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Abstract 

In this paper, Grünwald-Letnikov fractional derivatives, Riemann-Liouville fractional derivatives 

and Caputo fractional derivatives are introduced. The fractional difference method is applied for 

solving linear ordinary fractional differential equations of fractional order α . This method can be 

used for obtaining approximate solutions of fractional differential equations in different types. The 

composite fractional oscillation equation (1 α 2) 
 
is solved by using this method. 
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Introduction 

 We consider the numerical solution of linear fractional differential equation of the form 

   
m

m

d u d u
a bu f (t), t 0, m 1 m,

dt dt




                                       (1) 

subject to the initial conditions 

  ( j)
ju (0) c , j 0,1,2,...,m 1,                                           (2)   

jwhere c ,  a and b are arbitrary constants and u(t) is assumed to be a causal function of time 

vanishing for  t < 0. We refer to 6(1) as to the composite fractional oscillation equation in the 

cases 1 2,    m = 2. 

 

Fractional Derivatives 

Grünwald-Letnikov fractional derivatives 

 Let us consider a continuous real valued function y f (t)  with step size h. The first 

order derivative of the function f (t)  is defined by  

 h 0

df f (t) f (t h)
f (t) lim .

dt h

 
  

 

This equation can be used to form the second order derivative: 

 
2

2 2h 0

d f f (t) 2f (t h) f (t 2h)
f (t) lim ,

dt h

   
    

and the third order derivative:  
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3

3 3h 0

d f f (t) 3f (t h) 3f (t 2h) f (t 3h)
f (t) lim .

dt h

     
    

The general form of an 
th

 derivative can be formed with induction: 

 

α n
(α) r

α αh 0
r 0

αd f 1
f (t) lim ( 1) f (t rh),

rdt h


 
    

 


                            

(3) 

where
α α(α 1) (α r 1)

r r!

    
 

 

L
is the usual notation for the binomial coefficient. 

 Let us consider the following expression generalizing the functions: 

  

n
(α) r
h α

r 0

α1
f (t) ( 1) f (t rh),

rh 

 
   

 
                                               (4) 

where  α  is an arbitrary integer number and n is also integer. 

For α n, we have  

 
α

(α)(α)
hα h 0

d f
f (t) lim f (t),

dt 
   

because all the coefficients in the numerator after 
α

α

 
 
 

are equal to zero. 

 Let us consider the negative value of α  and denote  

 
α α(α 1) (α r 1)

.
r r!

    
 

 

L

 

Then 

 

rα αα( α 1) ( α r 1)
( 1)

r rr!

        
     

   

L
 

 Thus, (4) becomes 

 

n
( α)
h α

r 0

α1
f (t) f (t rh),

rh






 
  

 
                                                               (5) 

where α  is positive integer number. If n is fixed, then 
( α)
hf (t)

tends to the uninteresting limit  

0 as h 0.  We have to suppose that n as h 0. 
 We can take 

t a
h ,

n




 
where  a  and  t 

are terminals and a is a real constant.  

 Consider the limit value either finite or infinite of function 
( α)
hf (t)

which will denote 

as  
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nh t a

( α)α
a t h

h 0
D f (t) lim f (t).

 




  

Thus 

nh t a

n
α

a t αh 0
r 0

α1
D f (t) lim f (t rh).

rh
 






 
  

 
                                              (6) 

 The derivative of an integer order n of the continuous function f (t) is particular cases 

of the general expression  

 

nh t a

n
α α r

a t
h 0

r 0

α
D f (t) lim h ( 1) f (t rh)

r
 






 
   

 
                                               (7) 

which represents the derivative of order m ( m is a positive integer )  if α m  and    the m-fold 

integral if α m.   For negative value of α , we can form something equivalent to an integral: 

  

nh t a

n
α α

a t
h 0

r 0

α
D f (t) lim h f (t rh)

r
 






 
  

 


 

                  

t
α 1

a

1
(t τ) f(τ)dτ.

Γ(α)

 
                                                                     

(8) 

 If the derivative f (t) is continuous in [a, t ], then the integrating by parts, we can write  

(8) in the form  

   

tα
α α

a t

a

f (a)(t a) 1
D f (t) (t τ) f (τ)dτ.

(α 1) (α 1)

 
  

  G G
                               

(9) 

 If the function f (t)  has m 1  continuous derivatives, then we have  

 

t(k) α km
α α+m (m+1)

a t

k 0 a

f (a)(t a) 1
D f (t) (t τ) f (τ)dτ.

(α k 1) (α m 1)







  

   
 G G

         

(10) 

 Let us consider α 0  in  (7), we have  

 

nh t a nh t a

n
(α)α r

a t h αh 0 h 0
r 0

α1
D f (t) lim f (t) lim ( 1) f (t r h).

rh
   

 


 
    

 
                       (11) 

 Using the binomial coefficient 

 
α α 1 α 1

,
r r r 1

      
      

     
                                                               (12) 

we can write 

n n
(α) r r
h α α

r 0 r 1

α 1 α 11 1
f (t) ( 1) f (t rh) ( 1) f (t rh) ,

r r 1h h 
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n n 1
(α) α r α r 1
h

r 0 r 0

α 1 α 1
f (t) h ( 1) f (t rh) h ( 1) f (t (r 1)h) ,

r r


  

 

    
         

   
 

  

 

n 1
(α) n α α r
h

r 0

α 1 α 1
f (t) ( 1) h f (a) h ( 1) f (t rh),

n r


 



    
       

   
 V

                     

(13)

 

where we denote f (t rh) f (t rh) f (t (r 1)h).     V The 
f (t rh)V is a first-order backward 

difference of the function f(τ)at the point τ t r h.   

 Applying the binomial coefficient repeatedly m times, (13) becomes 

  

m
(α) n k α k
h

k 0

α k 1
f (t) ( 1) h f (a kh)

n k

 



  
    

 


 

            

n m 1
α r m 1

r 0

α m 1
h ( 1) f (t rh).

r

 
 



  
    

 


                                

(14) 

 We evaluate the limit of the k
th

 term in the first sum in (14): 

 

nh t a

m
n k α k

h 0
k 0

α k 1
lim ( 1) h f (a kh)

n k
 

 




  
   

 


(k) α km

k 0

f (a)(t a)
,

( α k 1)

 






  


G
               

(15) 

and the limit of the second sum in (14): 

 nh t a

n m 1
α r m 1

h 0
r 0

α m 1
lim h ( 1) f (t rh)

r
 

 
 




  
   

 


t
m α (m 1)

a

1
(t ) f ( )d .

( α m 1)

     
        (16) 

 Using (15) and (16), we finally obtain 

           nh t a

(α)α
a t h

h
D f (t) lim f (t)

 


  

  

t(k) α km
m α (m 1)

k 0 a

f (a)(t a) 1
(t ) f ( )d .

( α k 1) ( α m 1)

 
 




     

       
 

    

(17) 

 It is called Grünwald-Letnikov fractional derivative and has been obtained under the 

assumption that the derivatives 
(k)f (t),

 (k 1,2,3,...,m 1)   are continuous in the closed 

interval [a,t] and m is an integer number satisfying the condition  m α 1  . The smallest 

possible value for m is determined by the inequality    m α m 1.    

 For 1 α 2, 
 with the lower terminal a 0  of the function f (t) , which is bounded at  

t 0 , (17) becomes the form: 
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tα
α α

0 t

0

f (0)t 1
D f (t) (t ) f ( )d .

(1 α) (1 α)


      

    
                                              

(18) 

 Let 
1

α , f (t) t
2

  . Then applying  (18),  we get  

             

11 t
22

0 t

0

1
D f (t) (t ) d

1
( )
2



   




2 t
.

  

Riemann-Liouville fractional derivatives 

Suppose that 0, t a , , a, t R.     Then 

 

tn
n 1

n
a

n

n

1 d
(t ) f ( )d , n 1 n,for n N

(n ) dt
D f (t)

d
f (t), n,for n N

dt






        

 
 


  




                           

(19) 

is called the Riemann-Liouville fractional derivative or Riemann-Liouville fractional 

differential operator of order . 

Caputo's fractional derivatives 

 Suppose that 0, t a , , a, t R.     Then 

  

 

t (n)

1 n
a

*
n

n

1 f ( )
d , n 1 n,for n N

(n ) (t )
D f (t)

d
f (t), n,for n N

dt

 


 
     

   
 


  



                             (20) 

is called the Caputo fractional derivative (or) Caputo fractional differential operator of order . 

The power function 

 The Riemann-Liouville fractional derivative of the power function satisfies  

  
p p(p 1

D t t ,
(p 1)

  

    

where n 1 n, p 1, p R.       

 The Caputo fractional derivative of the power function satisfies  
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p p
p

*

(p 1
t D t , n 1 n, p n 1, p R,

(p 1)D t

0, n 1 n, p n 1, p N.

 


 
       

  
                                

 

Fractional Difference Method 

 We define the fractional derivative in the Grünwald-Letnikov sense as  

  
[t/h]

j

h 0
j 0

D u(t) lim h ( 1) u(t jh),
j

 




 
   

 
                                           (21) 

where [t] means the integer part of  t  and h is the step size. 

 The definition of operator in the Grüwald-Letnikov sense equation (21) is equivalent to 

the definition of operator in the Riemann-Liouville. Approximating the fractional derivative in  

(1) by  (21), we obtain the following approximation for (1): 

 

m[t /h]m
m
j m j j m j m m

j 0 j 0

C u a C u bu f , (m 1,2,3,...),
 

 

                                  (22) 

where tm = mh, um = u(tm) and jC  are Grüwald-Letnikov coefficients defined as  

 j
jC h ( 1) , (j 0,1,2,...).

j

   
   

 
                                              (23) 

We have  

   0C h 
    

for j = 0,  

1 0 0

1
C h C (1 )C

1

   
     

   
for  j = 1, 

2 1

( 1) 1
C ( h )( ) (1 )C

2 2

   
        for j = 2, 

3 2 2

( 2) ( 1) 2 1
C ( 1) ( h ) ( )C (1 )C

3 2 1 3 3

       
    


   for    j = 3.  

By using the recurrence relationship 

 0 j j 1

1
C h , C 1 C , (j 1,2,3,...).

j

   


 
    

 
                         (24) 

For the case  1 2,    m = 2, (22) becomes 



University of Mandalay, Research Journal, Vol.11, 2020                                                                                              305 

m
α αm m 1 m 2

m j m j m m2
j=1

u 2u u
ah u a C u bu f ,

h

 


 
   

m
α 2 2 α 2 2

m m 1 m 2 m j m j m m

j=1

u 2u u ah u h ah C u bh u f h ,

              
       

m
α 2 2 2 2 α

m m m m m 1 m 2 j m j

j=1

u ah u h bh u f h 2u u +ah C u ,

       
 

        

m
α 2 2 α 2

m m 1 m 2 j m j m

j=1

[1 (b ah )h ]u 2u u +ah C u +f h .

      
 

  Hence 

            

1 0
0 0 1

u u
u c , c ,

h


                                               

 

m
2 2

m 1 m 2 j m j m

j 1
m 2

2u u ah C u h f

u (m 2,3,4,...).
1 h (b ah )


  





  

 
 



                          

(25)  

 These are the numerical solution algorithms for the composite fractional oscillation 

equation in the case 1 2,    m = 2. 

   

Illustrations 

  Consider the following composite fractional oscillation equation 

  
2

2

d u d u
a bu 8, t 0, 1 2,

dt dt




             (26) 

subject to the initial conditions 

  u(0) = 0, u (0) 0.                           (27) 

 By using the fractional difference method (25), we obtain the following solution: 

 

m
2 2

m 1 m 2 j m j

j 1
m 2

2u u h C u 8h

u , (m 2,3,4,... ).
1 h (1 h )


  





  

 
 



               

(28)  

Giving   a = b = 1 and h 0.01,  we get 

 

 

m
2

m 1 m 2 j m j

j 1
m 2 1.5

2u u (0.01) C u 0.0008

u , (m 2,3,... )
1 (0.01) (1 (0.01) )


  





  

 
 


.    (29)  
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 The following table (Table 1) shows the approximate solution for the composite 

fractional oscillation equation (26) obtained the different values of fractional order α   

(α 1.25, α 1.5 and α 1.75 ), a b 1    and step size h 0.01 , by using the fractional 

difference method . Then we truncate the solution up to 100 terms. 

  Table 1 

 

 

Conclusion 

It is found that the fractional difference method can be applied to get the approximate 

solutions of the composite fractional oscillation equations of fractional order  

α 1.25, α 1.5  and α 1.75 by using the MATLAB programming.  

 

 

 

 

 

 

 

 

 

 

 

t Fractional Difference Method 

  = 1.25  = 1.5  = 1.75 

0.0 0.0 0.0 0.0 

0.1 0.0330848 0.0299729 0.0247897 

0.2 0.1324928 0.1184009 0.0988386 

0.3 0.2893951 0.2575560 0.2176142 

0.4 0.4966003 0.4420972 0.3781759 

0.5 0.7477783 0.6675843 0.5780095 

0.6 1.0371718 0.9300431 0.8147500 

0.7 1.3594531 1.2257758 1.0860717 

0.8 1.7096454 1.5512656 1.3896378 

0.9 2.0830754 1.9031262 1.7230762 

1.0 2.4753462 2.2780731 2.0839694 
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