Hausdorff Distance between Subsets of a Metric Space

Moe Moe Yi¹

Abstract

In this paper, after defining Hausdorff distance, the properties are described. Then, the space of closed and bounded subsets of a metric space endowed with the Hausdorff distance is presented.

Keywords: Hausdorff distance, metric space

Introduction

The Hausdorff distance gives the largest length of the set of all distances between each point of a set to the closest point of a second set. We will study the Hausdorff distance between two subsets of a metric space (see [Rudin, W., 1953]) and the space of closed and bounded (see [Rudin, W., 1953]) subsets of a metric space endowed with the Hausdorff distance.

Definitions 1

Let (X, d) be a metric space and A, B be nonempty subsets of X.

We define $d(a, B) = \inf_{b \in B} d(a, b)$. If $B = \emptyset$, then we define $d(a, B) = \infty$.

If $B \neq \emptyset$, then $\exists b \in B$ and so $d(a, B) = \inf_{b \in B} d(a, b) \le d(a, b) < \infty$.

Thus $0 \le d(a, B) < \infty$, if $B \ne \emptyset$. We also define $e(A, B) = \sup_{a \in A} d(a, B)$. Then e(A, B) is $a \in A$

called *excess of A over B*. The *Hausdorff distance* between two sets A and B is defined as $d_{H}(A, B) = \max \{e(A, B), e(B, A)\}.$

Example

Let A and B set defined by $A = \{(x, y); 0 \le x \le 1, 0 \le y \le 1\}$ and let

 $B = \{(x, y); 3 \le x \le 5, 0 \le y \le 4\}.$

If $(a_1, a_2) \in A$, then d $((a_1, a_2), B) = d((a_1, a_2), (3, a_2)) = 3-a_1$.

Since $0 \le a_1 \le 1$, we find that e(A, B) = 3.

If $(b_1, b_2) \in B$, then d $((b_1, b_2), A) = d((b_1, b_2), (1, a_2))$ where $0 \le a_2 \le 1$, which varies our choice of (b_1, b_2) . We find that

e(B, A) = d((5, 4), (1, 1)) = 5.

Therefore the Hausdorff distance is given by $d_H(A, B) = e(B, A) = 5$.

¹ Associate Professor, Dr, Department of Mathematics, University of Mandalay

Lemma 1

Let A, B, C be nonempty subsets of a metric space (X, d). Then we can verify the followings:

- (a) e(A, B) is not necessarily equal to e(B, A).
- (b) $0 \le e(A, B) \le \infty$ and $e(A, B) < \infty$, if X is bounded.

(c)
$$e(A, A) = 0$$

- (d) $e(A, B) \le e(A, C) + e(C, B)$
- (e) If $N_r(A) = \{ x \in X \mid d(x, A) < r \}$,

then $e(A, B) = \inf_{r>0, A \subset N_r(B)} r$ and since the map $x: \mapsto d(x, A)$ is continuous $N_r(A)$

is open.

(f) $d(a, B) = 0 \implies a \in \overline{B}$.

(g)
$$e(A, B) = 0 \Leftrightarrow A \subset \overline{B}$$
.

(h) If $A \subset B$ then e(A, B) = 0.

(i)
$$d_{\rm H}(A, B) = 0 \Leftrightarrow \overline{A} = \overline{B}$$

Proof:

(a) Let
$$A = \{1, 2\}$$
 and $B = \{5, 6, 7\}$

$$e(A, B) = \sup \{ d(1, B), d(2, B) \} = \sup \{ 4, 3 \} = 4$$

 $e(B, A) = \sup \{ d(5, A), d(6, A), d(7, A) \} = \sup \{ 3, 4, 5 \} = 5$

(b) It is obvious that $e(A, B) \ge 0$.

If X is bounded then $\ \exists \ M>0$ such that d(x , y) $\leq M$, $\forall \ x$, y $\in X$.

Then for any $x \in A$, $d(x, B) = \inf_{y \in B} d(x, y) \le M$, so that

$$e(A, B) = \sup_{x \in A} d(x, B) \le M < \infty.$$

(c)
$$A \subset \overline{A} \implies e(A, A) = 0.$$

(d) Take any
$$\varepsilon > 0$$
 and $a \in A$. Since $d(a, C) = \inf_{c \in C} d(a, c) < d(a, C) + \frac{\varepsilon}{2}$,

$$\exists \ c \in C \ \text{ such that } \ d(a \ , \ c) < \ d(a \ , \ C) + \frac{\epsilon}{2} \ \leq \ \sup_{a \in A} d(a \ , \ C) + \frac{\epsilon}{2} = e(A \ , \ C) + \frac{\epsilon}{2}$$

Similarly, $\exists b \in B$ such that $d(c, b) < e(C, B) + \frac{\epsilon}{2}$.

Then, $d(a, B) = \inf_{b \in B} d(a, b) \le d(a, b) \le d(a, c) + d(c, b) < e(A, C) + e(C, B) + \epsilon$.

Thus $e(A, B) = \sup_{a \in A} d(a, B) \le e(A, C) + e(C, B) + \epsilon$, and since ϵ is arbitrary it

follows that $e(A, B) \le e(A, C) + e(C, B)$.

(e) Let
$$L = e(A, B) = \sup_{a \in A} d(a, B)$$
. Then for any $a \in A$, $d(a, B) \le L$.

So,
$$A \subset N_L(B)$$
 and $\inf_{r>0, A \subset N_r(B)} r \leq L$. Suppose $\inf_{r>0, A \subset N_r(B)} r < r_0 < L$.

Then $\exists r > 0$ such that $A \subset N_r(B)$ and $r < r_0$. Then $A \subset N_{r_0}(B)$.

Thus,
$$x \in A \Rightarrow d(x, B) < r_0$$
 and so $e(A, B) = \sup_{x \in A} d(x, B) \le r_0 < L = e(A, B)$.

So, $\inf_{r>0, A\subset N_r(B)} r \ge L$ and $\inf_{r>0, A\subset N_r(B)} r = e(A, B).$

(f) Suppose d(a, B) = 0. Then $\forall n \in Z^+$, $\inf_{b \in B} d(a, b) < \frac{1}{n}$.

So, $\exists \ b_n \in B$ such that $0 \le d(a, b_n) < \frac{1}{n} \to 0$. Thus, $b_n \to a$ and $a \in \overline{B}$.

(g) Suppose
$$e(A, B) = 0$$
. Then $\sup_{a \in A} d(a, B) = 0$, and $d(a, B) = 0$, $\forall a \in A$.

Thus $a \in A \Rightarrow d(a, B) = 0 \Rightarrow a \in \overline{B}$ which implies that $A \subset \overline{B}$.

On the other hand, suppose that $A \subset \overline{B}$.

Take any $a \in A$, and any $\varepsilon > 0$. Then since $a \in \overline{B}$, $\exists b_0 \in B$ such that $d(a, b_0) < \varepsilon$.

Thus $0 \le d(a, B) = \inf_{b \in B} d(a, b) \le d(a, b_0) < \epsilon, \forall \epsilon > 0.$

Thus $0 \leq d(\ a \ , B) < \epsilon$, $\forall \ \epsilon > 0$ and so

d(a, B) = 0 which implies that $e(A, B) = \sup_{a \in A} d(a, B) = 0$.

(h) It is obvious.

(i)
$$d(A, B) = 0 \Leftrightarrow e(A, B) = 0$$
 and $e(B, A) = 0 \Leftrightarrow A \subset \overline{B}$ and $B \subset \overline{A}$
 $\Leftrightarrow \overline{A} \subset \overline{B}$ and $\overline{B} \subset \overline{A} \Leftrightarrow \overline{A} = \overline{B}$.

Definitions 2

Let (X, d) be a metric space and A and B be nonempty subsets of X. We define $E_{\varepsilon}(A) = \{x \in X | d(x, a) < \varepsilon \text{ for some } a \in A\}$. $E_{\varepsilon}(A)$ is called the *\varepsilon* expansion of A. It is obvious that $E_{\varepsilon}(A) = \bigcup_{a \in A} B(a, \varepsilon) = union \text{ of all } \varepsilon$ -balls around points in A. We also define $H(A, B) = \inf\{ \varepsilon > 0 \mid A \subset N_{\varepsilon}(B) \text{ and } B \subset N_{\varepsilon}(A) \},\$

 $D(A, B) = \inf \{ \varepsilon > 0 \mid A \subset E_{\varepsilon}(B) \text{ and } B \subset E_{\varepsilon}(A) \}$, and CB(X) as the *space of nonempty* closed and bounded subsets of X.

Lemma 2

Let (X, d) be a metric space and A, B , C be nonempty subsets of X. Then we can deduce that

- (a) $E_{\varepsilon}(A) = N_{\varepsilon}(A)$.
- (b) H(A, B) = D(A, B).
- (c) $d_H(A, B) = D(A, B)$.
- (d) If $\epsilon_1 \leq \epsilon_2$ then $N_{\epsilon_1}(A) \subset N_{\epsilon_2}(A)$.
- (e) If $A \subset N_{\epsilon}(B)$ and $B \subset N_{\epsilon}(C)$, then $A \subset N_{2\epsilon}(C)$.
- (f) If A is bounded then $N_{\varepsilon}(A)$ is bounded.

Proof:

(a) Suppose $x \in E_{\varepsilon}(A)$. Then $\exists a \in A$, such that $d(x, a) < \varepsilon$.

Then $d(x, A) = \inf_{a \in A} d(x, a) \le d(x, a) < \epsilon$. So $x \in N_{\epsilon}(A)$.

For the converse, assume that $x \in N_{\epsilon}(A)$. Then $d(x, A) = \inf_{a \in A} d(x, a) < \epsilon$.

So $\exists a \in A$ such that $d(x, a) < \epsilon$. Hence $x \in E_{\epsilon}(A)$.

(b) By definition,
$$H(A, B) = \inf\{\epsilon > 0 \mid A \subset N_{\epsilon}(B) \text{ and } B \subset N_{\epsilon}(A) \}$$

From (a), $N_{\varepsilon}(A) = E_{\varepsilon}(A)$.

Hence $H(A, B) = \inf\{\epsilon > 0 \mid A \subset N_{\epsilon}(B) \text{ and } B \subset N_{\epsilon}(A) \}$

$$= \inf \{ \varepsilon > 0 \mid A \subset E_{\varepsilon}(B) \text{ and } B \subset E_{\varepsilon}(A) \} = D(A, B).$$

By Lemma 1.(e), $e(A, B) = \inf\{\varepsilon > 0 | A \subset N_{\varepsilon}(B)\}$.

Thus $d_H(A, B) = \max \{e(A, B), e(B, A)\}$

 $= \max\{ \inf\{\epsilon > 0 | A \subset N_{\epsilon}(B) \}, \inf\{\epsilon > 0 | B \subset N_{\epsilon}(A) \} \}.$

Suppose $A \subset N_{\delta}(B)$ and $B \subset N_{\delta}(A)$.

Then inf $\{\epsilon > 0 | A \subset N_{\epsilon}(B)\} \le \delta$ and $\inf\{\epsilon > 0 | B \subset N_{\epsilon}(A)\} \le \delta$.

So $D(A, B) = \inf\{\epsilon > 0 | B \subset N_{\epsilon}(A) \text{ and } A \subset N_{\epsilon}(B) \} \le \delta.$

Thus $D(A, B) \le \delta$, $\forall \delta > 0$ such that $A \subset N_{\delta}(B)$ and $B \subset N_{\delta}(A)$.

Taking infimum gives $D(A, B) \le d_H(A, B)$.

Suppose $D(A, B) < d_H(A, B)$.

Since $D(A, B) = \inf\{\epsilon > 0 | A \subset N_{\epsilon}(B) \text{ and } B \subset N_{\epsilon}(A) \}, \exists \epsilon > 0 \text{ such that}$

 $A \subset N_{\epsilon}(B) \text{ , } B \subset N_{\epsilon}(A) \text{ and } \epsilon < d_{H}(A \text{ , } B). \text{ Since } A \subset N_{\epsilon}(B) \text{ , } \forall \text{ } a \in A, \text{ } d(a \text{ , } B) < \epsilon \text{ .}$

So $e(A, B) = \sup_{a \in A} d(a, B) \le \varepsilon$.

Similarly we can show that $e(B, A) \le \varepsilon$.

Hence $d_H(A, B) = \max\{e(A, B), e(B, A)\} \le \varepsilon < d(A, B)$.

So $D(A, B) \ge d_H(A, B)$ and consequently $d_H(A, B) = D(A, B)$.

(d) $N_{\varepsilon_1}(A) = \{x \in X \mid d(x, A) < \varepsilon_1\}$. Let $x \in N_{\varepsilon_1}(A)$. Then $d(x, A) < \varepsilon_1$.

Since $\varepsilon_1 \le \varepsilon_2$, $d(x , A) < \varepsilon_2$ and so $x \in N_{\varepsilon_2}(A)$. Hence $N_{\varepsilon_1}(A) \subset N_{\varepsilon_2}(A)$.

(e) Let $a \in A$. Then $d(a, B) < \varepsilon$, since $a \in N_{\varepsilon}(B)$.

Since $d(a, B) = \inf_{y \in B} d(a, y)$, $\exists b \in B$ such that $d(a, b) < \epsilon$.

Since $b \in N_{\epsilon}(C)$, $d(b, C) < \epsilon$ and so $\exists c \in C$ such that $d(b, c) < \epsilon$.

Then $d(a, c) \le d(a, b) + d(b, c) < \epsilon + \epsilon = 2 \epsilon$.

Hence $d(a, C) = \inf_{a \in C} d(a, z) \le d(a, c) < 2\epsilon$ and so $a \in N_{2\epsilon}(C)$.

Hence $A \subset N_{2\epsilon}(C)$.

(f) Suppose A is bounded. So $\exists a_0 \in A$ and $\lambda > 0$ such that $d(a, a_0) \le \lambda$, $\forall a \in A$.

Let $x \in N_{\varepsilon}(A)$. Then $d(x, A) < \varepsilon$.

Since $d(x, A) = \inf_{a \in A} d(x, a)$, $\exists a \in A$ such that $d(x, a) < \varepsilon$.

Then $d(x, a_0) \le d(x, a) + d(a, a_0) < \varepsilon + \lambda$.

Hence $d(x, a_0) \le \varepsilon + \lambda$, $\forall x \in N_{\varepsilon}(A)$ and so $N_{\varepsilon}(A)$ is bounded.

Lemma 3

Let X be a metric space and A, B, C be nonempty subsets of X. Then $e(A \cup B, C) \le max (e(A, C), e(B, C)).$

Proof:

Take any $x \in A \cup B$.

If $x \in A$ then $d(x, C) \le e(A, C) = \sup_{a \in A} d(a, C) \le \max \{e(A, C), e(B, C)\}.$

If
$$x \in B$$
 then $d(x, C) \le e(B, C) = \sup_{b \in B} d(b, C) \le \max \{e(A, C), e(B, C) \}$.

Hence $d(x, C) \le max \{e(A, C), e(B, C)\}, \forall x \in A \cup B$.

Thus $e(A \cup B, C) = \sup_{x \in A \cup B} d(x, C) \le \max \{e(A, C), e(B, C)\}$. \Box

Lemma 4

Let X be a metric space and A, B, C, D be nonempty subsets of X. Then $e(A \bigcup B, C \bigcup D) \le \max \{e(A, C), e(B, D)\}.$

Proof:

Take any $x \in A \cup B$. Suppose $x \in A$. Consider $d(x, C \cup D)$. Take any $y \in C$. Then, $y \in C \cup D$. Hence, $d(x, C \cup D) = \inf_{z \in C \cup D} d(x, z) \le d(x, y)$.

So, $d(x, C \bigcup D) \le d(x, y), \forall y \in C$.

Hence, $d(x, C \cup D) \le \inf_{y \in C} d(x, y) = d(x, C) \le \sup_{x \in A} d(x, C)$

 $= e(A, C) \le \max \{ e(A, C), e(B, D) \}.$

Suppose $x \in B$ and consider $d(x, C \cup D)$. We will take any $y \in D$.

Then, $y \in C \bigcup D$. Hence $d(x, C \bigcup D) = \inf_{z \in C \bigcup D} d(x, z) \le d(x, y)$.

So, $d(x, C \bigcup D) \le d(x, y), \forall y \in D$.

Hence, $d(x, C \bigcup D) \le \inf_{y \in D} d(x, y) = d(x, D) \le \sup_{x \in B} d(x, D)$

Then, $d(x, C \cup D) \le \max \{e(A, C), e(B, D)\}, \forall x \in A \cup B$.

So, $e(A \cup B, C \cup D) = \sup_{x \in A \cup B} d(x, C \cup D) \le \max \{e(A, C), e(B, D)\}.$ = $e(B, D) \le \max \{e(A, C), e(B, D)\}.$

Lemma 5

Let X be a metric space and A, B, C, D be nonempty subsets of X. Then $d_H(A \cup B, C \cup D) \le max \{ d_H(A, C), d_H(B, D) \}.$

Proof

By Lemma 4,

 $e(A \cup B, C \cup D) \le \max \{e(A, C), e(B, D)\} \le \max \{d_H(A, C), d_H(B, D)\}.$

Similarly $e(C \cup D, A \cup B) \le max \{e(C, A), e(D, B)\} \le max \{d_H(A, C), d_H(B, D)\}$.

So $d_H(A \cup B, C \cup D) = \max\{ e(A \cup B, C \cup D), e(C \cup D, A \cup B) \}$ $\leq \max \{ d_H(A, C), d_H(B, D) \}. \square$

Theorem 1

Let (X, d) be a metric space, and $\operatorname{CB}(X)$ be the collection of nonempty closed and bounded subsets of X. Then $(\operatorname{CB}(X), d_H)$ is a metric space.

Proof:

Recall that $d_H(A, B) = \max\{e(A, B), e(B, A)\}$.

By Lemma 1 (i), $d_H(A, B) = 0 \Leftrightarrow \overline{A} = \overline{B}$. Since A and B are closed sets, $A = \overline{A}$

and $B = \overline{B}$. Thus we conclude that $d_H(A, B) = 0 \iff A = B$.

To show triangle inequality, we take A, $B \in CB(X)$.

Since A is bounded, $\exists x_1 \in X$ and $r_1 > 0$ such that $A \subset B(x_1, r_1)$.

Since B is bounded, $\exists x_2 \in X$ and $r_2 > 0$ such that $B \subset B(x_2, r_2)$.

Let $r = r_1 + r_2 + d(x_1, x_2)$, and consider $B(x_1, r)$. Then $a \in A \Rightarrow d(a, x_1) < r_1 < r$.

Also $b \in B \Rightarrow d(b, x_1) \le d(b, x_2) + d(x_2, x_1) < r_2 + d(x_1, x_2) < r$.

Thus $A \bigcup B \subset B(x_1, r)$.

If $a \in A$ and $b \in B$, then $d(a, b) \le d(a, x_1) + d(x_1, x_2) + d(x_2, b) = r$.

Thus $d(a, b) < r \forall a \in A, b \in B$,

and so $e(A, B) = \sup_{a \in A} d(a, B) = \sup_{a \in A} \inf_{b \in B} d(a, b) \le r < \infty$.

Similarly $e(B, A) < \infty$ and by Lemma 1 (b), $0 \le d_H(A, B) < \infty$.

By Definition 2,

$$d_{H}(A, B) = \max\{e(A, B), e(B, A)\} = \max\{e(B, A), e(A, B)\} = d_{H}(B, A), \forall A, B \in CB(X).$$

By Lemma 1(d), $e(A, C) \le e(A, B) + e(B, C)$.

Thus $e(A, C) \leq d_H(A, B) + d_H(B, C)$.

Similarly $e(C, A) \le d_H(C, B) + d_H(B, A) = d_H(B, C) + d_H(A, B)$.

Thus $d_H(A, C) = \max \{ e(A, C), e(C, A) \} \le d_H(A, B) + d_H(B, C).$

Now we will study the completeness of the space CB(X).

Theorem 2

If (X, d) is a complete metric space, then the space $(\mathfrak{CB}(X), d_H)$ is also complete.

Proof:

Take any Cauchy sequence $\{D_k\}$ in $\mathfrak{CB}(X)$, and any $\epsilon>0$.

Observe that D_k are closed and bounded subsets of X.

 $So \; \exists \; N_1 \in Z^+ \; \text{ with } \; N_1 > 1 \;, \; \text{ such that } \; j \;, \, k \geq N_1 \Longrightarrow d_H(D_k \;, \, D_j) < \frac{\epsilon}{2} \;.$

$$\begin{split} \text{Similarly, } \exists N_2 \in Z^+ \text{ with } N_2 > 2 \text{ and } N_2 > N_1 \text{ such that } j \text{ , } k \geq N_2 \Rightarrow d_H(D_j \text{ , } D_k) < \frac{\epsilon}{2^i} \text{ .} \\ \text{Similarly, } \exists N_i \in Z^+ \text{ with } N_i > N_{i-1} \text{ , and } N_i > i \text{ such that } j, k \geq N_i \Rightarrow d_H(D_k \text{ , } D_j) < \frac{\epsilon}{2^i} \text{ .} \\ \text{So } j, k \geq N_i \Rightarrow \max\{e(D_k \text{ , } D_j), e(D_j \text{ , } D_k)\} < \frac{\epsilon}{2^i} \Rightarrow e(D_k \text{ , } D_j) < \frac{\epsilon}{2^i} \text{ and } e(D_j \text{ , } D_k) < \frac{\epsilon}{2^i} \\ \Rightarrow \inf\{\epsilon > 0 \mid D_k \subset N_\epsilon(D_j) \} < \frac{\epsilon}{2^i} \text{ and } \inf\{\epsilon > 0 \mid D_j \subset N_\epsilon(D_k)\} < \frac{\epsilon}{2^i} \text{ .} \end{split}$$

Suppose j, $k \ge N_i$. Then $\exists \ \delta_1 > 0$ such that $D_k \subset N_{\delta_1}(D_j)$ with $\delta_1 < \frac{\epsilon}{2^i}$ and $\exists \ \delta_2 > 0$

such that $D_j \subset N_{\delta_2}(D_k)$ with $\delta_2 < \frac{\epsilon}{2^i}$. But we know that $\epsilon_1 \le \epsilon_2 \Longrightarrow N_{\epsilon_1}(D_j) \subset N_{\epsilon_2}(D_j)$.

Hence, we have a strictly increasing sequence $\{N_i\}$ of positive integers with $N_i > i$ such that $j, k \ge N_i \Rightarrow D_k \subset N_{\frac{\epsilon}{2^i}}(D_j)$ and $D_j \subset N_{\frac{\epsilon}{2^i}}(D_k)$. (1)

Now we claim that, \forall pair (x, k) with $x \in D_k$ and $k \ge N_i$, $\exists y_j \in D_j$ for $j \ge k$ such that

$$d(x, y_j) < \frac{\varepsilon}{2^i}.$$
 (2)

 $By \ (1), \ x \! \in \! D_k \! \Rightarrow \! x \! \in \! N_{\frac{\epsilon}{2^i}} \ (D_j) \! \Rightarrow \! d(x, D_j) \! < \! \frac{\epsilon}{2^i} \, .$

Since $d(x, D_j) = \inf_{y \in D_j} d(x, y), \ \exists y_j \in D_j \ \text{such that} \ d(x, y_j) < \frac{\epsilon}{2^i}$.

Hence, (2) is satisfied.

Now we will construct a Cauchy sequence $\{x_k\}$ with $x_k \in D_k$.

 $\label{eq:started_st$

By (2),
$$\exists x_j \in D_j$$
 with $d(x_j, x_{N_1}) < \frac{\varepsilon}{2}$, $x_k \in D_k$ with $d(x_k, x_{N_1}) < \frac{\varepsilon}{2}$, and also

 $d(x_k,\,x_j) \leq d(x_k,\,\,x_{\,N_1}\,) + d(\,x_{\,N_1} + x_j) < \!\!\frac{\epsilon}{2} + \!\!\frac{\epsilon}{2} = \epsilon.$

Hence $\mathbf{x}_{N_2} \in \mathbf{D}_{N_2}$ and $\mathbf{d}(\mathbf{x}_{N_1}, \mathbf{x}_{N_2}) < \frac{\varepsilon}{2}$.

Suppose $N_2 \leq j$, $k \leq N_3$.

Applying (2) again, $\exists x_j \in D_j$ with $d(x_j, x_{N_2}) < \frac{\epsilon}{2^2}$, $\exists x_k \in D_k$ with $d(x_k, x_{N_2}) < \frac{\epsilon}{2^2}$,

 $\text{ and also } \ d(x_k \ , \ x_j) < \frac{\epsilon}{2^2} + \frac{\epsilon}{2^2} < \frac{\epsilon}{2} \ .$

Hence we have a sequence $\{x_k\}$ with $\,x_k\in D_k\,$ and for $\,N_i\leq j$, $k\;\;\exists\;x_j\in D_j\,$ with

$$d(x_j, x_{N_i}) < \frac{\epsilon}{2^i}, \exists x_k \in D_k \text{ with } d(x_k, x_{N_i}) < \frac{\epsilon}{2^i}, \text{ and also } d(x_k, x_j) < \frac{\epsilon}{2^i} + \frac{\epsilon}{2^i} < \frac{\epsilon}{2^{i-1}}.$$

It is obvious that this sequence is a Cauchy sequence and so it has a limit point say x₀.

Let F be the set of such limit points of sequences $\{x_k\}$ with $x_k \in D_k$.

i.e., $F = \liminf_{n \to \infty} D_n$. Then F is closed and we have proved that $F \neq \emptyset$.

Take any $\ x \! \in \! D_k$, with $\ k \geq N_1$ and $j \geq k$.

Then $d(x, x_j) \le d(x, x_{N_i}) + d(x_{N_i}, x_{N_2}) + ... + d(x_{N_{j-1}}, x_{N_j}) + d(x_{N_j}, x_j)$

$$<\frac{\varepsilon}{2}+\frac{\varepsilon}{2^2}+\ldots+\frac{\varepsilon}{2^j}\le \varepsilon\left(\frac{1}{2}+\frac{1}{2^2}+\ldots\right)=\varepsilon$$

Since $x_k \to x_0$, $\exists N \in Z^+$ with $N \ge N_1$ such that $k \ge N \implies d(x_0, x_k) < \epsilon$.

Suppose $k \geq N.$ Then d(x , $x_0) \leq d(x$, $x_j) + d(x_j$, $x_0) < \epsilon + \epsilon = 2\epsilon$.

Hence $d(x, F) = \inf_{y \in F} d(x, y) \le d(x, x_0) < 2\epsilon$ and so $x \in N_{2\epsilon}(F)$.

Hence $D_k \subset N_{2\epsilon}(F)$.

Now we will show that $F \subset N_{2\epsilon}(D_N)$.

Take any $y \in F$. Then $\exists y_n \in D_n$ such that $y_n \rightarrow y$.

Thus for sufficiently large n, $d(y_n, y) < \epsilon/2$.

We also have n, $m \ge N_1 \Longrightarrow d_H(D_n, D_m) < \epsilon/2$.

Hence $n \ge N \implies D_n \subset N_{\epsilon}(D_N)$ and $D_N \subset N_{\epsilon}(D_n)$ since $N \ge N_1$.

 $\text{Then } d(y \ , \ X_N) \leq d(y \ , \ y_n) + d(y_n \ , \ X_N) < \epsilon/2 + \epsilon/2 = \epsilon \Longrightarrow y \ \in \ N_\epsilon(D_N).$

Hence $F \subset N_{\epsilon}(D_N)$.

But $n \ge N \Longrightarrow D_N \subset N_\epsilon(D_n)$. Thus $F \subset N_{2\epsilon}(D_n)$.

Hence $n \ge N \Rightarrow D_n \subset N_{2\epsilon}(F)$ and $F \subset N_{2\epsilon}(D_n) \Rightarrow d_H(D_n, F) < 2\epsilon$. Hence $D_n \rightarrow F$ and so (CB(X), d_H) is complete.

Conclusion

The Hausdorff distance is a measure that assigns a nonnegative real number as the distance between sets. Given a metric (X, d), we found the Hausdorff distance and defined the Hausdorff metric (CB(X), d_H) on the space of nonempty subsets of X. Finally, we proved that if (X, d) is complete, then (CB(X), d_H) is complete.

Acknowledgements

I would like to express our gratitude to Rector Dr Thein Win, University of Mandalay for his permission to perform this research. I am very deeply grateful to Professor Dr Khin Myo Aye, Head of Department of Mathematics, University of Mandalay, for her kind comments on this research paper. I am deeply indebted to my teacher Lt. Col. Dr Zaw Htet (Rtd), for his helpful guidance, encouragement and valuable suggestions.

References

- Aubin, J. P. and Frankowska, H. (1990), "Set-valued Analysis", Birkhauser, Berlin, 1990.
- Barich. K. (2011), "Proving Completeness of The Hausdorff Induced Metric Space", Senior Project, Whitman College, Washington.
- Nadler, S. B. (1969), "Multi-Valued Contraction Mappings", Pacific Journal of Mathematics, Vol. 30, No. 2, pp. 475-488.

Rudin, W. (1953), "Principles of Mathematical Analysis", McGraw-Hill Book Company, New York, 1953.

Vainberg, M. M. (1972), "Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations", John Wiley and Sons Inc., New York.