,

24 August 2017

[12] Jiangyong Cai, Zhengping Jin, “Real-time Calculating Over

Self-Health Data Using Storm”, 4th International Conference on

Mechatronics, Materials, Chemistry and Computer Engineering

(ICMMCCE 2015).

[13] Ankit Jain, Anand Nalya,”Learning Storm” PACKT

Publishing UK, 2015.

