
High Availability Solution for Virtualized Local Disaster Recovery

Aye Myat Myat Paing, Ni Lar Thein

University of Computer Studies, Yangon

paing.ayemyat@gmail.com

Abstract

Disaster recovery (DR) is an important element

of the complex information technology (IT) systems.

The availability of the IT for everything, from

everywhere, at all time is a growing requirement.

Effective IT strategies need to have both high

availability (HA) and disaster recovery (DR).

Nowadays, virtualized platforms have become the

most popular option to deploy complex enough

services. Software availability is one of the weakest

links in system availability. Web servers have

continuous execution of long duration and with rather

varied workloads. Such characteristics make them

potential candidates for a degenerative phenomenon

called software aging. The work presented in this

paper aims to offer the high availability solution

against software aging of virtualized local disaster

recovery (VLDR) by providing measurement based

software rejuvenation. The idea behind our paper is

two-fold. First, we present the framework seeks to

maximize the number of services running

simultaneously, while guaranteeing the resources

needed by each service. Second, we estimate the time

to aging-related failures and then which used as aging

failure rates for measurement based software

rejuvenation through a stochastic reward nets model.

Finally, we perform the numerical analysis to evaluate

the performance of the model.

Keywords: availability, local disaster recovery,

measurement based software rejuvenation,

stochastic reward nets, virtualization.

1. Introduction

The need for high availability (HA) and

disaster recovery (DR) in IT environment is

more importance than other sectors of enterprises

[6]. The major reality of high availability (HA)

cluster is based on real physical hardware and

virtualization is coming more and more popular

nowadays, one has to think about possible

combinations of virtualization and high

availability clustering [7]. The concern of

disaster recovery, virtualization and high

availability often into IT department‟s worry

box‟. Server virtualization and failover

technology are capabilities that provide a high

level of protection while keeping cost at

minimum [11]. Disaster and its recovery

processes involve unplanned interruption of

service. Failures of computer systems are more

often due to software faults than due to hardware

faults. One of the causes of unplanned software

outages is the software aging phenomenon. This

phenomena becomes critical in 24x7

applications. A virtualization layer also called

virtual machine monitor (VMM) is a software

layer that abstracts the physical resources for use

by the Virtual Machines (VMs).

Recently, software aging of VMMs is

becoming critical because many VMs run on top

of a VMM in one machine consolidating multiple

servers and aging of the VMM directly affects all

the VMs. In Proactive/Predictive rejuvenation,

system metrics are continuously monitored and

the rejuvenation action is triggered when a crash

or system hang up due to software aging seem to

approach [1]. It has been verified, to a greater

extent, in those software processes that are in

execution for long periods of time, being also

influenced by variations in their workload. One

of the promises of virtualization is the ability to

allow applications to dynamically move from

one physical server to another as the demands

and resource availabilities change, without

service interruption. More recently, Xen [3] and

VMWare [5] have implemented “live” migration

of VMs that involve extremely short downtimes

ranging from tens of milliseconds to a second.

This paper presents the framework which

seeks to maximize the number of services

running simultaneously for the VLDR. We

describe to offer a high availability by using a

proactive and autonomic software rejuvenation

technique for Internet Services in the presence of

software aging due to resource consumption. A

web server is a typical long running software

system which should ideally run forever.

Therefore, we develop a stochastic reward net of

measurement based software rejuvenation model

based on estimation of time to software aging

failure in web server. Analysis results are

included to show the performance of the

proposed method. To evaluate the models

through both analytic analysis and SHARPE tool

[8] simulation are presented.

The organization of this paper is as follows.

In section 2 we discuss the related work. Our

proposed architecture and a framework which

seeks to maximize the number of services

running simultaneously, is presented in section 3.

The proposed estimation of the times to aging-

related failures and VM and VMM measurement

based rejuvenation analytic model are follow in

section 4 and 5. Finally we conclude our paper in

section 6.

2. Related Work

In this section we describe literature review

which related to our work. The authors [4]

discuss high availability and disaster recovery

solutions, and describe how HA and DR

solutions differ from one another and how they

can be combined to provide the highest levels of

resiliency for IT infrastructures.

Some studies incorporated software

rejuvenation for VM into availability model and

computed the down time cost or steady state

availability of the system. Thein et al. [7]

proposed time based rejuvenation for VMs which

modeled as a continuous time Markov chain for

virtualized system. Different configurations of

the consolidated servers in the form of one

physical and two physical servers in the scheme

of hot standby are considered. Then the

estimated times to exhaustion of the system

resources are calculated. Measurement-based

studies of software aging and rejuvenation on

general computer systems have been carried out

in previous work [2]. Vaidyanathan et al. [10]

proposed a measurement-based model to

estimate the rate of exhaustion of system

resources both as function of time and the system

workload states.

3. Proposed Architecture for VLDR

The objective of a disaster recovery is to

restore the operability of systems that support

mission-critical and critical processes to normal

operation as quickly as possible. With disaster

recovery in place, organizations can resume

operations at a secondary site. Local disaster

recovery is that the surviving node can support

the service for a failed node in the event of

localized disaster such as floods, fire or building

power outages.

In this section, we describe our proposal to

offer high availability mechanism based on

hosted virtualized clustering architecture with

multiple virtual machines (VMs) on two active

standby physical machines (PMs) as shown in

Figure 1.

Figure 1. Hosted Virtualized Clustering

Architecture

Clustering supports two or more servers

running duplicate VMs. To enable live VM

migration, standby physical server is connected

on the same network and the disk image with

active physical server. A heartbeat keep-alive

system is used to monitor the health of the nodes

between them.

We create one high availability (HA-VM)

and other operational VMs such as service VM

and replica of service VM on the top of the

virtualization layer. The HA-VM contains two

service providers, HA-LB and AgPreditor.

ServiceVM implements as web server and also a

monitoring agent, collecting the VM resource

status like CPU, Memory, and number of threads

or number of connections. These metrics are

used to detect the software aging phenomenon

and estimate the service time to crash. This

estimation is conducted by AgPreditor and to

estimate the time to crash due to complex

software aging phenomenon. AgingPdr is

running jointly with HA-LB, in their own virtual

machine (HA-VM). HA-LB is load balancer

which manages the software rejuvenation

process. During the rejuvenation approach, a

service replica (Replica VM) is needed. HA-LB

automatically migrates new requests to the

replica service. The on-going requests being

processed by faulty service are allowed to finish.

The other physical server will serve as different

service and also standby physical server for

disaster recovery. When the replica VM of the

active physical server becomes software aging or

the active physical server itself is not working,

the in- flight requests and sessions are migrated

to the service VM in the standby physical server.

3.1. A Framework for Resource Analysis

This framework solves the physical machine

or VM failure based on service migration and to

protect the software aging failure on service VM

by using service replication. Service migration is

conducted using the well-known technology

offered by almost all virtualization

manufacturers: live-migration. This technology

allows us to migrate a running VM without any

or minimal outage, from one physical node to

another. Service Recovery is triggered due to the

TTC (Time To Crash) of one or a set of VMs

have violated the threshold (Time Limit) defined

by the system administrators per each service or

per the whole framework. The procedure of this

framework is presented in table 1.

Table 1. Available Resource Checking

Algorithm
 begin

1. calculate the maximum number of VMs on

available physical resource

2. Select the VM that needed to migrate

3. For all VMs on all PMs-1 do

4. If (size of Migrated VM + currently

created VMs sizes on PM <=

available resource for selected

PM)

5. then VM migration to selected PM

6. end for

7. If (VM‟s TTC <= TL)

8. For all VMs on PMs do

9. If (size of replica VM + currently

created VMs sizes on PM <=

available resource for selected

PM)

10. then place the replica for that VM on

selected PM

11. end for

12. end if

 end

It is need to carry out these assumptions to

achieve the goal. The first assumption is that

every physical machine can manage a limited

number of VMs, according to its resources. The

VM‟s size is predefined and fixed on the

available physical resources in our framework.

We note that during a short period of time the

service VM and replica VM are running

simultaneously.

The second assumption has to manage the

software rejuvenation approach. When a service

VM crash is imminent due to software aging, a

replica VM has to be created, to guarantee the

availability of the service. We also describe the

scenario for calculating the maximum number of

services taking into account the virtual machine

and the physical machine features as shown in

table 2.

Table 2. Resource Capacity Description for

VM and PM

Role Memory Size

PM1,PM2 4096 MB

Host OS 512 MB

Virtualization Layer 2036 MB

Service VM 512 MB

HA-VM 512 MB

Replica VM 512 MB

In this scenario, the VM size is only

computed with the memory required and based

on hosted virtualization architecture. The

framework is composed of two physical

machines, and we deployed HA-VM separate

with service VMs: then we compute the

maximum numbers of VMs are as followings:
Available Memory for each PM =4096-

(512+2036)
(1)

Total Available Memory = PM1 +PM2 (2)
 3096 MB = 1548+1548 (3)
Maximum number of VMs = Total Available

Memory / size of each VM
(4)

6 VMs = 3096/512 (5)

4. Estimation of Time to Software

Aging Failure in Web Server

We have focused our research on software

aging caused by resource exhaustion and used

Apache version 2.2.10 for that case. Apache

provides some features similar to software

rejuvenation. In our experimental set up for

estimation of time to software aging failure, we

have used three virtual machines on top of

VMware workstation v6.0.2 based on hosted

virtualization architecture. One virtual machine

was used as traffic generator and two being the

web server and replica server. On the server side

the httpd processes were monitored. In order to

conduct the generation of workloads the httperf

tool [Mosberger and Jin 1998] was used. Httperf

is a web server workload generator used in our

experiments to generate requests to the web

server and monitor the performance of web

server. Due to the capacity of the server we used

6 httpd processes, thus supporting a maximum

number of 27000 simultaneous connections. The

measurements provided by httperf include reply

rate, response time and number of timeouts.

Figure 2. Aging occurs in httpd processes

Figure 2 shows a memory snapshot (top

command output), taken from our experiments,

during a preliminary accelerated test with httpd.

Initially, all httpd processes started with

approximately 4000 KB. Process 2977 showed a

significant increase in its memory size (RES) in

comparison with the other httpd processes. In

this test, we controlled the exposition of httpd

processes to the factor that causes memory leaks,

and intentionally exposed process (2977) more

than others. We let the application run until the

server failure due to memory exhaustion. Table 3

shows the pilot sample of accelerated failure

times (TTF).

Table 3. Pilot Sample Time to Failure

TTF(S1) TTF(S2) TTF(S3)

84 34 20

86 36 21

88 37 22

93 38 23

95 39 23

97 40 24

We decided to use the pilot sample to

estimate the time to software aging failure due to

resource exhaustion. The time to crash could be

then estimated by the following.

Let T1, T2, . . ., Tr be the observed times to

failure so that T1 T2 ... Tr. Specific values

of these random variables are denoted by t1, t2 ,...

tr. Let θ be the MTTF to be estimated and assume

that components follow an exponential failure

law. Since (n-r) components have not failed

when the test is completed, the likelihood

function is defined in the following way. Assume

n is 10 and Tr+1, . , Tn are the times to failure of

the remaining components, whose failures will

not actually be observed [9]. Then

 ()

 *

(∑

) ()

+

(6)

Let (∑

) ()

Then the maximum-likelihood estimator

(MLE) of the mean life is

 ̂

(∑

) ()

 (7)

Equation (7) gives the estimation of time to

software aging failure as shown in Table 4.

Table 4. Estimated MTTF and Time to aging

failure

Workload

stress

level

MTTF

Confidence

Interval (95%)

Estimated

time to

software

aging

failure

rate
Lower Upper

S1

(200KB)
155.167 79.788 422.817 0.0064

S2

(400KB)
64.000 32.909 174.395 0.0156

S2

(600KB)
38.166 19.625 104.001 0.0262

5. SRN Model for Measurement Based

Software Rejuvenation

In this section, we present stochastic reward

nets (SRN) model for measurement based

rejuvenation policy in local disaster recovery

with two physical machines and two virtual

machines on each physical machine as shown in

figure 3. In this policy, the rejuvenation action is

determined by memory exhaustion which

discussed in section 4. If the active VMM is

about to be rejuvenated cause of software aging,

all the VMs on problematic PM are migrated to

other PMs using live migration and then will be

started for the new requests and sessions. It can

return back to the original PM after the

completion of the VMM rejuvenation through

live VM migration.

The SRN model for measurement based

rejuvenation policy consists of dual physical

servers with both VMs and VMMs. Both

physical servers are “healthy” working state,

indicated by a token in place PH2. As time

progresses, each VMM eventually transits to

failure probably states in place PFPi through the

transition Tfp. The VMM is still operation in this

state. But VMs need to migrate when token is

placed in PFPi and before rejuvenation. At that

time the transition Tmig is enabled, the VM is

migrated to another physical server and a token

is moved to a place PH1. After migration the VM

will be restarted on another physical server

through Trst. In this model, rejuvenation interval

is determined by using a clock with guard

function ghinterval and there are tokens in the

place Pclock and PFPi. If there is a token in place

Ph_trigger through immediate transition ttrigger, and

there are VMMs to be rejuvenated (a token is

placed in PFPi), immediate transitions th_rej is

enabled through guard function ghrej.

After VMMs have been rejuvenated, it goes

back to healthy state with transition Th_r. Also

immediate transition treset is enabled by and a

token is moved to Pclock. When there is a system

is crash (i.e., there is a token is placed in place

PD2 by using transition Th_d. From a full system

outage, the system can be repaired through the

transition Th_repair and VM is migrated through

transition Tmig. After that all VMMs are in

healthy state in place PH2.

Additionally, the service and replica VMs‟

rejuvenation in both physical servers is

considered. Both VMs are “healthy” working

states, a token is placed in place PvUp2,2. As time

progresses, service VM eventually transits to

failure probably states in place PvFPi,j through the

transition Tfp. The VM is still operation in this

state.But VM needs to switchover when token is

placed in PvFPi,j and before rejuvenation. When

transition tsw is enabled, the operation of service

VM is switched to replica VM and a token is

moved to a place PvSW2,j.

PvUpi,j : Healthy state of ith VM on jth VMM PRj : Rejuvenation state of jth VMM

PvFPi,j : Failure Probably state of ith VM on jth

VMM

PD2 : Failure state of all VMs in both VMMs

PvRi,j : Rejuvenation state of ith VM on jth

VMM

Pclock : Rejuvenation Interval state of jth VMM

PvSWi,j : Switchover state of ith VM on jth

VMM

Prej-policy : Rejuvenation policy state of jth VMM

PHj : Healthy state of jth VMM Ph-trigger : Rejuvenation state of jth VMM

PFPj : Failure Probably state of jth VMM i= 1,2 (number of VMs)

PvRFi,j : Failure state due to estimation of

software aging failure of ith VM on jth

VMM

 j=1,2 (number of VMMs)

Figure 3. SRN model for measurement based Rejuvenation

In this model, we assume that the resource

exhaustion time can be successfully estimated

with probability c, which is represented by the

firing transitions tri. With probability 1-c, it will

not be rejuvenated in the aged state and will

eventually fail through the firing transitions trfi.

After VM has been rejuvenated, it goes back to

healthy state with transition Tv_r.

Replica VM has the same rejuvenation

policy. When there is all VMs are crash (i.e.,

there is a token is placed in place PvFP1,1 by using

transition Tv_d. From VMs outage, the system can

be repaired through the transition Tv_repair and all

VMs are in healthy state in place PvUpi,j.

Table 5. Guard function for VMM

rejuvenation

ghinteval : ((#(PFP2)==1) || (PFP1)==1))

ghrej : (#(Ph-trigger)==1)

A. Reachability Analysis

In this section, we construct the reachability

graph for the proposed model. Let 25 tuples (PH2,

PFP2, PH1, PFP1, PD2, PR2, PR1, PvUp2,2, PvFP2,2,

PvSW2,2, PvR2,2, PvRF2,2, PvUp1,2, PvFP1,2, PvR1,2,

PvRF1,2, PvUp2,1, PvFP2,1, PvSW2,1, PvR2,1, PvRF2,1,

PvUp1,1, PvFP1,1, PvR1,1 and PvRF1,1,) denote the

marking with Px =1, if a token is presented in

place Px, and zero otherwise. The resulting

reachability graph, referred to as the extended

reachability graph and there need to eliminate the

vanishing markings to obtain the underlying

CTMC as shown in figure 4.

1000000000000000000000000 0010000000000000000000000
0000100000000000000000000

0000000100000000000000000 0000000000001000000000000 0000000000000000100000000 0000000000000000000001000

0000000000010000000000000

0000000001000000000000000 0000000000000010000000000

0000000000000001000000000 1000000000000000000000000

0000000000000000001000000

000000000000000000000001

0000000000000000000000010

0000010000000000000000000
0000001000000000000000000

H2 H1
D2

R2
R1

vUp2,2

vR2,2

vSW2,2

vUp1,2

vR1,2

vRF1,2

vUp2,1

vR2,1

vSW2,1

vUp1,1

vRF1,1

vR1,1

λh
λh

λhλh

μh_r μh_r

μmig μ

μrst μrst

μmig

λv c
λv c λv c λv cμr μr μr μr

μv μv

λv c1
λv (1-c) λv c1

λsw λsw

λv_d

λv (1-c)

λv λv

Figure 4. Extended Reachability Graph for proposed SRN model

This figure 4 illustrates the extended

reachability graph with squares representing the

markings and arcs representing possible

transition between the markings. Let λv, λh, μr,

μrst, μmig, μh_r, μv, c, 1-c, c1 and μ be the transition

rates associated with Tfp, Th_fp,Tv_r, Trst, Tmig,

Th_r, Tv_repair, probability of successfully

estimated for software aging failure time,

probability of do not estimate for software aging

failure time, probability of switchover to another

service VM and Th_repair respectively.
By mapping through actions to this extended

reachability graph with stochastic process, we

get mathematical steady-state solution of the

chain.

(8)

 * (

) *
 ()

 +

 +

(9)

(10)

(

)

(11)

 ()

(12)

[

 ()
]

(13)

(14)

 (

 ()
)

(15)

(

 ()

)

(16)

 ()

(

 ()

)

(17)

 ()
[*(

) +]

(18)

[

 ()
[

[

 *(

) +]]]

(19)

[*(

) +]

(20)

 (21)

(22)

 ()

(23)

{

(

 ()
)

(

)
 ()

[

 (

) *
 ()

 +

 ()

]

[

 ()
]

(

 ()
)

 ()

(

 ()
)

 ()

[*(

) +]

[*(

) +]

[

 ()

[

[

*(

) +
]]

]

}

(24)

Where

 (

)(

 ()
)

 (

 ()
)

The meaning of the probabilities as follows:
 : The probability of the VM is in healthy

state

 : The probability of the VM is in

rejuvenation state

 : The probability of the VM is in failure

due to estimation of software aging

failure state

 : The probability of the VMM is in healthy

state

 : The probability of the VM is in

switchover state

 : The probability of the VMM is in

rejuvenation state

 : The probability of both VMs and VMMs

are in failure state

(j=1,2, where j= number of physical

machines)

B. Availability and Downtime Analysis

In the proposed model, services are not

available when both VMMs are in failure state.

We also define the availability of the SRN model

as:

Availability = 1- Unavailability (25)

Availability= (26)

Downtime is the expected total downtime of

the application with rejuvenation in an interval of

T time units is:

Downtime(T)= ∗ (27)

C. Numerical Examples

In this subsection, we illustrate the

applicability of the SPN model and solution

methodology through numerical examples. The

exact model transition firing rates for the model

are not known, a good estimate value for a range

of model transition firing rates is assumed.

Moreover, we used the time to aging failure

from the estimation of our experiment. For this

purpose, we perform numerical analysis using

the following failure profile mentioned in

Table 6.
Table 6. Transition Firing Rates

Transitions Firing Rates (h
-1

)

1/tsw (c1) 0.3

Th_d 1time/a month

Tv_d 1time/3 days

Th_fp 1time/a week

Tinterval 1time/a week

1/Tr1, 1/Tr2,1/Tv-r 1 min

1/Th-r 2 mins

1/Trst 30 secs

1/Tmig 4 sec

1/Tv-repair, 1/Trepair 30 mins

1/Th-repair 1 hour

Tfp 1 time/a week

Tfp2 , Tfp1 Estimation of time to

software aging failure

c (estimation coverage) variable

Figure 5. Availability vs different MTTF

aging and VM migration

Figure 5 illustrates the availability changes

for the proposed model with different VM aging

failure rates and different mean time to migration

had been applied. The mean time to VM

migration is assumed 5 sec and 4 sec

respectively. It can be observed that the VM

migration rate increases, the higher availability

can be achieved.

Figure 6 plotted the downtime as a function

of the VM aging failure for different VM

migration rates. Increases in migration rates for

VM lowered the system downtime.

Figure 6. Downtime vs different MTTF aging

and VM migration

Figure 7 illustrates the availability changes for

the proposed model with different VM aging

failure rates and different estimation coverage (c)

for VM resource exhaustion had been applied.

The probability of estimation coverage is

assumed 0.9 and 0.8. It can be observed that the

higher the probability of estimation coverage for

VM, the higher availability can be achieved.

Figure 7. Availability vs. different VM aging

and different c (estimation converge)

Figure 8. Downtime vs. different VM aging

and different c (estimation converge)

0.9999920

0.9999930

0.9999940

0.9999950

0.9999960

0.9999970

0.9999980

0.9999990

1.0000000

18 23 28 33 38

Mean Time To VM aging failure (hours)

A
v
a
il
a
b

il
it

y

μ_mig= 5sec(Derivation) μ_mig= 5sec(SHARPE)

μ_mig= 4sec(Derivation) μ_mig= 4sec(SHARPE)

0.00000

0.01000

0.02000

0.03000

0.04000

0.05000

0.06000

18 23 28 33 38

Mean Time To VM aging failure (hours)

D
o

w
n

ti
m

e
 (

h
o

u
r

p
e
r

y
e
a
r)

μ_mig= 5sec(Derivation) μ_mig= 5sec(SHARPE)

μ_mig= 4sec(Derivation) μ_mig= 4sec(SHARPE)

0.9999840

0.9999860

0.9999880

0.9999900

0.9999920

0.9999940

0.9999960

0.9999980

1.0000000

18 23 28 33 38

Mean Time To VM aging failure(hours)

A
v

a
il

a
b

il
it

y

c=0.9 (Derivation) c=0.9 (SHARPE)

c=0.8 (Derivation) c=0.8 (SHARPE)

0.00000

0.01000

0.02000

0.03000

0.04000

0.05000

0.06000

0.07000

0.08000

0.09000

0.10000

18 23 28 33 38

Mean Time To VM aging failure (hours)

D
o

w
n

ti
m

e
 (

h
o

u
r
 p

e
r
 y

e
a

r
)

c=0.9 (Derivation) c=0.9 (SHARPE)

c=0.8 (Derivation) c=0.8 (SHARPE)

Figure 8 plotted the downtime as a function

of the VM aging failure for different estimation

coverage (c) for VM resource exhaustion.

Increases in the probability of estimation

coverage for VM lowered the system downtime.

From the result, it is apparent that the

proposed model is a high availability in order to

integrate virtualization technology, clustering and

software rejuvenation mechanism for both VM

and VMM. According to the figures, it is found

that the derivation results and SHARPE tool

simulation results are the same.

6. Conclusion

In this paper, we have presented a framework

for virtualized local disaster recovery which

accepts as many services as possible. A stochastic

reward nets model is constructed to describe the

behavior of the proposed VLDR. We have

discussed comprehensive availability model for

measurement software rejuvenation on

virtualization and have shown some numerical

results. The experiment results with the

evaluation results through SHARPE are

validated. It is found that the derivation results

and SHARPE results are same. The obtained

results showed that the proposed framework with

measurement based software rejuvenation can

helpful the virtualized local disaster recovery.

References

[1] J. Alonso, I. Goiri, J. Guitart, R. Gavaldà

and J. Torres, “Optimal resource allocation

in a virtualized software aging platform with

software rejuvenation. ” In 22nd IEEE

International Symposium on Software

Reliability Engineering, 2011

[2] V. Castelli, R.E. Harper, P. Heidelberger,

S.W. Hunter, K.S.Trivedi, K. Vaidyanathan

and W.P. Zeggert, “Proactive Management

of Software Aging,” IBM JRD, Vol 45, No.

2, pp.311–332, Mar. 2001

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen,

E. Jul, C. Limpach, I. Pratt, andA. Warfield.

Live migration of virtual machines. In Proc.

NSDI '05, May 2005.

[4] D. Clitherow, M. Brookbanks, N. Clayton,

and G. Spear, „„Combining High

Availability and Disaster Recovery

Solutions for Critical IT Environments‟‟,

IBM Systems, Journal 47, No. 4, 563–575

(2008).

[5] F. Machida, D. Kim, J. Park and K. S.

Trivedi, Toward Optimal Virtual Machine

Placement and Rejuvenation Scheduling in a

Virtualized Data Center, In Proc. of the 1st

Int‟l Workshop on Software Aging and

Rejuvenation (WoSAR2008), 2008.

[6] B. C. Martin, “Disaster Recovery Plan

Strategies and Processes”, Version 1.3,

February 2002.

[7] T. Thein, S. Chi and J. Park, Availability

Modeling and Analysis on Virtualized

Clustering with Rejuvenation, International

Journal of Computer Science and Network

Security, vol.8, no. 9, pp.72-80, 2008.

[8] K. S. Trivedi, SHARPE 2002: Symbolic

Hierarchical Automated Reliability and

Performance Evaluator. In Proc. Int.

Conference on Dependable Systems and

Networks, 2002, pp. 544.

[9] K. S.Trivedi, "Probability and Statistics with

Reliability, Queuing, and Computer Science

Applications”, John Wiley and Sons, 2002.

[10] K. Vaidyanathan and K.S. Trivedi, “A

Measurement-based Model for Estimation

of Resource Exhaustion in Operational

Software Systems,” In Proc. of ISSRE 1999,

Boca Raton, FL, Nov. 1999.

[11] E. Vargas, “High Availability

Fundamentals”, Sun Blueprints Series,

2000.(http:// www.sun.com/blueprint)

http://www.sun.com/blueprint

