Hausdorff Distance between Subsets of a Metric Space

Moe Moe Yi ${ }^{1}$

Abstract

In this paper, after defining Hausdorff distance, the properties are described. Then, the space of closed and bounded subsets of a metric space endowed with the Hausdorff distance is presented.

Keywords: Hausdorff distance, metric space

Introduction

The Hausdorff distance gives the largest length of the set of all distances between each point of a set to the closest point of a second set. We will study the Hausdorff distance between two subsets of a metric space (see [Rudin, W., 1953]) and the space of closed and bounded (see [Rudin, W., 1953]) subsets of a metric space endowed with the Hausdorff distance.

Definitions 1

Let (X, d) be a metric space and A, B be nonempty subsets of X.
We define $d(a, B)=\inf _{b \in B} d(a, b)$. If $B=\varnothing$, then we define $d(a, B)=\infty$.
If $B \neq \varnothing$, then $\exists b \in B$ and so $d(a, B)=\inf _{b \in B} d(a, b) \leq d(a, b)<\infty$.
Thus $0 \leq \mathrm{d}(\mathrm{a}, \mathrm{B})<\infty$, if $\mathrm{B} \neq \varnothing$. We also define $\mathrm{e}(\mathrm{A}, \mathrm{B})=\sup _{\mathrm{a} \in \mathrm{A}} \mathrm{d}(\mathrm{a}, \mathrm{B})$. Then $\mathrm{e}(\mathrm{A}, \mathrm{B})$ is
called excess of A over B. The Hausdorff distance between two sets A and B is defined as $\left.\mathrm{d}_{\mathrm{H}}(\mathrm{A}, \mathrm{B})=\max \{\mathrm{e}(\mathrm{A}, \mathrm{B}), \mathrm{e}(\mathrm{B}, \mathrm{A}))\right\}$.

Example

Let A and B set defined by $\mathrm{A}=\{(\mathrm{x}, \mathrm{y}) ; 0 \leq \mathrm{x} \leq 1,0 \leq \mathrm{y} \leq 1\}$ and let $B=\{(x, y) ; 3 \leq x \leq 5,0 \leq y \leq 4\}$.

If $\left(a_{1}, a_{2}\right) \in A$, then $d\left(\left(a_{1}, a_{2}\right), B\right)=d\left(\left(a_{1}, a_{2}\right),\left(3, a_{2}\right)\right)=3-a_{1}$.
Since $0 \leq a_{1} \leq 1$, we find that $e(A, B)=3$.
If $\left(b_{1}, b_{2}\right) \in B$, then $d\left(\left(b_{1}, b_{2}\right), A\right)=d\left(\left(b_{1}, b_{2}\right),\left(1, a_{2}\right)\right)$ where $0 \leq a_{2} \leq 1$, which varies our choice of $\left(b_{1}, b_{2}\right)$. We find that

$$
e(B, A)=d((5,4),(1,1))=5 .
$$

Therefore the Hausdorff distance is given by $d_{H}(A, B)=e(B, A)=5$.

[^0]
Lemma 1

Let A, B , C be nonempty subsets of a metric space (X, d). Then we can verify the followings:
(a) $\quad \mathrm{e}(\mathrm{A}, \mathrm{B})$ is not necessarily equal to $\mathrm{e}(\mathrm{B}, \mathrm{A})$.
(b) $0 \leq \mathrm{e}(\mathrm{A}, \mathrm{B}) \leq \infty$ and $\mathrm{e}(\mathrm{A}, \mathrm{B})<\infty$, if X is bounded.
(c) $\mathrm{e}(\mathrm{A}, \mathrm{A})=0$
(d) $\mathrm{e}(\mathrm{A}, \mathrm{B}) \leq \mathrm{e}(\mathrm{A}, \mathrm{C})+\mathrm{e}(\mathrm{C}, \mathrm{B})$
(e) If $N_{r}(A)=\{x \in X \mid d(x, A)<r\}$, then $e(A, B)=\inf _{r>0,} A_{\mathrm{A}}(B)$ and since the map $\mathrm{x}: \mapsto \mathrm{d}(\mathrm{x}, \mathrm{A})$ is continuous $\mathrm{N}_{\mathrm{r}}(\mathrm{A})$ is open.
(f) $\quad \mathrm{d}(\mathrm{a}, \mathrm{B})=0 \Rightarrow \mathrm{a} \in \overline{\mathrm{B}}$.
(g) $\quad \mathrm{e}(\mathrm{A}, \mathrm{B})=0 \Leftrightarrow \mathrm{~A} \subset \overline{\mathrm{~B}}$.
(h) If $\mathrm{A} \subset \mathrm{B}$ then $\mathrm{e}(\mathrm{A}, \mathrm{B})=0$.
(i) $\mathrm{d}_{\mathrm{H}}(\mathrm{A}, \mathrm{B})=0 \Leftrightarrow \overline{\mathrm{~A}}=\overline{\mathrm{B}}$

Proof:

(a) Let $A=\{1,2\}$ and $B=\{5,6,7\}$
$\mathrm{e}(\mathrm{A}, \mathrm{B})=\sup \{\mathrm{d}(1, \mathrm{~B}), \mathrm{d}(2, B)\}=\sup \{4,3\}=4$
$\mathrm{e}(\mathrm{B}, \mathrm{A})=\sup \{\mathrm{d}(5, \mathrm{~A}), \mathrm{d}(6, \mathrm{~A}), \mathrm{d}(7, \mathrm{~A})\}=\sup \{3,4,5\}=5$.
(b) It is obvious that $\mathrm{e}(\mathrm{A}, \mathrm{B}) \geq 0$.

If X is bounded then $\exists M>0$ such that $d(x, y) \leq M, \forall x, y \in X$.
Then for any $x \in A, d(x, B)=\inf _{y \in B} d(x, y) \leq M$, so that
$e(A, B)=\sup _{x \in A} d(x, B) \leq M<\infty$.
(c) $\mathrm{A} \subset \overline{\mathrm{A}} \Rightarrow \mathrm{e}(\mathrm{A}, \mathrm{A})=0$.
(d) Take any $\varepsilon>0$ and a $\in A$. Since $\mathrm{d}(\mathrm{a}, \mathrm{C})=\inf _{\mathrm{c} \in \mathrm{C}} \mathrm{d}(\mathrm{a}, \mathrm{c})<\mathrm{d}(\mathrm{a}, \mathrm{C})+\frac{\varepsilon}{2}$,
$\exists \mathrm{c} \in \mathrm{C}$ such that $\mathrm{d}(\mathrm{a}, \mathrm{c})<\mathrm{d}(\mathrm{a}, \mathrm{C})+\frac{\varepsilon}{2} \leq \sup _{\mathrm{a} \in \mathrm{A}} \mathrm{d}(\mathrm{a}, \mathrm{C})+\frac{\varepsilon}{2}=\mathrm{e}(\mathrm{A}, \mathrm{C})+\frac{\varepsilon}{2}$.
Similarly, $\exists \mathrm{b} \in \mathrm{B}$ such that $\mathrm{d}(\mathrm{c}, \mathrm{b})<\mathrm{e}(\mathrm{C}, \mathrm{B})+\frac{\varepsilon}{2}$.
Then, $\mathrm{d}(\mathrm{a}, \mathrm{B})=\inf _{\mathrm{b} \in \mathrm{B}} \mathrm{d}(\mathrm{a}, \mathrm{b}) \leq \mathrm{d}(\mathrm{a}, \mathrm{b}) \leq \mathrm{d}(\mathrm{a}, \mathrm{c})+\mathrm{d}(\mathrm{c}, \mathrm{b})<\mathrm{e}(\mathrm{A}, \mathrm{C})+\mathrm{e}(\mathrm{C}, \mathrm{B})+\varepsilon$.

Thus $\mathrm{e}(\mathrm{A}, \mathrm{B})=\sup _{\mathrm{a} \in \mathrm{A}} \mathrm{d}(\mathrm{a}, \mathrm{B}) \leq \mathrm{e}(\mathrm{A}, \mathrm{C})+\mathrm{e}(\mathrm{C}, \mathrm{B})+\varepsilon$, and since ε is arbitrary it
follows that $e(A, B) \leq e(A, C)+e(C, B)$.
(e) Let $L=e(A, B)=\sup _{a \in A} d(a, B)$. Then for any $a \in A, d(a, B) \leq L$.

So, $A \subset N_{L}(B)$ and $\inf _{r>0, A \subset N_{r}(B)} r \leq L$. Suppose $\inf _{r>0, A \subset N_{r}(B)} r<r_{0}<L$.
Then $\exists \mathrm{r}>0$ such that $\mathrm{A} \subset \mathrm{N}_{\mathrm{r}}(\mathrm{B})$ and $\mathrm{r}<\mathrm{r}_{0}$. Then $\mathrm{A} \subset \mathrm{N}_{\mathrm{r}_{0}}(\mathrm{~B})$.
Thus, $\mathrm{x} \in \mathrm{A} \Rightarrow \mathrm{d}(\mathrm{x}, \mathrm{B})<\mathrm{r}_{0}$ and so $\mathrm{e}(\mathrm{A}, \mathrm{B})=\sup _{\mathrm{x} \in \mathrm{A}} \mathrm{d}(\mathrm{x}, \mathrm{B}) \leq \mathrm{r}_{0}<\mathrm{L}=\mathrm{e}(\mathrm{A}, \mathrm{B})$.
So, $\quad \inf _{r>0,}^{A \subset N_{r}(B)} r \geq L$ and $\inf _{r>0,}^{A \subset N_{r}(B)} r=e(A, B)$.
(f) Suppose $\mathrm{d}(\mathrm{a}, \mathrm{B})=0$. Then $\forall \mathrm{n} \in \mathrm{Z}^{+}, \quad \inf _{\mathrm{b} \in \mathrm{B}} \mathrm{d}(\mathrm{a}, \mathrm{b})<\frac{1}{\mathrm{n}}$.

So, $\exists \mathrm{b}_{\mathrm{n}} \in \mathrm{B}$ such that $0 \leq \mathrm{d}\left(\mathrm{a}, \mathrm{b}_{\mathrm{n}}\right)<\frac{1}{\mathrm{n}} \rightarrow 0$. Thus, $\mathrm{b}_{\mathrm{n}} \rightarrow \mathrm{a}$ and $\mathrm{a} \in \overline{\mathrm{B}}$.
(g) $\quad \operatorname{Suppose} \mathrm{e}(\mathrm{A}, \mathrm{B})=0$. Then sup $\mathrm{d}(\mathrm{a}, \mathrm{B})=0$, and $\mathrm{d}(\mathrm{a}, \mathrm{B})=0, \forall \mathrm{a} \in \mathrm{A}$.

$$
\mathrm{a} \in \mathrm{~A}
$$

Thus $\mathrm{a} \in \mathrm{A} \Rightarrow \mathrm{d}(\mathrm{a}, \mathrm{B})=0 \Rightarrow \mathrm{a} \in \overline{\mathrm{B}}$ which implies that $\mathrm{A} \subset \overline{\mathrm{B}}$.
On the other hand, suppose that $\mathrm{A} \subset \overline{\mathrm{B}}$.
Take any $\mathrm{a} \in \mathrm{A}$, and any $\varepsilon>0$. Then since $\mathrm{a} \in \overline{\mathrm{B}}, \exists \mathrm{b}_{0} \in \mathrm{~B}$ such that $\mathrm{d}\left(\mathrm{a}, \mathrm{b}_{0}\right)<\varepsilon$.
Thus $0 \leq \mathrm{d}(\mathrm{a}, \mathrm{B})=\inf _{\mathrm{b} \in \mathrm{B}} \mathrm{d}(\mathrm{a}, \mathrm{b}) \leq \mathrm{d}\left(\mathrm{a}, \mathrm{b}_{0}\right)<\varepsilon, \forall \varepsilon>0$.
Thus $0 \leq \mathrm{d}(\mathrm{a}, \mathrm{B})<\varepsilon, \forall \varepsilon>0$ and so
$d(a, B)=0$ which implies that $e(A, B)=\sup _{a \in A} d(a, B)=0$.
(h) It is obvious.
(i) $\quad \mathrm{d}(\mathrm{A}, \mathrm{B})=0 \Leftrightarrow \mathrm{e}(\mathrm{A}, \mathrm{B})=0$ and $\mathrm{e}(\mathrm{B}, \mathrm{A})=0 \Leftrightarrow \mathrm{~A} \subset \overline{\mathrm{~B}}$ and $\mathrm{B} \subset \overline{\mathrm{A}}$

$$
\Leftrightarrow \overline{\mathrm{A}} \subset \overline{\mathrm{~B}} \text { and } \overline{\mathrm{B}} \subset \overline{\mathrm{~A}} \Leftrightarrow \overline{\mathrm{~A}}=\overline{\mathrm{B}} .
$$

Definitions 2

Let (X, d) be a metric space and A and B be nonempty subsets of X . We define $\mathrm{E}_{\varepsilon}(\mathrm{A})=\{\mathrm{x} \in \mathrm{X} \mid \mathrm{d}(\mathrm{x}, \mathrm{a})<\varepsilon$ for some $\mathrm{a} \in \mathrm{A}\} . \mathrm{E}_{\varepsilon}(\mathrm{A})$ is called the $\boldsymbol{\varepsilon}$-expansion of \boldsymbol{A}. It is obvious that $\mathrm{E}_{\varepsilon}(\mathrm{A})=\bigcup_{\mathrm{a} \in \mathrm{A}} \mathrm{B}(\mathrm{a}, \varepsilon)=$ union of all ε-balls around points in A . We also define
$\mathrm{H}(\mathrm{A}, \mathrm{B})=\inf \left\{\varepsilon>0 \mid \mathrm{A} \subset \mathrm{N}_{\varepsilon}(\mathrm{B})\right.$ and $\left.\mathrm{B} \subset \mathrm{N}_{\varepsilon}(\mathrm{A})\right\}$,
$D(A, B)=\inf \left\{\varepsilon>0 \mid A \subset \mathrm{E}_{\varepsilon}(\mathrm{B})\right.$ and $\left.\mathrm{B} \subset \mathrm{E}_{\varepsilon}(\mathrm{A})\right\}$, and $\mathcal{C B}(\mathrm{X})$ as the space of nonempty closed and bounded subsets of X .

Lemma 2

Let (X, d) be a metric space and A, B , C be nonempty subsets of X. Then we can deduce that
(a) $\quad \mathrm{E}_{\varepsilon}(\mathrm{A})=\mathrm{N}_{\varepsilon}(\mathrm{A})$.
(b) $\quad \mathrm{H}(\mathrm{A}, \mathrm{B})=\mathrm{D}(\mathrm{A}, \mathrm{B})$.
(c) $\mathrm{d}_{\mathrm{H}}(\mathrm{A}, \mathrm{B})=\mathrm{D}(\mathrm{A}, \mathrm{B})$.
(d) If $\varepsilon_{1} \leq \varepsilon_{2}$ then $N_{\varepsilon_{1}}(A) \subset N_{\varepsilon_{2}}(A)$.
(e) If $A \subset N_{\varepsilon}(B)$ and $B \subset N_{\varepsilon}(C)$, then $A \subset N_{2 \varepsilon}(C)$.
(f) If A is bounded then $\mathrm{N}_{\varepsilon}(\mathrm{A})$ is bounded.

Proof:

(a) Suppose $x \in E_{\varepsilon}(A)$. Then $\exists a \in A$, such that $d(x, a)<\varepsilon$.

Then $d(x, A)=\inf _{a \in A} d(x, a) \leq d(x, a)<\varepsilon$. So $x \in N_{\varepsilon}(A)$.
For the converse, assume that $x \in N_{\varepsilon}(A)$. Then $d(x, A)=\inf _{a \in A} d(x, a)<\varepsilon$.
So $\exists \mathrm{a} \in \mathrm{A}$ such that $\mathrm{d}(\mathrm{x}, \mathrm{a})<\varepsilon$. Hence $\mathrm{x} \in \mathrm{E}_{\varepsilon}(\mathrm{A})$.
(b) \quad By definition, $\mathrm{H}(\mathrm{A}, \mathrm{B})=\inf \left\{\varepsilon>0 \mid \mathrm{A} \subset \mathrm{N}_{\varepsilon}(\mathrm{B})\right.$ and $\left.\mathrm{B} \subset \mathrm{N}_{\varepsilon}(\mathrm{A})\right\}$.

From $(a), N_{\varepsilon}(A)=E_{\varepsilon}(A)$.
Hence $\mathrm{H}(\mathrm{A}, \mathrm{B})=\inf \left\{\varepsilon>0 \mid \mathrm{A} \subset \mathrm{N}_{\varepsilon}(\mathrm{B})\right.$ and $\left.\mathrm{B} \subset \mathrm{N}_{\varepsilon}(\mathrm{A})\right\}$

$$
=\inf \left\{\varepsilon>0 \mid \mathrm{A} \subset \mathrm{E}_{\varepsilon}(\mathrm{B}) \text { and } \mathrm{B} \subset \mathrm{E}_{\varepsilon}(\mathrm{A})\right\}=\mathrm{D}(\mathrm{~A}, \mathrm{~B}) .
$$

By Lemma 1.(e), $\mathrm{e}(\mathrm{A}, \mathrm{B})=\inf \left\{\varepsilon>0 \mid \mathrm{A} \subset \mathrm{N}_{\varepsilon}(\mathrm{B})\right\}$.
Thus $\mathrm{d}_{\mathrm{H}}(\mathrm{A}, \mathrm{B})=\max \{\mathrm{e}(\mathrm{A}, \mathrm{B}), \mathrm{e}(\mathrm{B}, \mathrm{A})\}$

$$
=\max \left\{\inf \left\{\varepsilon>0 \mid \mathrm{A} \subset \mathrm{~N}_{\varepsilon}(\mathrm{B})\right\}, \inf \left\{\varepsilon>0 \mid \mathrm{B} \subset \mathrm{~N}_{\varepsilon}(\mathrm{A})\right\}\right\} .
$$

Suppose $A \subset N_{\delta}(B)$ and $B \subset N_{\delta}(A)$.
Then $\inf \left\{\varepsilon>0 \mid \mathrm{A} \subset \mathrm{N}_{\varepsilon}(\mathrm{B})\right\} \leq \delta$ and $\inf \left\{\varepsilon>0 \mid \mathrm{B} \subset \mathrm{N}_{\varepsilon}(\mathrm{A})\right\} \leq \delta$.
So $\mathrm{D}(\mathrm{A}, \mathrm{B})=\inf \left\{\varepsilon>0 \mid \mathrm{B} \subset \mathrm{N}_{\varepsilon}(\mathrm{A})\right.$ and $\left.\mathrm{A} \subset \mathrm{N}_{\varepsilon}(\mathrm{B})\right\} \leq \delta$.
Thus $\mathrm{D}(\mathrm{A}, \mathrm{B}) \leq \delta, \forall \delta>0$ such that $\mathrm{A} \subset \mathrm{N}_{\delta}(\mathrm{B})$ and $\mathrm{B} \subset \mathrm{N}_{\delta}(\mathrm{A})$.

Taking infimum gives $D(A, B) \leq d_{H}(A, B)$.
Suppose $D(A, B)<d_{H}(A, B)$.
Since $\mathrm{D}(\mathrm{A}, \mathrm{B})=\inf \left\{\varepsilon>0 \mid \mathrm{A} \subset \mathrm{N}_{\varepsilon}(\mathrm{B})\right.$ and $\left.\mathrm{B} \subset \mathrm{N}_{\varepsilon}(\mathrm{A})\right\}, \exists \varepsilon>0$ such that
$A \subset N_{\varepsilon}(B), B \subset N_{\varepsilon}(A)$ and $\varepsilon<d_{H}(A, B)$. Since $A \subset N_{\varepsilon}(B), \forall a \in A, d(a, B)<\varepsilon$.
So $e(A, B)=\sup _{\mathrm{a} \in \mathrm{A}} \mathrm{d}(\mathrm{a}, \mathrm{B}) \leq \varepsilon$.
Similarly we can show that $\mathrm{e}(\mathrm{B}, \mathrm{A}) \leq \varepsilon$.
Hence $\mathrm{d}_{\mathrm{H}}(\mathrm{A}, \mathrm{B})=\max \{\mathrm{e}(\mathrm{A}, \mathrm{B}), \mathrm{e}(\mathrm{B}, \mathrm{A})\} \leq \varepsilon<\mathrm{d}(\mathrm{A}, \mathrm{B})$.
So $D(A, B) \geq d_{H}(A, B)$ and consequently $d_{H}(A, B)=D(A, B)$.
(d) $\quad N_{\varepsilon_{1}}(A)=\left\{x \in X \mid d(x, A)<\varepsilon_{1}\right\}$. Let $x \in N_{\varepsilon_{1}}(A)$. Then $d(x, A)<\varepsilon_{1}$.

Since $\varepsilon_{1} \leq \varepsilon_{2}, \mathrm{~d}(\mathrm{x}, \mathrm{A})<\varepsilon_{2}$ and so $\mathrm{x} \in \mathrm{N}_{\varepsilon_{2}}(\mathrm{~A})$. Hence $\mathrm{N}_{\varepsilon_{1}}(\mathrm{~A}) \subset \mathrm{N}_{\varepsilon_{2}}(\mathrm{~A})$.
(e) Let $\mathrm{a} \in \mathrm{A}$. Then $\mathrm{d}(\mathrm{a}, \mathrm{B})<\varepsilon$, since $\mathrm{a} \in \mathrm{N}_{\varepsilon}(\mathrm{B})$.

Since $d(a, B)=\inf _{y \in B} d(a, y), \exists b \in B$ such that $d(a, b)<\varepsilon$.
Since $\mathrm{b} \in \mathrm{N}_{\varepsilon}(\mathrm{C}), \mathrm{d}(\mathrm{b}, \mathrm{C})<\varepsilon$ and so $\exists \mathrm{c} \in \mathrm{C}$ such that $\mathrm{d}(\mathrm{b}, \mathrm{c})<\varepsilon$.
Then $\mathrm{d}(\mathrm{a}, \mathrm{c}) \leq \mathrm{d}(\mathrm{a}, \mathrm{b})+\mathrm{d}(\mathrm{b}, \mathrm{c})<\varepsilon+\varepsilon=2 \varepsilon$.
Hence $d(a, C)=\inf _{z \in C} d(a, z) \leq d(a, c)<2 \varepsilon$ and so $a \in N_{2 \varepsilon}(C)$.
Hence $\mathrm{A} \subset \mathrm{N}_{2 \varepsilon}(\mathrm{C})$.
(f) Suppose A is bounded. So $\exists \mathrm{a}_{0} \in \mathrm{~A}$ and $\lambda>0$ such that $\mathrm{d}\left(\mathrm{a}, \mathrm{a}_{0}\right) \leq \lambda, \forall \mathrm{a} \in \mathrm{A}$.

Let $\mathrm{x} \in \mathrm{N}_{\varepsilon}(\mathrm{A})$. Then $\mathrm{d}(\mathrm{x}, \mathrm{A})<\varepsilon$.
Since $d(x, A)=\inf _{a \in A} d(x, a), \exists a \in A$ such that $d(x, a)<\varepsilon$.
Then $\mathrm{d}\left(\mathrm{x}, \mathrm{a}_{0}\right) \leq \mathrm{d}(\mathrm{x}, \mathrm{a})+\mathrm{d}\left(\mathrm{a}, \mathrm{a}_{0}\right)<\varepsilon+\lambda$.
Hence $\mathrm{d}\left(\mathrm{x}, \mathrm{a}_{0}\right) \leq \varepsilon+\lambda, \forall \mathrm{x} \in \mathrm{N}_{\varepsilon}(\mathrm{A})$ and so $\mathrm{N}_{\varepsilon}(\mathrm{A})$ is bounded.

Lemma 3

Let X be a metric space and $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be nonempty subsets of X . Then $e(A \cup B, C) \leq \max (e(A, C), e(B, C))$.

Proof:

Take any $\mathrm{x} \in \mathrm{A} \cup \mathrm{B}$.
If $\mathrm{x} \in \mathrm{A}$ then $\mathrm{d}(\mathrm{x}, \mathrm{C}) \leq \mathrm{e}(\mathrm{A}, \mathrm{C})=\sup _{\mathrm{a} \in \mathrm{A}} \mathrm{d}(\mathrm{a}, \mathrm{C}) \leq \max \{\mathrm{e}(\mathrm{A}, \mathrm{C}), \mathrm{e}(\mathrm{B}, \mathrm{C})\}$.

If $x \in B$ then $d(x, C) \leq e(B, C)=\sup _{b \in B} d(b, C) \leq \max \{e(A, C), e(B, C)$.
Hence $d(x, C) \leq \max \{e(A, C), e(B, C)\}, \forall x \in A \cup B$.
Thus $\mathrm{e}(\mathrm{A} \cup \mathrm{B}, \mathrm{C})=\sup _{\mathrm{x} \in \mathrm{A} \cup \mathrm{B}} \mathrm{d}(\mathrm{x}, \mathrm{C}) \leq \max \{\mathrm{e}(\mathrm{A}, \mathrm{C}), \mathrm{e}(\mathrm{B}, \mathrm{C})\}$.

Lemma 4

Let X be a metric space and A, B, C, D be nonempty subsets of X. Then $\mathrm{e}(\mathrm{A} \cup \mathrm{B}, \mathrm{C} \cup \mathrm{D}) \leq \max \{\mathrm{e}(\mathrm{A}, \mathrm{C}), \mathrm{e}(\mathrm{B}, \mathrm{D})\}$.

Proof:

Take any $x \in A \cup B$. Suppose $x \in A$. Consider $d(x, C \cup D)$. Take any $y \in C$.
Then, $y \in C \cup D$. Hence, $d(x, C \cup D)=\inf _{z \in C \cup D} d(x, z) \leq d(x, y)$.
So, $d(x, C \cup D) \leq d(x, y), \forall y \in C$.
Hence, $d(x, C \cup D) \leq \inf _{y \in C} d(x, y)=d(x, C) \leq \sup _{x \in A} d(x, C)$
$=e(A, C) \leq \max \{e(A, C), e(B, D)\}$.
Suppose $x \in B$ and consider $d(x, C \cup D)$. We will take any $y \in D$.
Then, $y \in C \cup D$. Hence $d(x, C \cup D)=\inf _{z \in C \cup D} d(x, z) \leq d(x, y)$.
So, $\mathrm{d}(\mathrm{x}, \mathrm{C} \cup \mathrm{D}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y}), \forall \mathrm{y} \in \mathrm{D}$.
Hence, $d(x, C \cup D) \leq \inf _{y \in D} d(x, y)=d(x, D) \leq \sup _{x \in B} d(x, D)$
Then, $\mathrm{d}(\mathrm{x}, \mathrm{C} \cup \mathrm{D}) \leq \max \{\mathrm{e}(\mathrm{A}, \mathrm{C}), \mathrm{e}(\mathrm{B}, \mathrm{D})\}, \forall \mathrm{x} \in \mathrm{A} \cup \mathrm{B}$.

$$
\text { So, } \begin{aligned}
e(A \cup B, C \cup D)= & \sup _{x \in A \cup B} d(x, C \cup D) \leq \max \{e(A, C), e(B, D)\} \\
& =e(B, D) \leq \max \{e(A, C), e(B, D)\}
\end{aligned}
$$

Lemma 5

Let X be a metric space and $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ be nonempty subsets of X . Then $\mathrm{d}_{\mathrm{H}}(\mathrm{A} \cup \mathrm{B}, \mathrm{C} \cup \mathrm{D}) \leq \max \left\{\mathrm{d}_{\mathrm{H}}(\mathrm{A}, \mathrm{C}), \mathrm{d}_{\mathrm{H}}(\mathrm{B}, \mathrm{D})\right\}$.

Proof

By Lemma 4,
$\mathrm{e}(\mathrm{A} \cup \mathrm{B}, \mathrm{C} \cup \mathrm{D}) \leq \max \{\mathrm{e}(\mathrm{A}, \mathrm{C}), \mathrm{e}(\mathrm{B}, \mathrm{D})\} \leq \max \left\{\mathrm{d}_{\mathrm{H}}(\mathrm{A}, \mathrm{C}), \mathrm{d}_{\mathrm{H}}(\mathrm{B}, \mathrm{D})\right\}$.
Similarly $e(C \cup D, A \cup B) \leq \max \{e(C, A), e(D, B)\} \leq \max \left\{d_{H}(A, C), d_{H}(B, D)\right\}$.

$$
\text { So } \begin{aligned}
\mathrm{d}_{\mathrm{H}}(\mathrm{~A} \cup \mathrm{~B}, \mathrm{C} \cup \mathrm{D}) & =\max \{\mathrm{e}(\mathrm{~A} \cup B, C \cup D), \mathrm{e}(C \cup \mathrm{D}, \mathrm{~A} \cup B)\} \\
& \leq \max \left\{\mathrm{d}_{\mathrm{H}}(\mathrm{~A}, \mathrm{C}), \mathrm{d}_{\mathrm{H}}(\mathrm{~B}, \mathrm{D})\right\} .
\end{aligned}
$$

Theorem 1

Let (X, d) be a metric space, and $\mathcal{C B}(\mathrm{X})$ be the collection of nonempty closed and bounded subsets of X. Then $\left(\operatorname{CBB}(X), d_{H}\right)$ is a metric space.

Proof:

Recall that $\mathrm{d}_{\mathrm{H}}(\mathrm{A}, \mathrm{B})=\max \{\mathrm{e}(\mathrm{A}, \mathrm{B}), \mathrm{e}(\mathrm{B}, \mathrm{A})\}$.
By Lemma 1 (i), $d_{H}(A, B)=0 \Leftrightarrow \bar{A}=\bar{B}$. Since A and B are closed sets, $A=\bar{A}$ and $B=\bar{B}$. Thus we conclude that $d_{H}(A, B)=0 \Leftrightarrow A=B$.

To show triangle inequality, we take $\mathrm{A}, \mathrm{B} \in \operatorname{CB(}(\mathrm{X})$.
Since A is bounded, $\exists x_{1} \in X$ and $r_{1}>0$ such that $A \subset B\left(x_{1}, r_{1}\right)$.
Since B is bounded, $\exists x_{2} \in X$ and $r_{2}>0$ such that $B \subset B\left(x_{2}, r_{2}\right)$.
Let $r=r_{1}+r_{2}+d\left(x_{1}, x_{2}\right)$, and consider $B\left(x_{1}, r\right)$. Then $a \in A \Rightarrow d\left(a, x_{1}\right)<r_{1}<r$.
Also $b \in B \Rightarrow d\left(b, x_{1}\right) \leq d\left(b, x_{2}\right)+d\left(x_{2}, x_{1}\right)<r_{2}+d\left(x_{1}, x_{2}\right)<r$.
Thus $\mathrm{A} \cup \mathrm{B} \subset \mathrm{B}\left(\mathrm{x}_{1}, \mathrm{r}\right)$.
If $a \in A$ and $b \in B$, then $d(a, b) \leq d\left(a, x_{1}\right)+d\left(x_{1}, x_{2}\right)+d\left(x_{2}, b\right)=r$.
Thus $\mathrm{d}(\mathrm{a}, \mathrm{b})<\mathrm{r} \forall \mathrm{a} \in \mathrm{A}, \mathrm{b} \in \mathrm{B}$,
and so $e(A, B)=\sup _{a \in A} d(a, B)=\sup _{a \in A} \inf _{b \in B} d(a, b) \leq r<\infty$.
Similarly $e(B, A)<\infty$ and by Lemma $1(b), 0 \leq d_{H}(A, B)<\infty$.
By Definition 2,
$\mathrm{d}_{\mathrm{H}}(\mathrm{A}, \mathrm{B})=\max \{\mathrm{e}(\mathrm{A}, \mathrm{B}), \mathrm{e}(\mathrm{B}, \mathrm{A})\}=\max \{\mathrm{e}(\mathrm{B}, \mathrm{A}), \mathrm{e}(\mathrm{A}, \mathrm{B})\}=\mathrm{d}_{\mathrm{H}}(\mathrm{B}, \mathrm{A}), \forall \mathrm{A}, \mathrm{B} \in \mathfrak{C} \mathcal{B}(\mathrm{X})$.
By Lemma 1(d), e(A, C) $\leq e(A, B)+e(B, C)$.
Thus $\mathrm{e}(\mathrm{A}, \mathrm{C}) \leq \mathrm{d}_{\mathrm{H}}(\mathrm{A}, \mathrm{B})+\mathrm{d}_{\mathrm{H}}(\mathrm{B}, \mathrm{C})$.
Similarly $e(C, A) \leq d_{H}(C, B)+d_{H}(B, A)=d_{H}(B, C)+d_{H}(A, B)$.
Thus $\mathrm{d}_{\mathrm{H}}(\mathrm{A}, \mathrm{C})=\max \{\mathrm{e}(\mathrm{A}, \mathrm{C}), \mathrm{e}(\mathrm{C}, \mathrm{A})\} \leq \mathrm{d}_{\mathrm{H}}(\mathrm{A}, \mathrm{B})+\mathrm{d}_{\mathrm{H}}(\mathrm{B}, \mathrm{C})$.

Now we will study the completeness of the space $\mathfrak{C B}(\mathrm{X})$.

Theorem 2

If (X, d) is a complete metric space, then the space $\left(\mathbb{C B}(\mathrm{X}), \mathrm{d}_{\mathrm{H}}\right)$ is also complete.

Proof:

Take any Cauchy sequence $\left\{D_{k}\right\}$ in $\operatorname{CB}(X)$, and any $\varepsilon>0$.
Observe that D_{k} are closed and bounded subsets of X.
So $\exists \mathrm{N}_{1} \in \mathrm{Z}^{+}$with $\mathrm{N}_{1}>1$, such that $\mathrm{j}, \mathrm{k} \geq \mathrm{N}_{1} \Rightarrow \mathrm{~d}_{\mathrm{H}}\left(\mathrm{D}_{\mathrm{k}}, \mathrm{D}_{\mathrm{j}}\right)<\frac{\varepsilon}{2}$.
Similarly, $\exists \mathrm{N}_{2} \in \mathrm{Z}^{+}$with $\mathrm{N}_{2}>2$ and $\mathrm{N}_{2}>\mathrm{N}_{1}$ such that $\mathrm{j}, \mathrm{k} \geq \mathrm{N}_{2} \Rightarrow \mathrm{~d}_{\mathrm{H}}\left(\mathrm{D}_{\mathrm{j}}, \mathrm{D}_{\mathrm{k}}\right)<\frac{\varepsilon}{2^{i}}$.
Similarly, $\exists N_{i} \in Z^{+}$with $N_{i}>N_{i-1}$, and $N_{i}>i$ such that $j, k \geq N_{i} \Rightarrow d_{H}\left(D_{k}, D_{j}\right)<\frac{\varepsilon}{2^{i}}$.
So $\mathrm{j}, \mathrm{k} \geq \mathrm{N}_{\mathrm{i}} \Rightarrow \max \left\{\mathrm{e}\left(\mathrm{D}_{\mathrm{k}}, \mathrm{D}_{\mathrm{j}}\right), \mathrm{e}\left(\mathrm{D}_{\mathrm{j}}, \mathrm{D}_{\mathrm{k}}\right)\right\}<\frac{\varepsilon}{2^{\mathrm{i}}} \Rightarrow \mathrm{e}\left(\mathrm{D}_{\mathrm{k}}, \mathrm{D}_{\mathrm{j}}\right)<\frac{\varepsilon}{2^{\mathrm{i}}}$ and $\mathrm{e}\left(\mathrm{D}_{\mathrm{j}}, \mathrm{D}_{\mathrm{k}}\right)<\frac{\varepsilon}{2^{\mathrm{i}}}$

$$
\Rightarrow \inf \left\{\varepsilon>0 \mid \mathrm{D}_{\mathrm{k}} \subset \mathrm{~N}_{\varepsilon}\left(\mathrm{D}_{\mathrm{j}}\right)\right\}<\frac{\varepsilon}{2^{\mathrm{i}}} \text { and } \inf \left\{\varepsilon>0 \mid \mathrm{D}_{\mathrm{j}} \subset \mathrm{~N}_{\varepsilon}\left(\mathrm{D}_{\mathrm{k}}\right)\right\}<\frac{\varepsilon}{2^{\mathrm{i}}} .
$$

Suppose $\mathrm{j}, \mathrm{k} \geq \mathrm{N}_{\mathrm{i}}$. Then $\exists \delta_{1}>0$ such that $\mathrm{D}_{\mathrm{k}} \subset \mathrm{N}_{\delta_{1}}\left(\mathrm{D}_{\mathrm{j}}\right)$ with $\delta_{1}<\frac{\varepsilon}{2^{\mathrm{i}}}$ and $\exists \delta_{2}>0$
such that $D_{j} \subset N_{\delta_{2}}\left(D_{k}\right)$ with $\delta_{2}<\frac{\varepsilon}{2^{i}}$. But we know that $\varepsilon_{1} \leq \varepsilon_{2} \Rightarrow N_{\varepsilon_{1}}\left(D_{j}\right) \subset N_{\varepsilon_{2}}\left(D_{j}\right)$.
Hence, we have a strictly increasing sequence $\left\{\mathrm{N}_{\mathrm{i}}\right\}$ of positive integers with $\mathrm{N}_{\mathrm{i}}>\mathrm{i}$ such that

$$
\begin{equation*}
\mathrm{j}, \mathrm{k} \geq \mathrm{N}_{\mathrm{i}} \Rightarrow \mathrm{D}_{\mathrm{k}} \subset \mathrm{~N}_{\frac{\varepsilon}{2^{\mathrm{i}}}}\left(\mathrm{D}_{\mathrm{j}}\right) \text { and } \mathrm{D}_{\mathrm{j}} \subset \mathrm{~N}_{\frac{\varepsilon}{2^{\mathrm{i}}}}\left(\mathrm{D}_{\mathrm{k}}\right) . \tag{1}
\end{equation*}
$$

Now we claim that, \forall pair (x, k) with $\mathrm{x} \in \mathrm{D}_{\mathrm{k}}$ and $\mathrm{k} \geq \mathrm{N}_{\mathrm{i}}, \exists \mathrm{y}_{\mathrm{j}} \in \mathrm{D}_{\mathrm{j}}$ for $\mathrm{j} \geq \mathrm{k}$ such that

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}, \mathrm{y}_{\mathrm{j}}\right)<\frac{\varepsilon}{2^{\mathrm{i}}} . \tag{2}
\end{equation*}
$$

$\operatorname{By}(1), \mathrm{x} \in \mathrm{D}_{\mathrm{k}} \Rightarrow \mathrm{x} \in \mathrm{N}_{\frac{\varepsilon}{2^{\mathrm{i}}}}\left(\mathrm{D}_{\mathrm{j}}\right) \Rightarrow \mathrm{d}\left(\mathrm{x}, \mathrm{D}_{\mathrm{j}}\right)<\frac{\varepsilon}{2^{\mathrm{i}}}$.
Since $d\left(x, D_{j}\right)=\inf _{y \in D_{j}} d(x, y), \exists y_{j} \in D_{j}$ such that $d\left(x, y_{j}\right)<\frac{\varepsilon}{2^{i}}$.
Hence, (2) is satisfied.
Now we will construct a Cauchy sequence $\left\{\mathrm{x}_{\mathrm{k}}\right\}$ with $\mathrm{x}_{\mathrm{k}} \in \mathrm{D}_{\mathrm{k}}$.
For $\mathrm{k}<\mathrm{N}_{1}$, we choose any $\mathrm{x}_{\mathrm{k}} \in \mathrm{D}_{\mathrm{k}}$. Suppose $\mathrm{N}_{1} \leq \mathrm{k}, \mathrm{j} \leq \mathrm{N}_{2}$. Let $\mathrm{x}_{\mathrm{N}_{1}} \in \mathrm{D}_{\mathrm{N}_{1}}$.
By (2), $\exists \mathrm{x}_{\mathrm{j}} \in \mathrm{D}_{\mathrm{j}}$ with $\mathrm{d}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{N}_{\mathrm{l}}}\right)<\frac{\varepsilon}{2}, \mathrm{x}_{\mathrm{k}} \in \mathrm{D}_{\mathrm{k}}$ with $\mathrm{d}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{N}_{1}}\right)<\frac{\varepsilon}{2}$, and also
$\mathrm{d}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{j}}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{N}_{1}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{N}_{1}}+\mathrm{x}_{\mathrm{j}}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.
Hence $\mathrm{x}_{\mathrm{N}_{2}} \in \mathrm{D}_{\mathrm{N}_{2}}$ and $\mathrm{d}\left(\mathrm{x}_{\mathrm{N}_{1}}, \mathrm{x}_{\mathrm{N}_{2}}\right)<\frac{\varepsilon}{2}$.
Suppose $\mathrm{N}_{2} \leq \mathrm{j}, \mathrm{k} \leq \mathrm{N}_{3}$.
Applying (2) again, $\exists \mathrm{x}_{\mathrm{j}} \in \mathrm{D}_{\mathrm{j}}$ with $\mathrm{d}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{N}_{2}}\right)<\frac{\varepsilon}{2^{2}}, \exists \mathrm{x}_{\mathrm{k}} \in \mathrm{D}_{\mathrm{k}}$ with $\mathrm{d}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{N}_{2}}\right)<\frac{\varepsilon}{2^{2}}$, and also $\mathrm{d}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{j}}\right)<\frac{\varepsilon}{2^{2}}+\frac{\varepsilon}{2^{2}}<\frac{\varepsilon}{2}$.

Hence we have a sequence $\left\{\mathrm{x}_{\mathrm{k}}\right\}$ with $\mathrm{x}_{\mathrm{k}} \in \mathrm{D}_{\mathrm{k}}$ and for $\mathrm{N}_{\mathrm{i}} \leq \mathrm{j}, \mathrm{k} \exists \mathrm{x}_{\mathrm{j}} \in \mathrm{D}_{\mathrm{j}}$ with $\mathrm{d}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{N}_{\mathrm{i}}}\right)<\frac{\varepsilon}{2^{\mathrm{i}}}, \exists \mathrm{x}_{\mathrm{k}} \in \mathrm{D}_{\mathrm{k}}$ with $\mathrm{d}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{N}_{\mathrm{i}}}\right)<\frac{\varepsilon}{2^{\mathrm{i}}}$, and also $\mathrm{d}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{j}}\right)<\frac{\varepsilon}{2^{\mathrm{i}}}+\frac{\varepsilon}{2^{\mathrm{i}}}<\frac{\varepsilon}{2^{\mathrm{i}-1}}$.

It is obvious that this sequence is a Cauchy sequence and so it has a limit point say x_{0}.
Let F be the set of such limit points of sequences $\left\{\mathrm{x}_{\mathrm{k}}\right\}$ with $\mathrm{x}_{\mathrm{k}} \in \mathrm{D}_{\mathrm{k}}$.
i.e., $F=\liminf _{n \rightarrow \infty} D_{n}$. Then F is closed and we have proved that $F \neq \varnothing$.

Take any $x \in D_{k}$, with $k \geq N_{1}$ and $j \geq k$.
Then $\mathrm{d}\left(\mathrm{x}_{\mathrm{x}}, \mathrm{x}_{\mathrm{j}}\right) \leq \mathrm{d}\left(\mathrm{x}, \mathrm{x}_{\mathrm{N}_{\mathrm{i}}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{N}_{\mathrm{i}}}, \mathrm{x}_{\mathrm{N}_{2}}\right)+\ldots+\mathrm{d}\left(\mathrm{x}_{\mathrm{N}_{\mathrm{j}-1}}, \mathrm{x}_{\mathrm{N}_{\mathrm{j}}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{N}_{\mathrm{j}}}, \mathrm{x}_{\mathrm{j}}\right)$

$$
<\frac{\varepsilon}{2}+\frac{\varepsilon}{2^{2}}+\ldots+\frac{\varepsilon}{2^{j}} \leq \varepsilon\left(\frac{1}{2}+\frac{1}{2^{2}}+\ldots\right)=\varepsilon .
$$

Since $x_{k} \rightarrow x_{0}, \exists N \in Z^{+}$with $N \geq N_{1}$ such that $k \geq N \Rightarrow d\left(x_{0}, x_{k}\right)<\varepsilon$.
Suppose $\mathrm{k} \geq \mathrm{N}$. Then $\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{0}\right) \leq \mathrm{d}\left(\mathrm{x}, \mathrm{x}_{\mathrm{j}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{0}\right)<\varepsilon+\varepsilon=2 \varepsilon$.
Hence $\mathrm{d}(\mathrm{x}, \mathrm{F})=\inf _{\mathrm{y} \in \mathrm{F}} \mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}\left(\mathrm{x}, \mathrm{x}_{0}\right)<2 \varepsilon$ and so $\mathrm{x} \in \mathrm{N}_{2 \varepsilon}(\mathrm{~F})$.
Hence $\mathrm{D}_{\mathrm{k}} \subset \mathrm{N}_{2 \varepsilon}(\mathrm{~F})$.
Now we will show that $\mathrm{F} \subset \mathrm{N}_{2 \varepsilon}\left(\mathrm{D}_{\mathrm{N}}\right)$.
Take any $y \in F$. Then $\exists y_{n} \in D_{n}$ such that $y_{n} \rightarrow y$.
Thus for sufficiently large $\mathrm{n}, \mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}\right)<\varepsilon / 2$.
We also have $n, m \geq N_{1} \Rightarrow d_{H}\left(D_{n}, D_{m}\right)<\varepsilon / 2$.
Hence $\mathrm{n} \geq \mathrm{N} \Rightarrow \mathrm{D}_{\mathrm{n}} \subset \mathrm{N}_{\varepsilon}\left(\mathrm{D}_{\mathrm{N}}\right)$ and $\mathrm{D}_{\mathrm{N}} \subset \mathrm{N}_{\varepsilon}\left(\mathrm{D}_{\mathrm{n}}\right)$ since $\mathrm{N} \geq \mathrm{N}_{1}$.
Then $\mathrm{d}\left(\mathrm{y}, \mathrm{X}_{\mathrm{N}}\right) \leq \mathrm{d}\left(\mathrm{y}, \mathrm{y}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{X}_{\mathrm{N}}\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon \Rightarrow \mathrm{y} \in \mathrm{N}_{\varepsilon}\left(\mathrm{D}_{\mathrm{N}}\right)$.
Hence $\mathrm{F} \subset \mathrm{N}_{\varepsilon}\left(\mathrm{D}_{\mathrm{N}}\right)$.
But $\mathrm{n} \geq \mathrm{N} \Rightarrow \mathrm{D}_{\mathrm{N}} \subset \mathrm{N}_{\varepsilon}\left(\mathrm{D}_{\mathrm{n}}\right)$. Thus $\mathrm{F} \subset \mathrm{N}_{2 \varepsilon}\left(\mathrm{D}_{\mathrm{n}}\right)$.

Hence $\mathrm{n} \geq \mathrm{N} \Rightarrow \mathrm{D}_{\mathrm{n}} \subset \mathrm{N}_{2 \varepsilon}(\mathrm{~F})$ and $\mathrm{F} \subset \mathrm{N}_{2 \varepsilon}\left(\mathrm{D}_{\mathrm{n}}\right) \Rightarrow \mathrm{d}_{\mathrm{H}}\left(\mathrm{D}_{\mathrm{n}}, \mathrm{F}\right)<2 \varepsilon$.
Hence $D_{n} \rightarrow F$ and so ($\left.\operatorname{CB}(X), d_{H}\right)$ is complete.

Conclusion

The Hausdorff distance is a measure that assigns a nonnegative real number as the distance between sets. Given a metric (X, d), we found the Hausdorff distance and defined the Hausdorff metric $\left(\mathrm{CB}(\mathrm{X}), \mathrm{d}_{\mathrm{H}}\right)$ on the space of nonempty subsets of X. Finally, we proved that if (X, d) is complete, then $\left(\mathrm{CB}(\mathrm{X}), \mathrm{d}_{\mathrm{H}}\right)$ is complete.

Acknowledgements

I would like to express our gratitude to Rector Dr Thein Win, University of Mandalay for his permission to perform this research. I am very deeply grateful to Professor Dr Khin Myo Aye, Head of Department of Mathematics, University of Mandalay, for her kind comments on this research paper. I am deeply indebted to my teacher Lt. Col. Dr Zaw Htet (Rtd), for his helpful guidance, encouragement and valuable suggestions.

References

Aubin, J. P. and Frankowska, H. (1990), "Set-valued Analysis", Birkhauser, Berlin, 1990.
Barich. K. (2011), "Proving Completeness of The Hausdorff Induced Metric Space ", Senior Project, Whitman College, Washington.
Nadler, S. B. (1969) , "Multi-Valued Contraction Mappings", Pacific Journal of Mathematics, Vol. 30, No. 2, pp. 475-488.
Rudin, W. (1953), " Principles of Mathematical Analysis ", McGraw-Hill Book Company, New York, 1953.
Vainberg, M. M. (1972), "Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations", John Wiley and Sons Inc., New York.

[^0]: ${ }^{1}$ Associate Professor, Dr, Department of Mathematics, University of Mandalay

