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Abstract - RDF is a W3C’s standardized data model for 

Semantic Web, and provides a graph-based descriptive way 

for representing resources on the web and their relationships. 

With the increasing use of RDF data, SPARQL query 

processing over the data becomes a critical issue. This paper 

proposes an indexing and searching approach that can 

support both chain and star shaped SPARQL query. Our 

approach considers graph structural nature of the RDF data. 

The RDF data is firstly decomposed into chain and star 

shaped subgraph patterns based on nature of edges for each 

vertex. These subgraphs are stored as index, called CS-index. 

When a SPARQL query is given, it is decomposed into query 

subgraph patterns based on common join variable among all 

triple patterns. And the query results are finally obtained by 

matching these query subgraphs against with CS-index. The 

proposed approach tends to minimize data loading/indexing 

time, and query execution time by reducing number of join 

operations needed to perform for a query’s processing. 
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I. INTRODUCTION 

Resource Description Framework (RDF) is a schema-

free and graph-structured data model for describing 

resources on the Web. Resources may be person, places, 

organizations, or anything on the Web. These RDF data can 

be accessed by SPARQL is a declarative query language 

recommended by W3C. As the highly interconnected 

nature of Web data, many RDF data management systems 

have been proposed with different techniques [1], i.e., 

relation-based RDF store, the clustered property table, 

vertical partitioning, and indexing. 

Relation-based RDF stores such as Jena-SDB, Sesame, 

RDF-3X, manage the data in relational tables and process 

SPARQL queries using relational operators, such as scan 

and join operators. The main problem of relation-based 

RDF stores is that they need too many join operations for 

processing SPARQL queries when the queries contain 

many triple patterns. This kind of queries is called   

complex queries. 

To process complex SPARQL queries, many approaches 

have been considered to solve this issue by emphasizing on: 

(i) reducing number of join, (ii) reducing inputs of join 

operators, and (iii) optimizing join order [3].  However, the 

graph-structured nature of the RDF and the graph pattern 

matching nature of SPARQL queries still have significant 

challenges for efficient processing of complex SPARQL 

queries over the interlinking RDF data. A question arises to 

ask how to find efficiently all matches of a query graph in a 

large database graph, i.e., reducing time of query 

processing as much as possible. 

In this paper, an indexing structure and querying 

algorithm is proposed for processing chain and star shaped 

SPARQL query. Blank nodes are not considered in this 

paper as they represent a resource without specifying its 

URI. Our proposed indexing structure collects 

vertices/literals, and predicates for each vertex in the RDF 

data graph based on their incoming and outgoing edges. 

These combinations (vertices/literals and predicates) are 

stored into an index table as key-value form to quickly 

access the data. And we also propose a search algorithm 

based on our indexing structure.   The proposed method 

could minimize query execution time, and requires little 

memory usage as it stores all structural information of one 

vertex with one key-value pair.    

The remainder of the paper is organized as follows: 

Section 2 describes literature review and explanation of 

RDF data and SPARQL query is given in Section 3.  Our 

proposed indexing structure and search algorithm are 

presented in Section 4. Section 5 explains the query 

evaluation with proposed method. Finally, Section 6 

concludes the whole paper and discusses future 

perspectives. 

II. RELATED WORK 

Many triple stores, such as RDF-3X [4] and Hexastore 

[5], store all RDF triples data (S,P,O) in a single three-

column table. For efficient data access, one-dimensional 

indexes (B+ trees) are used for each of the six permutations 

(i.e., SPO, SOP, PSO, POS, OSP, OPS), known as sextuple 

indexing technique. However, this querying efficiency 

comes at the cost of excessive storage requirements and 

maintenance overhead since the complete data set is stored 

replicated six times. It degrades the efficiency of query 

processing as it requires expensive self-joins when 

SPARQL queries consist multiple triple patterns [1]. 

X. Wang et. al [6] proposed a RDF storage and indexing 

scheme, called CHex. CHex uses sextuple indexing and 

binary association table (BAT) for a column-oriented 

database system. It not only provides efficient single triple 

pattern lookups, but also allows fast merge-joins for any 

pair of two triple patterns. But the additional processing 

becomes substantial as the queries become complex. And it 

incurs space overhead in data storing. 

 X. Lyu et. al [7] proposed the efficient subgraph 

matching method for star queries. The method decomposes 

both data graphs and query graphs into sets of star graphs, 

and encode each star subgraph into a fingerprint. 

Fingerprints were used to effectively reduce the data 

searching space. But the method takes too much time in 

fingerprints encoding, and can handle only star shaped 

queries. 
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In [8], a graph indexing approach, Extended 

Characteristic Sets, is proposed for SPARQL query 

optimization.  Extended Characteristic Sets the authors 

considered is based on the work in [9]. It aims to accelerate 

query processing time for conjunctive queries with multi-

chain-star patterns, called double chain-star queries.  The 

approach had advantages on queries’ processing time. But 

it can process only double chain-star queries and has 

processing overhead as it can extract extended 

characteristic sets after generating characteristic sets. And it 

cannot support data updates. 

In [10], RP-filter was proposed for reducing the 

redundant intermediate results of join operations. RP-filter 

uses a path-based index which indexes the incoming path 

information of RDF graph.  However, it has limitation that 

it could not exploit the graph structural information of RDF 

data. The additional processing becomes substantial as the 

queries become complex. In order to overcome this 

limitation, RG-index was proposed in [11]. The RG-index 

indexes the graph patterns by using adapted gSpan 

algorithm - is a frequent subgraph mining algorithm was 

originally proposed for graph transaction data set eg. 

chemical compounds. But the method takes too much time 

for mining discriminative and frequent graph patterns from 

RDF data.  

To overcome these limitations, we propose CS-index 

which extracts chain and star shaped graph patterns by 

counting the incoming and outgoing degrees of vertices 

while parsing and dictionary encoding. We assume that 

extraction of chain and star shaped patterns need the time 

than RG-index because our proposed method does not use 

subgraph mining technique. And the proposed method 

could support both chain and star shaped SPARQL queries. 

III. PRELIMINARY CONCEPTS 

In this section, formal definition of RDF data and 

SPARQL query are provided. Assume that there are three 

pairwise disjoint sets: a set of uniform resource identifiers 

(URIs) U, a set of literals L, and a set of variables VAR.  

A. RDF Data 

A RDF data set is a collection of statements in the form 

of subject (s), predicate (p), and object (o). A statement t ϵ 

U × U × (U υ L) (without variables) is called a triple. Table 

1 presents an example of RDF data set, LUBM - is a 

standard data set which was developed to evaluate the 

performance of Semantic Web repositories. For simplicity, 

we use prefix for each URI as many triples share the same 

URI. 

Prefix: 

uni0 = “http://www.University0.edu#” 

uni241= “http://www.University241.edu# 

dept0= “http://www.Department0.University0.edu#” 

rdf = “http://www.w3.org/1999/02/22-rdf-syntax-ns#” 

owl= “http://swat.cse.lehigh.edu/onto/univ-bench.owl#” 

TABLE I 

EXAMPLE RDF DATA SET  

Subject Predicate Object 

uni0:University0  rdf:type owl:University 

uni0:University0 owl:name "University0" 

dep0:Department0 rdf:type owl:Department  

dept0:Department0 owl:name "Department0" 

dept0:Department0 owl:subOrgani

zationOf 

uni0:University0 

uni0:FullProfessor0  rdf:type owl:FullProfessor  

uni0:FullProfessor0 owl:name  "FullProfessor0"  

uni0:FullProfessor0 owl:teacherOf uni0:GraduateCours

e0 

uni0:FullProfessor0 owl:teacherOf uni0:GraduateCours

e1 

uni0:FullProfessor0 owl:doctoralDe

greeFrom 

uni241:University24

1 

uni0:FullProfessor0 owl:worksFor dept0:Department0 

uni0:FullProfessor0 owl:researchInt

erest 

"Research20" 

uni0:GraduateStudent1 owl:advisor uni0:FullProfessor0 

 

These RDF data can be considered as directed, labelled 

graph. Figure 1 shows the RDF data graph for example 

RDF data set in Table. 1. In this paper, blank nodes are 

omitted as they represent a resource without specifying its 

URI. 
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Fig. 1 RDF data graph 

B. SPARQL Query 

A SPARQL query consists of one or more triple patterns 

(tps). A statement tp ϵ (U υ VAR) × U × (U υ L υ VAR) 

(triple with variables) is called a triple pattern. Variable 

symbols start with ‘‘?’’ to distinguish them from URIs and 

literals. SPARQL queries can be classified based on the 

shape of the query graph. In this paper, chain and star query 

are considered. Chain queries include subject-object join 

(the join is between a tp's subject and another tp’s object). 

A star query includes subject-subject join, i.e. join variable 

is at the subject’s position of all the tps. 

Figure 2. shows example of SPARQL query. It retrieves 

the university’s name where FullProfessor0 got doctoral 

degree. It consists in the chain query type. 

 

 

 

 

 

 
Fig. 2 Example SPARQL query 

 

The query graph of the example SPARQL query in 

Figure 2 is shown in Figure 3. 

 

FullProfessor0 ?X University

doctoralDegree

From type

 
Fig. 3 Example SPARQL query graph 

IV. PROPOSED METHOD 

In our proposed method, there are two main phases: (i) 

index construction and (ii) query searching. The proposed 

indexing and searching algorithm are designed to process 

SELECT ?X WHERE {  

uni:FullProfessor0 

owl:doctoralDegreeFrom ?X. 

 ?X  rdf:type “University” .  

} 
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both chain and star query. Algorithms for the proposed 

method are described in Fig. 5 and Fig. 6, respectively. 

A. Index Construction 

There are some tasks in CS-index construction phase: 

parsing RDF triples, constructing dictionaries, and 

extracting graph patterns based on the incoming and 

outgoing degree of each vertex. All these tasks are carried 

out in parallel. As first task, each RDF triple (vi,ei,vj) is 

parsed into three parts: subject, predicate, and object. 

Values of the subject/predicate/object are URIs or literals. 

Thus, we store integer values instead of these URIs and 

literals because they are complex and long string values.   

Two dictionaries are needed for mapping the RDF triples 

with integer values. The first one is for subjects and objects, 

and the other one is for predicate, called subject/object 

dictionary and predicate dictionary, respectively. Key-value 

(id, value) mappings are used to construct the dictionaries. 

The notation for ‘id’ is defined as Vid and Eid where Vid is 

the integer value for subjects and objects, Eid is the integer 

value for predicates. 

 

 

 

 

(b) 

 
             (a)  

Fig. 4  (a) Subject/Object dictionary, (b) Predicate dictionary  

 

While constructing the dictionaries, in-degree and out-

degree are computed for each subject and object. Degree 

computation is not need to consider for predicate. If the 

parsed one (vi) is subject, we increase the out-degree and 

add the pair (ei,vj) into outgoing-edges of vi. If it is object, 

we increase the in-degree and add the pair (vj,ei) into 

incoming-edges of vi. If it is predicate, next triple is read to 

parse. 

 

Algorithm 1: CS-index construction algorithm 

1. Input: RDF data set D  

2. Output: CS-index, subject/object dictionary, 

             predicate dictionary 

3. begin 

4. for each triple t in D 

5.   parse and encode each URI/literal 

6.   for each encoded URI/literal vi 

7.     if encoded URI/literal vi is subject 

8.       if out-degree of vi  is zero 

9.       out-degree of vi ++ 

10.       outgoing-edges of vi = {(ei, vj)} 

11.      end if 

12.      else  

13.        out-degree of vi ++ 

14.        merge (ei,vj) to existing outgoing-edges of vi 

15.         end else  

16.     end if 

17.     else if encoded URI/literal vi is object 

18.       if in-degree of vi  is zero 

19.         in-degree of vi ++ 

20.         incoming-edges of vi = {(vj, ei)} 

21.       end if 

22.       else  

23.         in-degree of vi ++ 

24.        merge (vj, ei) to existing incoming-edges of vi 

25.         end else  

26.    end else if 

27.    else break; 

28.    end for 

29. end for 

30. for each encoded subject/object vertex vi 

31.   store outgoing-edges and incoming-edges, 

and vi   

32. end for 

33. end 

Fig. 5 Algorithm for CS-index construction  

 

After all RDF triples have been processed completely, 

we store incoming-edges and outgoing-edges as compound 

key and vi as value in CS-index. And then, CS-index is 

sorted in ascending order based on the in-degree and out-

degree pair of each vi. CS-index of example RDF data in 

Table I  is shown in Table II.  

TABLE II 

CS-INDEX ARCHITECTURE 

 outgoing-edges  

(ei,vj) 

incoming-edges  

(vj, ei) 

Vid 

#1 - {(4,1)} 5 

#2 - {(4,2)} 6 

#3 - {(7,1)} 8 

#4 - {(7,2)} 9 

#5 - {(7,4)} 10 

#6 - {(7,4)} 11 

#7 - {(7,5)} 12 

#8 - {(7,7)} 13 

#9 - {(1,1)} 2 

#10 {(1,2)}  - 3 

#11 {(8,7)} - 14 

#12 {(1,2),(2,3)} {(4,3)} 1 

#13 {(1,5),(2,6),(3,1)} {(7,6)} 4 

#14 {(1,8),(2,9),(4,11), 

(4,11),(5,12),(6,4),(7,13)} 

{(14,8)} 7 

 

B. Query Processing 

When a query arrives, the query processor finds common 

join variable which include as a variable in more than one 

triple pattern. And the triple patterns are grouped based on 

the common join variable. And each 

subject/predicate/object values are encoded using two 

dictionaries constructed in index construction stage. Then, 

in-degree, out-degree, incoming-edges, and outgoing edges 

are computed for each common join variable. 

 

Algorithm 2: Query processing algorithm 

1. Input: SPARQL query Q, CS-index 

2. Output: result of the query resultQ  

3. begin 

4.   find common join variable vari 

5.   decompose triple patterns tps based on vari  

6.   compute in-degree, out-degree, incoming-edges,  

                  outgoing-edges of vari 

7.    resultQ = match(in-degreevari, out-degreevari,  

Vid URI/Literal 

1 uni0:University0 

2 owl:University 

3 University0 

4 dept0:Department0 

5 owl:Department 

6 Department0 

7 uni0:FullProfessor0 

8 owl:FullProfessor 

9 FullProfessor0 

10 uni0:GraduateCourse0 

11 uni0:GraduateCourse1 

12 uni241:University241 

13 Research20 

14 uni0:GraduateStudent1 

Eid URI 

1 rdf:type 

2 owl:name 

3 owl:subOrganizationOf 

4 owl:teacherOf 

5 owl:doctoralDegreeFro

m 

6 owl:worksFor 

7 owl:researchInterest 

8 owl:advisor 
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                   incoming-edgesvari, outgoing-edgesvari)  

8.    decode resultQ  

9. return resultQ  

10. end 

 

match(in-degreevari, out-degreevari, incoming-edgesvari, 

outgoing-edgesvari) 

1. begin 

2.   access the CS-index based on the in-degree  

             and out-degree of vari 

3.   retrieve the values which match with incoming-edges, 

outgoing-edges  

4. return resultvari 

5. end 

Fig. 6 Algorithm for query processing 

 

When these four values are obtained, the results are 

searched in CS-index. The location of CS-index where the 

result can be exist are easily accessed as the CS-index is 

sorted in ascending order according to the degree of 

vertices. After the matched value (vertex id) is obtained, all 

vertex id need to be decoded into the original strings by the 

dictionary lookups. And the system displays the result to 

user. In this way, the proposed method could optimize the 

query response time by reducing number of join operations. 

V. PERFORMANCE STUDY 

A. Experimental Setup 

We have conducted an experimental evaluation with 

synthetic data set, LUBM [10], was used for performance 

testing and all tests were run 10 times to calculate the 

average results. The algorithm was implemented in Java 

SDK 1.8 and all tests were performed on a PC with an Intel 

Core i3 1.90 GHz processor, 4 GB RAM, and operating 

system is Windows 8.1. The data nature of three different 

LUBM data set is described in Table III. 

TABLE III 

DATA CHARACTERISTICS OF THREE LUBM DATA SET 

Data Set #triples #class 

instance 

#property 

instance 

LUBM10 1,316,511 263,427 1,052,895 

LUBM15 2,021,508 404,743 1,616,472 

LUBM20 2,781,724 556,572 2,224,750 

 

Test queries (Q1-Q5) were designed for SPARQL query 

processing. Table IV lists all the benchmark queries. Q1 

consists of only one triple pattern. Q2 is chain shaped query. 

Q3 and Q4 are star shaped queries with two triple patterns 

and seven triple patterns, respectively.  The last Q5 is a 

query which contains both subject-object join and object-

object join. 

TABLE IV 
SPARQL TEST QUERIES 

ID Query 

Q1 SELECT ?X WHERE {  

?X rdf:type  owl:University  . 

} 

Q2 SELECT ?X WHERE {  

uni:AssociateProfessor0  owl:worksFor ?X . 

?X rdf:type owl:Department . } 

Q3 SELECT ?X  

WHERE { ?X rdf:type owl:GraduateStudent . 

?X owl:takesCourse uni0:GraduateCourse20> .} 

Q4 SELECT ?X WHERE { 

 ?X rdf:type owl:AssociateProfessor . 

?X owl:researchInterest "Research2" . 

?X owl:teacherOf uni0:Course23 . 

?X owl:teacherOf  uni0:GraduateCourse23 . 

?X owl:teacherOf  owl:GraduateCourse24 . 

?X owl:doctoralDegreeFrom uni290:University290 . 

?X owl:worksFor uni0:University0 . 

} 

Q5 SELECT ?X WHERE {  

?X rdf:type owl:Course . 

uni0:FullProfessor2 owl:teacherOf  ?X . 

uni0:UndergraduateStudent118 owl:takesCourse ?X . 

} 

 

TABLE V 

DATA LOADING/INDEXING TIME FOR THREE LUBM DATA SET 

Data set Data Loading/Indexing Time 

(sec) 

LUBM10 11.72 

LUBM15 20.34 

LUBM20 30.24 

 

Table V describes the time for data loading/indexing of 

three different LUBM data set. It takes a few seconds to 

load and index the input RDF data. We found that the 

proposed method had slightly time difference although the 

number of triples contained in the data set is significantly 

varied. 

 

 
Fig. 7 Query processing time of Q1, Q2, Q3, Q4, and Q5 over three 

LBUM data set 

Fig. 7 shows the time performance of five test queries in 

three different data set. According to our experiment, our 

proposed method can efficiently enhance the query run 

time even if the number of triple patterns contained in a 

given SPARQL query is large. 

 

 
Fig. 8 Query processing time of Q3 and Q4 over three LUBM data set 
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To obviously evaluate, we again compared only Q3 and 

Q4. They are both star shaped query. But Q3 has two triple 

patterns and Q4 has seven triple patterns. The difference 

between number of triple patterns in Q3 and Q4 is three 

times, but the processing time was not different too much. 

The comparison result is shown in Fig. 8. 

When we made an evaluation, it showed that our 

proposed method can handle the queries with many triple 

patterns as in processing the queries with less triple patterns. 

The query processing time do not differ too much. So, we 

conclude that our proposed method could process both 

chain and star shaped SPARQL queries. Even when the star 

shaped queries have many triple patterns, it can process 

well. 

VI. CONCLUSIONS 

The proposed approach is designed to gain high-

performance query processing for chain and star shaped 

SPARQL queries. Formally, when a query with n triple 

patterns is processed, (n-1) join operations are needed to 

execute to get the query’s result. It takes too much time for 

query processing. So, our proposed CS-index and querying 

approach intend to minimize query processing time by 

avoiding join operations. The proposed method has index 

construction time, but it requires only one unit cost to get 

the result as explained in the query evaluation in Section V. 

And it uses reasonable memory space as two dictionaries 

(subject/object, predicate) and CS-index are needed to store 

instead of original data set.  

In future work, we will compare to validate that our 

proposed method could efficiently minimize query 

execution time than other state-of-art RDF indexing and 

querying approach. 
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