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Abstract 

In this paper, after defining Hausdorff distance, the properties are described. Then, the space of 

closed and bounded subsets of a metric space endowed with the Hausdorff distance is presented.  
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Introduction 

  The Hausdorff  distance gives the largest length  of the set of all distances between 

each point of a set to the closest point of a second set. We will study the Hausdorff distance 

between two subsets of a metric space (see [Rudin, W., 1953]) and the space of closed and 

bounded (see [Rudin, W., 1953]) subsets of a metric space endowed with the Hausdorff 

distance. 

 

Definitions 1 

 Let  (X, d)  be a metric space and  A, B  be nonempty subsets of  X.  

We define  d(a , B) = 
Bb

inf


d(a, b). If  B =  , then we define  d(a , B) =  .  

If  B   , then   b  B  and so  d(a , B) = 
Bb

inf


d(a , b)  d(a , b) <  .  

Thus  0  d(a , B) <  , if  B  . We also define  e(A, B) = 
Aa

sup


d(a , B). Then e (A, B)  is 

called excess of  A  over B . The Hausdorff distance between two sets  A  and  B  is defined as   

dH(A , B) = max {e(A , B) , e(B , A) )}.  

 

Example  

Let A and B  set defined by A={(x, y); 0 ≤ x≤ 1, 0 ≤ y ≤1} and let  

B={(x, y); 3 ≤ x ≤5, 0 ≤ y ≤ 4}.  

If (a1, a2) ∈ A, then d ((a1, a2), B) =d((a1, a2), (3, a2)) =3−a1. 

Since 0 ≤ a1 ≤1, we find that e (A, B) =3.  

 If (b1, b2) ∈ B, then d ((b1, b2), A) =d((b1, b2), (1, a2)) where 0 ≤ a2 ≤1, which varies 

our choice of (b1, b2).  We find that 

 e (B, A) = d((5, 4), (1, 1)) = 5. 

Therefore the Hausdorff distance is given by dH (A, B) = e (B, A) = 5.  
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Lemma 1  

 Let  A, B , C  be nonempty subsets of a metric space (X , d) . Then  we can verify the 

followings: 

(a) e(A , B)  is not necessarily equal to  e(B , A) .  

(b) 0  e(A , B)    and  e(A , B) <  , if  X  is bounded.   

(c) e(A , A) = 0   

(d) e(A , B)  e(A , C) + e(C , B) 

 (e) If  Nr(A) = { x  X   d(x , A) < r } ,  

then  e(A , B) = rinf
)B(NA,0r r

  and since the map  x: d(x , A)  is continuous  Nr(A)  

is open.  

(f) d(a , B) = 0    a  B .  

(g) e (A , B) = 0    A  B  .  

(h) If A  B  then  e(A , B) = 0.   

(i) dH(A , B) = 0  BA   

Proof: 

(a)  Let  A = { 1 , 2 }  and  B = { 5 , 6 , 7 } 

e(A , B) = sup { d(1 , B) , d(2 , B) } = sup { 4 , 3 } = 4  

e(B , A) = sup { d(5 , A) , d(6 , A) , d(7 , A) } = sup { 3 , 4 , 5 } = 5 . 

(b) It is obvious that  e(A , B)   0 .  

 If  X  is bounded then   M > 0 such that d( x , y)  M ,   x , y  X .  

Then for any  x  A , d( x , B) = 
By

inf


d(x , y)  M, so that   

  e(A , B) = 
Ax

sup


d(x , B)  M <  .  

(c) A  A    e(A , A) = 0. 

(d) Take any   > 0 and a A. Since d(a ,C) = 
Cc

inf


d(a , c) < d(a , C) + 
2


,  

   c  C  such that   d(a , c) <  d(a , C) + 
2


   

Aa

sup


d(a , C) + 
2


 = e(A , C) + 

2


 .  

    Similarly,   b  B such that  d(c , b) <  e(C , B) + 
2


 .  

Then,  d(a , B) =
Bb

inf


 d(a , b)  d(a , b)  d(a , c) + d(c , b) < e(A , C) + e(C , B) + .  
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   Thus  e(A , B) = 
Aa

sup


d(a , B)    e(A , C) + e(C , B) +   , and since    is arbitrary it 

follows  that   e(A , B)  e(A , C) + e(C , B) . 

(e)  Let L = e(A , B) =  
Aa

sup


d(a , B) . Then for any a  A, d (a, B) ≤ L.  

So, A  NL(B) and  rinf
)B(NA,0r r

 ≤ L. Suppose rinf
)B(NA,0r r

 < r0 < L.   

 Then   r > 0  such that  A  Nr(B)  and  r < r0 .  Then  A   
0r

N (B) .  

 Thus, x  A d(x, B) < r0 and so e(A , B) =
Ax

sup


d(x , B) ≤ r0 < L= e(A , B).  

So,  rinf
)B(NA,0r r

 ≥ L  and   rinf
)B(NA,0r r

 = e(A , B). 

(f) Suppose  d(a , B) = 0 . Then   n  Z
+
,   

Bb
inf


d(a , b) < 
n

1
.  

So,  bn  B  such that  0 ≤  d(a , bn) <  
n

1
  0 .  Thus,  bn  a  and  a  B .  

(g) Suppose e(A, B) = 0. Then
Aa

sup


d(a, B) = 0, and d( a , B) = 0, a A.  

Thus  a  A  d(a , B) = 0   a  B   which implies that  A  B .  

On the other hand, suppose that  A  B .   

Take any a  A, and any   > 0. Then since a B ,  b0  B such that  d(a , b0) <  . 

Thus  0  d( a , B) = 
Bb

inf


d(a , b)  d(a , b0) < ε,   > 0. 

Thus 0  d( a , B) <  ,   > 0 and so   

d(a , B) = 0  which implies that  e(A , B) = 
Aa

sup


d(a , B) = 0.  

(h) It is obvious. 

(i) d(A , B) = 0  e(A , B) = 0  and  e(B , A) = 0  A B  and B  A   

   A   B   and  B   A   BA   .  

 

Definitions 2 

 Let  (X, d)  be a metric space and  A  and  B   be nonempty subsets of  X . We define 

E(A) = {xX d(x , a) <  for some aA}.  E(A)  is called the -expansion of A.  It is  

obvious that  E(A) = 
Aa

B(a , ) = union of all -balls around points in  A. We also define   
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 H(A , B) = inf{  > 0 A  N(B)  and  B  N(A) },    

D(A, B) = inf { > 0 A  E(B)  and  B  E(A) }, and CB(X) as the space of nonempty 

closed and bounded subsets of X. 

 

Lemma 2 

 Let (X, d)  be a metric space and  A, B , C be nonempty subsets of X. Then we can 

deduce that 

(a) E(A) = N(A) .  

(b) H(A, B) = D(A, B) . 

(c) dH(A, B) = D(A, B) . 

(d) If   1  2   then )A(N)A(N
21   . 

(e) If  A  N(B)  and  B  N(C) , then  A  N2(C) . 

(f) If A is bounded  then  N(A)  is bounded.  

Proof: 

 (a) Suppose  x  E(A) . Then   a  A,  such that  d(x , a) <  . 

Then  d(x , A) = 
Aa

inf


 d(x , a)  d(x , a) <  . So x  N(A) . 

For the converse, assume that  x N(A) . Then  d(x , A) = 
Aa

inf


d(x , a ) < . 

 So  a  A such that d(x, a) < . Hence  x  E(A).  

(b) By definition, H(A , B) = inf{ > 0 A N(B)  and  B N(A) }. 

 From (a), N(A) = E(A) .  

 Hence  H(A , B) = inf{ > 0 A N(B)  and  B N(A) }  

     = inf { > 0 A E(B)  and  B E(A) } = D(A , B) .  

By Lemma 1.(e),  e(A , B) = inf{ > 0 A  N(B) } . 

Thus  dH(A , B) = max {e(A , B) , e(B , A)}  

   = max{ inf{ > 0 A  N(B) } , inf{ > 0 B  N(A) } } .  

 Suppose A  N(B)  and  B  N(A) .  

 Then  inf  { > 0 A  N(B) }   and inf{ > 0 B  N(A) }   .  

 So  D(A , B) = inf{ > 0 B  N(A)  and  A  N(B) }  . 

 Thus  D(A , B)   ,   > 0  such that  A  N(B)  and  B  N(A) .  
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 Taking infimum gives  D(A , B)  dH(A , B) .  

 Suppose  D(A , B) < dH(A , B) .  

 Since  D(A , B) = inf{ > 0 A  N(B)  and  B  N(A) },   > 0  such that   

 A  N(B) , B  N(A)  and   < dH(A , B). Since  A N(B) ,  a A, d(a , B) <  . 

So  e(A , B) = 
Aa

sup


d(a , B)  .   

Similarly we can show that  e(B , A)  .  

Hence dH(A , B) = max{e(A , B) , e(B , A)}   < d(A , B) .  

So D(A , B)  dH(A , B)  and consequently  dH(A , B) = D(A , B). 

(d) 
1

N (A) = {xX d(x, A) < 1}.  Let x  
1

N (A). Then d(x, A) < 1. 

Since 1  2, d(x , A) < 2 and so  x  
2

N (A). Hence )A(N)A(N
21   . 

(e) Let aA. Then d (a, B) < , since  a  N(B).  

 Since  d(a , B) = 
By

inf


d(a , y) ,  b  B  such that  d(a , b) <  .  

 Since  b  N(C) ,  d(b , C) <   and so  cC  such that  d(b , c) <  .  

 Then  d(a , c)  d(a , b) + d(b , c) <  +  = 2  . 

 Hence  d(a , C) = 
Cz

inf


d(a , z)  d(a , c) < 2  and so  a  N2(C) .  

 Hence  A  N2(C) . 

(f) Suppose A is bounded. So a0 A and  > 0  such that d(a , a0)   ,  a A.  

  Let  x N(A) . Then  d(x , A) <  . 

  Since  d(x , A) = 
Aa

inf


d(x , a) ,  aA  such that  d(x , a) <  .  

  Then  d(x , a0)  d(x , a) + d(a , a0) <  +  .  

   Hence  d(x , a0)   +  ,  x  N(A)  and so N(A)  is bounded.  

 

Lemma 3 

 Let  X  be a metric space and A, B, C  be nonempty subsets of X. Then   

e( A B, C)   max (e(A, C), e(B, C) ).  

Proof: 

Take any  x  A B.  

If xA then  d(x , C)  e(A , C) = 
Aa

sup


d(a , C)  max {e(A , C) , e(B , C)}. 
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If xB then  d(x , C)  e(B , C) = 
Bb

sup


 d(b , C)  max {e(A , C) , e(B , C) .  

Hence  d(x , C)  max {e(A , C) , e(B , C) } ,  x  A B.  

Thus  e(A B , C) = 
BAx

sup


d(x , C)  max {e(A , C) , e(B , C)} .   

Lemma 4 

 Let  X  be a metric space and A, B, C, D  be nonempty subsets of X.  Then   

e(A B, C D)  max {e(A, C), e(B, D) }.  

Proof: 

 Take any  xA B.  Suppose  x  A.  Consider  d(x, C D). Take any  y C.   

Then,  y  C D.  Hence,  d(x, C D) = 
DCz

inf


d(x, z)  d(x, y).  

So,  d(x, C D)  d(x, y),  y  C.  

Hence,  d(x, C D)  
Cy

inf


d(x, y) = d(x , C)  
Ax

sup


d(x, C)  

= e(A, C)  max {e(A, C), e(B , D) }.                     

Suppose  x  B  and consider  d(x, C D).   We will take any y D. 

Then,  y  C D .  Hence  d(x , C D) = 
DCz

inf


d(x , z)  d(x , y) .  

So,  d(x, C D)  d(x, y),  y  D.  

Hence,  d(x, C D)  
Dy

inf


d(x, y) = d(x, D)  
Bx

sup


d(x, D)  

Then,  d(x, C D)  max {e(A, C) , e(B, D) },  x  A B .  

So,  e(A B,C D) = 
BAx

sup


d(x , C D)  max {e(A, C), e(B, D) } . 

= e(B , D)  max {e(A, C), e(B, D) }.  

 

Lemma 5 

Let  X  be a metric space and A, B , C , D  be nonempty subsets of X.  Then   

dH(A B, C D)  max{ dH(A, C), dH(B, D) }. 

Proof   

By  Lemma 4,  

e(A B , C D)  max {e(A , C) , e(B , D)}  max {dH(A, C), dH(B, D) } .  

Similarly e(C D , A B)  max {e(C, A), e(D, B) }  max {dH(A, C), dH(B, D) } . 
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So  dH(A B , C D) = max{ e(A B, C D) , e(C D , A B) }  

    max {dH(A, C), dH(B, D) }.  

 

Theorem 1 

 Let  (X , d)  be a metric space, and  CB(X) be the collection of nonempty closed and  

bounded subsets of  X.  Then  (CB(X) , dH)  is a metric space.  

Proof: 

Recall that  dH(A , B) = max{e(A , B) , e(B , A)}.  

By Lemma 1 (i), dH(A , B) = 0  A  = B .  Since  A  and  B  are closed sets, A = A   

and  B = B . Thus we conclude that  dH(A , B) = 0   A = B.  

To show triangle inequality, we take  A , B  CB(X).   

Since  A  is bounded,  x1 X and r1 > 0  such that  A  B(x1 , r1).  

Since  B  is bounded,  x2 X and r2 > 0  such that  B  B(x2 , r2).  

Let  r = r1 + r2 + d(x1 , x2) , and consider  B(x1 , r).  Then aA  d (a , x1) < r1 < r.  

Also bB  d (b, x1)  d (b, x2) + d(x2, x1) <  r2 + d(x1, x2) < r.  

Thus  A B   B(x1 , r).  

If  aA and bB, then  d(a , b)  d(a , x1) + d(x1 , x2) + d(x2 , b) = r.  

Thus  d(a , b) < r  a  A, b  B,  

and so  e(A , B) = 
Aa

sup


d(a , B)  = 
Aa

sup
 Bb

inf


d(a , b)  r <  .  

Similarly  e(B , A) <   and by Lemma 1 (b),  0  dH(A , B) < .  

 By Definition 2, 

 dH(A , B) = max{e(A , B) , e(B , A)}= max{e(B , A) , e(A , B)} = dH(B , A),  A , BCB(X).  

By Lemma 1(d), e(A , C)  e(A , B) + e(B , C).  

Thus  e(A , C)  dH(A , B) + dH(B , C) .  

Similarly  e(C , A)  dH(C , B) + dH(B , A) = dH(B , C) + dH(A , B) .  

Thus  dH(A , C) = max {e(A , C) , e(C , A)}  dH(A , B) + dH(B , C).                                          

 

Now we will study the completeness of the space  CB(X). 

 

 

Theorem 2 
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If  (X, d) is a complete metric space , then the space (CB(X), dH)  is also complete. 

Proof: 

 Take any  Cauchy sequence {Dk}  in  CB(X) , and any  > 0 .  

Observe that  Dk  are closed and bounded subsets of  X .  

So  N1 Z
+
  with  N1 > 1 ,  such that  j , k  N1  dH(Dk , Dj) < 

2


. 

Similarly, N2 Z
+
 with

  
N2 > 2 and  N2 > N1 such that  j , k  N2  dH(Dj , Dk) < 

2i


.  

Similarly, Ni  Z
+
 with Ni > Ni – 1 , and Ni > i  such that  j, k  Ni  dH(Dk , Dj) < 

i2


. 

So j, k  Ni  max{e(Dk , Dj), e(Dj , Dk)}<
i2


 e(Dk , Dj) < 

i2


  and  e(Dj , Dk) < 

i2


 

   inf{ > 0 Dk  N(Dj) } < 
i2


 and inf{ > 0 Dj  N(Dk)}< 

i2


. 

Suppose  j , k  Ni . Then  1 > 0  such that  Dk 
1

N (Dj) with 1 < 
i2


 and  2 > 0   

such that Dj 
2

N (Dk) with 2 <
i2


. But we know that  1  2  )D(N j1

 )D(N j2
 .  

Hence, we have a strictly increasing sequence {Ni} of positive integers with  Ni > i such that   

 j , k  Ni   Dk  
i2

N  (Dj) and  Dj  
i2

N  (Dk) .                 (1) 

Now we claim that,  pair (x, k) with  xDk and  k  Ni,  yjDj  for j  k  such that   

d(x, yj) < 
i2


.                                          (2) 

By (1), xDk  x
i2

N   (Dj)  d(x, Dj) < 
i2


.  

Since d(x, Dj) =
jDy

inf


d(x, y), yj Dj such that  d(x, yj) < 
i2


.  

Hence,  (2) is satisfied.  

Now we will construct a Cauchy sequence  {xk}  with  xk  Dk .  

For  k < N1 , we choose  any xk  Dk .  Suppose  N1  k , j  N2 . Let  
1Nx  

1ND .  

By (2), xj Dj with d(xj , 
1Nx ) <

2


, xkDk with d(xk, 

1Nx ) <
2


, and also  
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d(xk, xj)  d(xk, 
1Nx ) + d(

1Nx + xj) <
2


+

2


= .  

Hence 
22 NN Dx  and 

2
)x,x(d

21 NN


 .  

Suppose  N2  j , k  N3 .  

Applying (2) again,  xj  Dj  with  d(xj , 
2Nx ) < 

22


,  xk  Dk  with  d(xk , 

2Nx ) < 
22


 ,  

and also  d(xk , xj) < 
22


+

22


< 

2


.  

Hence we  have a sequence {xk} with  xk  Dk  and  for  Ni  j , k   xj  Dj  with   

d(xj ,
iNx ) <

i2


,  xk Dk  with  d(xk , 

iNx ) <
i2


, and also  d(xk , xj)<

i2


+

i2


<

1i2 


.  

It is obvious that this sequence is a Cauchy sequence and so it has a limit point say x0. 

Let  F  be the set of such limit points of sequences {xk}  with  xk  Dk.  

i.e., F = 
n

inflim Dn.  Then F is closed and we have proved that  F  .  

Take any  xDk , with  k  N1 and j  k .  

Then  d(x , xj)  d(x , 
iNx ) + d(

iNx ,
2Nx ) + …+ d(

1jNx


,
jNx ) + d(

jNx , xj)  

  < 
2


 + 

22


 + …+ 

j2


    ( 

2

1
+ 

22

1
+…) =  .  

Since  xk  x0 ,  NZ
+
 with N  N1  such that  k  N   d(x0 , xk) < .  

Suppose  k  N. Then  d(x , x0)  d(x , xj) + d(xj , x0) <  +  = 2 . 

Hence  d(x , F) = 
Fy

inf


d(x , y)  d(x , x0) < 2   and so  x 2N (F) .  

Hence  Dk  2N (F) .                           

Now we will show that  F  N2(DN). 

Take any  y  F . Then   yn  Dn  such that  yn  y.  

Thus for sufficiently large n, d(yn, y) < /2.   

We also have n, m  N1 dH (Dn, Dm) < /2. 

Hence  n  N  Dn  N(DN)  and  DN  N(Dn) since  N  N1. 

Then  d(y , XN)  d(y , yn) + d(yn , XN) < /2 + /2 =   y  N(DN).  

Hence  F  N(DN) .                         

But  n  N  DN  N(Dn).  Thus  F  N2(Dn) .  
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Hence  n  N   Dn  N2(F)  and  F  N2(Dn)   dH(Dn , F) < 2 . 

Hence  Dn  F   and so  (CB(X), dH)  is complete.                                                                       

 

Conclusion 

 The Hausdorff distance is a measure that assigns a nonnegative real number as the 

distance between sets. Given a metric (X, d), we found the Hausdorff distance and defined the 

Hausdorff  metric (CB(X), dH) on the space of nonempty subsets of X. Finally, we proved that 

if (X, d) is complete, then (CB(X), dH) is complete. 
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